资源简介 中小学教育资源及组卷应用平台第39讲 物质的结构与性质综合[学习目标]1.掌握原子结构与元素的性质2.掌握化学键、配位键与超分子3.掌握分子间作用力与轨道杂化理论、分子的空间构型4.掌握晶体的类型、晶胞及其计算考点一 原子结构与元素的性质1.基态原子的核外电子排布(1)排布规律①能量最低原理:基态原子核外电子先占有能量最低的原子轨道,如Se:1s22s22p63s23p63d104s24p3。②泡利原理:每个原子轨道上最多只容纳2个自旋状态不同的电子。③洪特规则:原子核外电子在能量相同的各轨道上排布时,电子尽可能分占不同的原子轨道,且自旋状态相同。注意:洪特通过分析光谱实验得出:能量相同的原子轨道在全充满(如d10)、半充满(如d5)和全空(如d0)时体系能量较低,原子较稳定。如Cr原子的电子排布式为[Ar]3d54s1;Cu原子的电子排布式为[Ar]3d104s1。(2)表示形式①电子排布式:用数字在能级符号右上角标明该能级上排布的电子数。如K:1s22s22p63s23p64s1或[Ar]4s1。②电子排布图:每个小方框代表一个原子轨道,每个箭头代表一个电子,如碳原子。2.电离能(1)同周期元素随着原子序数的递增,原子的第一电离能逐渐增大;但ⅡA族元素的第一电离能大于ⅢA族元素的第一电离能,ⅤA族元素的第一电离能大于ⅥA族元素的第一电离能。同主族元素,从上到下第一电离能逐渐减小。(2)如果某主族元素的In+1远大于In,则该元素的常见化合价为+n,如钠元素I2远大于I1,所以钠元素的化合价为+1。而过渡元素的价电子数较多,且各级电离能之间相差不大,所以常表现多种化合价,如锰元素有+2价~+7价。3.电负性(1)变化规律:①同一周期,从左到右,元素的电负性递增;②同一主族,自上到下,元素的电负性递减。(2)运用:①确定元素类型(电负性>1.8,非金属元素;电负性<1.8,金属元素);②确定化学键类型(两元素电负性差值>1.7,离子键;两元素电负性差值<1.7,共价键);③判断元素价态正负(电负性大的为负价,小的为正价);④电负性是判断元素金属性和非金属性强弱的重要参数之一。题组练习1.科学家正在研究温室气体CH4和CO2的转化和利用。(1)CH4和CO2所含的三种元素电负性从小到大的顺序为__________。(2)下列关于CH4和CO2的说法正确的是________(填序号)。a.固态CO2属于分子晶体b.CH4分子中含有极性共价键,是极性分子c.因为碳氢键键能小于碳氧键,所以CH4熔点低于CO2d.CH4和CO2分子中碳原子的杂化类型分别是sp3和sp(3)在Ni基催化剂作用下,CH4和CO2反应可获得化工原料CO和H2。①基态Ni原子的电子排布式为________,该元素位于元素周期表的第________族。②Ni能与CO形成正四面体形的配合物Ni(CO)4,1 mol Ni(CO)4中含有________ mol σ键。(4)一定条件下,CH4和CO2都能与H2O形成笼状结构(如下图所示)的水合物晶体,其相关参数见下表。CH4与H2O形成的水合物俗称“可燃冰”。 参数分子 分子直径/nm 分子与H2O的结合能E/kJ·mol-1CH4 0.436 16.40CO2 0.512 29.91①“可燃冰”中分子间存在的2种作用力是_______________________________。②为开采深海海底的“可燃冰”,有科学家提出用CO2置换CH4的设想。已知上图中笼状结构的空腔直径为0. 586 nm,根据上述图表,从物质结构及性质的角度分析,该设想的依据是_____________________________________。答案:(1)H、C、O (2)ad(3)①1s22s22p63s23p63d84s2或[Ar]3d84s2 Ⅷ ②8(4)①氢键、范德华力 ②CO2的分子直径小于笼状空腔直径,且与H2O的结合力大于CH4解析:(1)元素的非金属性越强,其电负性越大。