资源简介 2021年苏科版八年级数学上册《2.4线段、角的轴对称性》同步优生辅导提升训练(附答案)1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,DE⊥AC,垂足为点E,若BD=2,则DE的长为( )A.3B.C.2D.62.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.5C.4D.73.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是( )A.只有①②③B.只有①③④C.只有②③④D.只有①③4.如图,在△ABC中,∠B=15o,∠C=30o,MN是AB的中垂线,PQ是AC的中垂线,已知BC的长为6+2,则阴影部分的面积为( )A.B.C.D.65.△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E且DE=4,则AD+AE的值为( )A.6B.10C.6或14D.6或106.如图,在△ABC中,AD是∠BAC的平分线,DE⊥AC,垂足为E,若AB=12,DE=4,则△ABD的面积是( )A.4B.12C.24D.487.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB=5,DC=2,则△ABD的面积为 .8.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,若BD是△ABC的角平分线,则点D到BC边的距离为 .9.如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是 .10.如图,DF垂直平分AB,EG垂直平分AC,若∠BAC=110°,则∠DAE= °.11.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是 .12.如图,已知△ABC的周长是18,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,△ABC的面积是 .13.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP= .14.如图,∠A=52°,O是AB、AC的垂直平分线的交点,那么∠OCB= .15.已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.16.在Rt△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,①请你判断并写出FE与FD之间的数量关系.②如果∠ACB不是直角,其他条件不变,①中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.17.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.18.如图,AD⊥BC于D,BD=DC,点B在AE的垂直平分线上.求证:(1)AC=BE;(2)DE=AC+CD.19.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.如图,在△ABC中,点E是BC边上的一点,连接AE,BD垂直平分AE,垂足为F,交AC于点D,连接DE.(1)若△ABC的周长为18,△DEC的周长为6,求AB的长.(2)若∠ABC=30°,∠C=45°,求∠CDE的度数.21.如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=3cm,求△CMN的周长.(2)若∠MFN=70°,求∠MCN的度数.参考答案1.解:∵AD平分∠BAC交BC于点D,DE⊥AC,DB⊥AB,∴DE=DB=2.故选:C.2.解:作EF⊥BC于F,∵BE平分∠ABC,EF⊥BC,ED⊥AB,∴EF=DE=2,∴△BCE的面积=×BC×EF=5.故选:B.3.解:如图,过点P作PM⊥AB,PN⊥BC,PD⊥AC,垂足分别为M、N、D,①∵PB平分∠ABC,PA平分∠EAC,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,很明显∠MPN≠∠APC,∴∠ABC+∠APC=180°错误,故本小题错误;③在Rt△APM与Rt△APD中,,∴Rt△APM≌Rt△APD(HL),∴AD=AM,同理可得Rt△CPD≌Rt△CPN,∴CD=CN,∴AM+CN=AD+CD=AC,故本小题正确;④∵PB平分∠ABC,PC平分∠ACF,∴∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,∴∠BAC=2∠BPC,故本小题正确.综上所述,①③④正确.故选:B.4.解:∵∠B=15o,∠C=30o,∴∠BAC=180°﹣15°﹣30°=135°,∵MN是AB的中垂线,PQ是AC的中垂线,∴NA=NB,QA=QC,∴∠NAB=∠B=15o,∠QAC=∠C=30o,∴∠NAQ=135°﹣15°﹣30°=90°,∠ANQ=30°,∴NQ=2AQ,∴AN=AQ,∴AQ+AQ+2AQ=6+2,解得,AQ=2,∴AN=AQ=2,∴阴影部分的面积=×2×2=2,故选:B.5.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,当BD与CE无重合时,如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,当BD与CE有重合时,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故选:C.6.解:过D点作DF⊥AB于F,如图,∵AD是∠BAC的平分线,DE⊥AC,DF⊥AB,∴DF=DE=4,∴S△ABD=×12×4=24.故选:C.7.解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∴△ABD的面积=×5×2=5.故答案为5.8.解:过点D作DE⊥BC,垂足为点E,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,∴BC===10,∵BD是△ABC的角平分线,∴AD=ED,在Rt△ABD和Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴AB=EB=6,设ED=x,则AD=x,∴CD=8﹣x,在Rt△DEC中,ED2+EC2=CD2,即x2+(10﹣6)2=(8﹣x)2,解得:x=3,即ED=3,故答案为:3.9.解:∵DE垂直平分BC,∴DB=DC.∴C△ABD=AB+AD+BD=AB+AD+DC=AB+AC=12.∴△ABD的周长是12.故答案为:12.10.解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=180°﹣110°=70°,∵DF垂直平分AB,EG垂直平分AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=∠B+∠C=70°,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=40°,故答案为:40.11.解:如图所示,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4,即点P到BC的距离是4.故答案为:4.12.解:过点O作OE⊥AB于E,OF⊥AC与F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=1,同理可知,OF=OD=1,∴△ABC的面积=△OAB的面积+△OAC的面积+△OBC的面积=×AB×OE+×AC×OF+×BC×OD=×18×1=9,故答案为:9.13.解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.14.解:∵O是AB、AC的垂直平分线的交点,∴点O是△ABC的外心.如图,连接OB.则∠BOC=2∠A=104°.又∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=(180°﹣∠BOC)÷2=38°,故答案是:38°.15.证明:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DB平分∠ADC,CE平分∠BCD,∴∠ODC+∠OCD=90°,∴∠DOC=90°,∴∠DOC=∠BOC,又∵CO=CO,∠DCO=∠BCO,∴△DCO≌△BCO(ASA)∴CB=CD,∴OB=OD,∴CE是BD的垂直平分线,∴EB=ED,又∠DOC=90°,∴EC平分∠BED,∴点O到EB与ED的距离相等.16.解:①相等,过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,∵F是角平分线交点,∴BF也是角平分线,∴MF=FN,∠DMF=∠ENF=90°,∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠DAC=∠BAC=15°,∴∠CDA=75°,∵∠MFC=45°,∠MFN=120°,∴∠NFE=15°,∴∠NEF=75°=∠MDF,在△DMF和△ENF中,,∴△DMF≌△ENF(AAS),∴FE=FD;②成立.过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,∵F是角平分线交点,∴BF也是角平分线,∴MF=FN,∠DMF=∠ENF=90°,∴四边形BNFM是圆内接四边形,∵∠ABC=60°,∴∠MFN=180°﹣∠ABC=120°,∵∠CFA=180°﹣(∠FAC+∠FCA)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=180°﹣(180°﹣60°)=120°,∴∠DFE=∠CFA=∠MFN=120°.又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,∴∠DFM=∠NFE,在△DMF和△ENF中,∴△DMF≌△ENF(ASA),∴FE=FD.17.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.18.(1)证明:∵AD⊥BC于D,BD=DC,∴AB=AC,∵点B在AE的垂直平分线上.∴AB=EB,∴AC=EB;(2)∵AC=EB,BD=DC∴DE=EB+BD=AC+CD.19.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20.解:(1)∵BD是线段AE的垂直平分线,∴AB=BE,AD=DE,∵△ABC的周长为18,△DEC的周长为6,∴AB+BE+EC+CD+AD=18,CD+EC+DE=CD+CE+AD=6,∴AB+BE=18﹣6=12,∴AB=6;(2)∵∠ABC=30°,∠C=45°,∴∠BAC=180°﹣30°﹣45°=105°,在△BAD和△BED中,,∴△BAD≌△BED(SSS),∴∠BED=∠BAC=105°,∴∠CDE=∠BED﹣∠C=105°﹣45°=60°.21.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB=3(cm);(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40° 展开更多...... 收起↑ 资源预览