因为元素的非金属性由强到弱的顺序为:O>C>H,所以元素的电负性从小到大的顺序为:H<C<O;(2)a项,固态CO2是由CO2分子通过分子间作用力结合而成的分子晶体,正确;b项,CH4分子中含有极性共价键,但由于该分子中的共价键排列对称,因此该分子是非极性分子,错误;c项,固态时CH4和CO2都是分子晶体,分子之间通过分子间作用力结合,分子间作用力越强,物质的熔沸点就越高,而不是取决于分子内共价键的强弱,错误;d项,CH4分子中碳原子形成的都是σ键,C原子采取sp3杂化,而CO2分子中的C原子与两个O原子形成的是碳氧双键,含有2个σ键和2个π键,C原子采取sp杂化,正确。故答案选a、d。(3)①28号元素Ni的基态原子的电子排布式为1s22s22p63s23p63d84s2或[Ar]3d84s2;该元素位于元素周期表的第四周期第Ⅷ族。②Ni能与CO形成正四面体型的配合物Ni(CO)4,在每个配位体中含有1个σ键,在每个配位体与中心原子之间也形成1个σ键,所以1 mol Ni(CO)4中含有8 mol σ键。(4)①“可燃冰”中分子间存在的2种作用力分别是分子间作用力(也叫范德华力)和氢键。②根据表中的数据可知,笼状结构的空腔直径为0.586 nm,大于CO2分子的直径(0.512 nm),而且CO2与H2O分子之间的结合力大于CH4,因此可以实现用CO2置换出“可燃冰”中CH4的设想。2.早期发现的一种天然二十面体准晶颗粒由Al、Cu、Fe三种金属元素组成。回答下列问题:(1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过________方法区分晶体、准晶体和非晶体。(2)基态Fe原子有________个未成对电子,Fe3+的电子排布式为________。可用硫氰化钾检验Fe3+,形成的配合物的颜色为________。(3)新制备的Cu(OH)2可将乙醛(CH3CHO)氧化成乙酸,而自身还原成Cu2O。乙醛中碳原子的杂化轨道类型为________,1 mol乙醛分子中含有的σ键的数目为________。乙酸的沸点明显高于乙醛,其主要原因是____________________。Cu2O为半导体材料,在其立方晶胞内部有4个氧原子,其余氧原子位于面心和顶点,则该晶胞中有________个铜原子。(4)Al单质为面心立方晶体,其晶胞参数a=0.405 nm,晶胞中铝原子的配位数为________。列式表示Al单质的密度________g·cm-3(不必计算出结果)。答案:(1)X-射线衍射(2)4 1s22s22p63s23p63d5 血红色(3)sp3、sp2 6NA CH3COOH存在分子间氢键 16(4)12 解析:(1)用一定波长的X-射线照射到晶体上,根据记录仪上有无分离的斑点或明锐的谱线,可以鉴别晶体、准晶体和非晶体。(2)基态Fe原子的电子排布式为[Ar]3d64s2,价电子的轨道表示式为,故基态Fe原子的未成对电子数为4;Fe3+的电子排布式为[Ar]3d5或1s22s22p63s23p63d5;Fe3+与SCN-形成的配合物呈血红色。(3)CH3CHO分子中—CH3中碳原子为sp3杂化,—CHO中碳原子为sp2杂化。因乙酸分子间能形成氢键,故乙酸的沸点明显比乙醛高。Cu2O晶胞中氧原子数=4+6×+8×=8,故铜原子数为2×8=16。(4)面心立方晶胞中,铝原子的配位数为12;晶胞中Al原子数为8×+6×=4,故铝单质的密度ρ=== g·cm-3。考点二 分子结构与性质1.共价键(1)性质:共价键具有饱和性和方向性。(2)分类:①根据形成共价键的共用电子对的偏向或偏离的情况,分为极性键和非极性键;②根据形成共价键的原子轨道重叠方式的不同,分为σ键和π键;③配位键:形成配位键的条件是成键原子一方(A)能够提供孤电子对,另一方(B)具有能够接受电子对的空轨道,可表示为A→B。(3)键参数键能:气态基态原子形成1 mol化学键释放的最低能量。键能越大,共价键越牢固;键长:形成共价键的两原子之间的核间距。键长越短,共价键越牢固;键角:在原子数超过2的分子中,两个共价键之间的夹角。2.分子的立体结构(1)价层电子对互斥理论几种分子或离子的立体构型分子或离子 中心原子的孤电子对数 分子或离子的价层电子对数 分子或离子的立体构型名称CO2 0 2 直线形SO2 1 3 V形H2O 2 4 V形BF3 0 3 平面三角形CH4 0 4 正四面体形NH 0 4 正四面体形NH3 1 4 三角锥形SO 1 4 三角锥形 (2)杂化轨道理论常见杂化轨道类型与分子构型规律杂化轨道类型 参加杂化的原子轨道 分子构型 示例sp 一个s轨道,一个p轨道 直线形 CO2、BeCl2、HgCl2sp2 一个s轨道,二个p轨道 平面三角形 BF3、BCl3、CH2Osp3 一个s轨道,三个p轨道 正四面体 CH4、CCl4、NH具体情况不同 NH3(三角锥形)、H2S、H2O(V形)(3)键的极性和分子极性的关系:类型 实例 两个键之间的夹角 键的极性 分子的极性 空间构型X2 H2、N2 --- 非极性键 非极性分子 直线形XY HCl、NO ---- 极性键 极性分子 直线形XY2(X2Y) CO2、CS2 180° 极性键 非极性分子 直线形SO2 120° 极性键 极性分子 V形H2O、H2S 105° 极性键 极性分子 V形XY3 BF3 120° 极性键 非极性分子 平面三角形NH3 107° 极性键 极性分子 三角锥形XY4 CH4、CCl4 109°28′ 极性键 非极性分子 正四面体形小结通常对于ABn型分子,若中心原子最外层电子全部参与成键,则为非极性分子;若中心原子最外层电子部分成键则为极性分子。4.配合物理论(1)配合物的组成:①配体:含有孤电子对的分子或离子,如NH3、H2O、Cl-、Br-、I-、SCN-等。②中心离子:一般是金属离子,特别是过渡金属离子,如Cu2+、Fe3+等。③配位数:直接同中心原子(或离子)配位的含有孤电子对的分子(或离子)的数目。(2)常见配合物:如[Cu(NH3)4](OH)2、[Cu(NH3)4]SO4、[Ag(NH3)2]OH、Fe(SCN)3等。5.影响物质溶解度的因素(1)相似相溶:①极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。②溶质与溶剂结构相似,溶解度较大。(2)溶质能与溶剂形成氢键,溶解度较大。(3)溶质能与溶剂反应,溶解度较大。6.超分子超分子通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组成复杂的、有组织的聚集体。题组练习3.氟在自然界中常以CaF2的形式存在。(1)下列关于CaF2的表述正确的是________。a.Ca2+与F-间仅存在静电吸引作用b.F-的离子半径小于Cl-,则CaF2的熔点高于CaCl2c.阴阳离子比为2∶1的物质,均与CaF2晶体构型相同d.CaF2中的化学键为离子键,因此CaF2在熔融状态下能导电(2)CaF2难溶于水,但可溶于含Al3+的溶液中,原因是_____________________________(用离子方程式表示)。已知AlF在溶液中可稳定存在。(3)F2通入稀NaOH溶液中可生成OF2,OF2分子构型为________,其中氧原子的杂化方式为________________。(4)F2与其他卤素单质反应可以形成卤素互化物,例如ClF3、BrF3等。已知反应Cl2(g)+3F2(g)===2ClF3(g) ΔH=-313 kJ·mol-1,F—F键的键能为159 kJ·mol-1,Cl—Cl键的键能为242 kJ·mol-1,则ClF3中Cl—F键的平均键能为________kJ·mol-1。ClF3的熔、沸点比BrF3的________(填“高”或“低”)。答案:(1)bd(2)3CaF2+Al3+===3Ca2++AlF(3)V形 sp3杂化(4)172 低解析:(1)a.Ca2+与F-间既存在静电吸引作用又存在静电斥力,错误;b.CaF2与CaCl2中离子所带电荷数相同,而F-的离子半径小于Cl-,故晶格能:CaF2>CaCl2,所以CaF2的熔点高于CaCl2,正确;c.晶体构型还与离子的大小有关,所以阴阳离子比为2∶1的物质,不一定与CaF2晶体构型相同,错误;d.离子晶体在熔融时发生电离从而导电,正确。(2)CaF2难溶于水,但可溶于含Al3+的溶液中,是因为生成了AlF,离子方程式为3CaF2+Al3+===3Ca2++AlF。(3)OF2中O原子与2个F原子形成了2个σ键,O原子还有2对孤对电子,所以O原子的杂化方式为sp3杂化,其空间构型为V形。(4)根据ΔH与键能的关系可得:242 kJ·mol-1+159 kJ·mol-1×3-ECl-F×6=-313 kJ·mol-1,解得Cl-F键的平均键能为ECl-F=172 kJ·mol-1。组成和结构相似的分子,相对分子质量越大,范德华力越大,晶体的熔沸点越高,故ClF3的熔、沸点比BrF3的低。4.下列反应曾用于检测司机是否酒后驾驶:2Cr2O+3CH3CH2OH+16H++13H2O―→4[Cr(H2O)6]3++3CH3COOH(1)Cr3+基态核外电子排布式为________;配合物[Cr(H2O)6]3+中,与Cr3+形成配位键的原子是________(填元素符号)。(2)CH3COOH中C原子轨道杂化类型为________________________________;1 mol CH3COOH分子含有σ键的数目为________。(3)与H2O互为等电子体的一种阳离子为________(填化学式);H2O与CH3CH2OH可以任意比例互溶,除因为它们都是极性分子外,还因为______________________________________________。答案:(1)1s22s22p63s23p63d3(或[Ar]3d3) O(2)sp3杂化和sp2杂化 7NA(或7×6.02×1023)(3)H2F+ H2O与CH3CH2OH之间可以形成氢键解析:(1)Cr为24号元素,注意写Cr3+基态核外电子排布式时,应先写出铬原子的基态核外电子排布式[Ar]3d54s1,再由外向内依次失去3个电子,则Cr3+基态核外电子排布式为[Ar]3d3;Cr3+有空轨道,H2O中O有孤对电子,形成配合物时O为配位原子。(2)CH3COOH中—CH3中的碳原子为sp3杂化,—COOH中的碳原子为sp2杂化。由CH3COOH的结构式,可知1 mol分子中含有σ键7 mol。(3)采用“左右移位,平衡电荷”法,可得出与H2O互为等电子体的阳离子H2F+。H2O与CH3CH2OH可以任意比例互溶,除了因为它们都是极性分子外,还因为它们分子间还可以形成氢键。考点三 晶体结构与性质1.晶体的基本类型与性质离子晶体 分子晶体 共价晶体 金属晶体结构 组成晶体微粒 阴、阳离子 分子 原子 金属阳离子和自由电子微粒间作用力 离子键 范德华力或氢键 共价键 金属键物理性质 熔、沸点 较高 低 很高 一般较高,少部分低硬度 硬而脆 小 大 一般较大,少部分小导电性 不良(熔融可导电) 不良 不良 良导体典型实例 离子化合物 多数非金属单质及其氧化物、氢化物等 金刚石、SiO2、晶体硅、SiC等 金属单质2.立方晶胞中粒子数目的计算3.晶体熔、沸点高低的比较(1)不同类型晶体的熔、沸点高低一般规律:共价晶体>离子晶体>分子晶体。金属晶体的熔、沸点差别很大,如钨、铂等沸点很高,汞、铯等沸点很低。(2)共价晶体:共价晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。如熔点:金刚石>碳化硅>硅。(3)离子晶体:一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO>MgCl2,NaCl>CsCl。(4)分子晶体:①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常高。如H2O>H2Te>H2Se>H2S。②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2。(5)金属晶体:金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na<Mg<Al。方法技巧1.试题结构题头(介绍题目背景或物质结构知识,元素推断信息)+问题(拼盘式考查物质结构相关主干知识)。2.考查方式(1)直接给出元素,围绕给出元素的原子结构、形成的物质等进行考查;(2)给出元素原子的一些结构特点等,首先推导出元素,然后再进行相应的考查。3.主要考查点基态原子核外电子排布(电子排布式或价电子的轨道表达式)、第一电离能和电负性递变规律等;共价键类型、数目的判断、氢键配位键的表示、原子轨道杂化类型、分子构型判断、性质比较等;晶体类型的判断、晶体熔沸点高低的比较、氢键对溶解性的影响、晶体密度和晶体参数的计算、晶体空间利用率的计算、金属晶体的堆积方式等。小结1.基本思路(1)掌握规律、注意特殊。如电离能、电负性规律和特殊(同周期主族元素,第ⅡA族(ns2)全充满、ⅤA族(np3)半充满,比较稳定,所以其第一电离能大于同周期相邻的第ⅢA族和第ⅥA族元素)及核外电子排布中的能级交错等。(2)根据题目类型总结解题方法。如化学键类型的判断方法,中心原子杂化轨道和价层电子对数的判断方法,中心原子孤对电子对数的判断方法,晶体类型的判断及计算方法等。2.破题关键推断元素,确定元素在周期表中的位置,联想变化规律和特殊性,根据要求规范回答问题。题组练习5.碳及其化合物广泛存在于自然界中,回答下列问题:(1)处于一定空间运动状态的电子在原子核外出现的概率密度分布可用________形象化描述。在基态14C原子中,核外存在________对自旋相反的电子。(2)碳在形成化合物时,其键型以共价键为主,原因是_______________________________________________________________________________________。(3)CS2分子中,共价键的类型有_____________________________________,C原子的杂化轨道类型是________,写出两个与CS2具有相同空间构型和键合形式的分子或离子____________________________________________________________________________。(4)CO能与金属Fe形成Fe(CO)5,该化合物熔点为253 K,沸点为376 K,其固体属于________晶体。(5)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示:①在石墨烯晶体中,每个C原子连接________个六元环,每个六元环占有________个C原子。②在金刚石晶体中,C原子所连接的最小环也为六元环,每个C原子连接________个六元环,六元环中最多有________个C原子在同一平面。答案:(1)电子云 2(2)C有4个价电子且半径小,难以通过得或失电子达到稳定电子结构(3)σ键和π键 sp杂化 CO2、COS、SCN-、OCN-等(4)分子 (5)①3 2 ②12 4解析:(1)基态14C原子核外电子排布式为1s22s22p2,2个s轨道分别存在1对自旋相反的电子,2p轨道上的2个电子自旋方向相同。(2)碳原子有4个价电子,不易得电子也不易失电子,故键型以共价键为主。(3)CS2与CO2互为等电子体,结构式为S===C===S,分子中含2个σ键、2个π键,因此碳原子采用sp杂化。与CS2互为等电子体的分子或离子,与其具有相同空间构型和键合形式,可用如下两种方法寻找其等电子体,一是同主族替换,如CO2、COS,二是“左右移位、平衡电荷”,如SCN-、OCN-等。(4)Fe(CO)5的熔沸点低,为分子晶体。(5)①由图可知,石墨烯中每个碳被3个六元环所共有,每个六元环占有的碳原子数为6×=2。②金刚石晶体中每个碳原子被12个环所共有。六元环呈船式或椅式结构,最多有4个原子共平面。6.A、B、C、D为原子序数依次增大的四种元素,A2-和B+具有相同的电子构型:C、D为同周期元素,C核外电子总数是最外层电子数的3倍;D元素最外层有一个未成对电子。回答下列问题:(1)四种元素中电负性最大的是________(填元素符号),其中C原子的核外电子排布式为________。(2)单质A有两种同素异形体,其中沸点高的是________(填分子式),原因是__________________________________________________________________;A和B的氢化物所属的晶体类型分别为________和________。(3)C和D反应可生成组成比为1∶3的化合物E,E的立体构型为________,中心原子的杂化轨道类型为________。(4)化合物D2A的立体构型为________,中心原子的价层电子对数为________,单质D与湿润的Na2CO3反应可制备D2A,其化学方程式为____________________________________________。(5)A和B能够形成化合物F,其晶胞结构如图所示,晶胞参数a=0.566 nm,F的化学式为________;晶胞中A原子的配位数为________;列式计算晶体F的密度(g·cm-3 )________________________ _。答案:(1)O 1s22s22p63s23p3(或[Ne] 3s23p3)(2)O3 O3相对分子质量较大,范德华力较大 分子晶体 离子晶体(3)三角锥形 sp3(4)V形 4 2Cl2+2Na2CO3+H2O===Cl2O+2NaHCO3+2NaCl(或2Cl2+Na2CO3===Cl2O+CO2+2NaCl)(5)Na2O 8 =2.27 g/cm3解析:由A2-和B+具有相同的电子构型可知,A是氧元素,B是钠元素;由C元素原子核外电子总数是最外层电子数的3倍可知,C是磷元素;A、B、C、D四种元素的原子序数依次增大,C、D为同周期元素,且D元素最外层有一个未成对电子,因此D是氯元素。(1)元素的非金属性O>Cl>P,则电负性O>Cl>P,Na是金属,其电负性最小;P的电子数是15,根据构造原理可写出其核外电子排布式。(2)氧元素有O2和O3两种同素异形体,相对分子质量O3>O2,范德华力O3>O2,则沸点O3>O2。A和B的氢化物分别是H2O和NaH,所属晶体类型分别为分子晶体和离子晶体。(3)PCl3分子中P含有一对孤电子对,其价层电子对数为4,因此其立体构型为三角锥形,中心原子P的杂化轨道类型为sp3。(4)Cl2O分子中心原子O原子含有2对孤电子对,其价层电子对数为4,因此其立体构型为V形;根据电子守恒和质量守恒可写出Cl2与湿润的Na2CO3反应的化学方程式。(5)根据化合物F的晶胞结构,利用均摊法可计算出氧原子个数:N(O)=8×+6×=4,钠原子全部在晶胞内,N(Na)=8,因此F的化学式为Na2O;以顶角氧原子为中心,与氧原子距离最近且等距离的钠原子有8个,即晶胞中A 原子的配位数为8;晶胞参数即晶胞的棱长a=0.566 nm,晶体F的密度===2.27 g/cm3。7.碳元素不仅能形成丰富多彩的有机化合物,而且还能形成多种无机化合物,同时自身可以形成多种单质,碳及其化合物的用途广泛。(1)C60分子能与F2发生加成反应,其加成产物为____________,C60分子的晶体中,在晶胞的顶点和面心均含有一个C60分子,则一个C60晶胞的质量为______________。(2)干冰和冰是两种常见的分子晶体,下列关于两种晶体的比较中正确的是______(填字母)。a.晶体的密度:干冰>冰b.晶体的熔点:干冰>冰c.晶体中的空间利用率:干冰>冰d.晶体中分子间相互作用力类型相同(3)金刚石和石墨是碳元素形成的两种常见单质,下列关于这两种单质的叙述中正确的是__________(填字母)。a.金刚石中碳原子的杂化类型为sp3杂化,石墨中碳原子的杂化类型为sp2杂化b.晶体中共价键的键长:金刚石中C—C键<石墨中C—C键c.晶体的熔点:金刚石>石墨d.晶体中共价键的键角:金刚石>石墨e.金刚石晶体中只存在共价键,石墨晶体中则存在共价键、金属键和范德华力f.金刚石和石墨的熔点都很高,所以金刚石和石墨都是共价晶体(4)金刚石晶胞结构如图,立方BN结构与金刚石相似,在BN晶体中,B原子周围最近的N原子所构成的立体图形为______,B原子与N原子之间共价键与配位键的数目比为________,一个晶胞中N原子数目为________。(5)C与孔雀石共热可以得到金属铜,铜原子的原子结构示意图为________,金属铜采用面心立方最密堆积(在晶胞的顶点和面心均含有一个Cu原子),则Cu的晶体中Cu原子的配位数为________。已知Cu单质的晶体密度为ρ g·cm-3,Cu的相对原子质量为M,阿伏加德罗常数为NA,则Cu的原子半径为________。答案:(1)C60F60 g(2)ac(3)ae(4)正四面体 3∶1 4(5) 12 × cm解析:(1)C60中每个碳原子的连接方式为,所以一个C60中共有双键0.5×60=30个,则与F2加成的产物应为C60F60;C60为面心立方最密堆积,则m·NA=4×12×60 g·mol-1,m= g。(2)在冰中存在氢键,空间利用率较低,密度较小,a、c正确。(3)石墨中C—C键键长小于金刚石中C—C键键长,所以熔点:石墨>金刚石,金刚石的碳原子呈sp3杂化,而石墨中的碳原子呈sp2杂化,所以共价键的键角:石墨大于金刚石,石墨属于混合晶体,则a、e正确。(4)在BN中,B原子周围最近的N原子所构成的立体图形为正四面体形,在四个共价键中,其中有一个配位键,其个数之比为3∶1,在晶胞中,含N:8×+6×=4个,含B 4个。(5)根据铜的堆积方式,Cu原子的配位数应为12,设晶胞边长为a cm,则a3·ρ·NA=4M,a=,面对角线为× cm,其为Cu原子半径,即r=× cm。8.铜及其化合物在科学研究和工业生产中具有许多用途。回答下列问题:(1)Cu2O中阳离子的基态核外电子排布式为________;Cu和Ni在元素周期表中的位置相邻,Ni在元素周期表中的位置是________。(2)将过量的氨水加到硫酸铜溶液中,溶液最终变成深蓝色,继续加入乙醇,析出深蓝色的晶体[Cu(NH3)4]SO4·H2O。①乙醇分子中C原子的杂化轨道类型为________;NH3能与H+以配位键形成NH的立体构型是________。②[Cu(NH3)4]SO4·H2O中存在的化学键除了极性共价键外,还有________。③NH3极易溶于水的原因主要有两个,一是___________,二是_________________________。(3)CuSO4溶液中加入过量KCN溶液能生成配离子[Cu(CN)4]2-,1 mol CN-中含有的π键数目为________________________________________________________________________,与CN-互为等电子体的离子有______(写出一种即可)。(4)Cu与F形成的化合物的晶胞结构如图所示,若晶体密度为a g·cm-3,则Cu与F最近距离为________pm(用NA表示阿伏加德罗常数的值,列出计算表达式,不用化简)。答案:(1)1s22s22p63s23p63d10(或[Ar]3d10) 第四周期Ⅷ族(2)①sp3 正四面体形 ②配位键、离子键 ③氨分子和水分子间能形成氢键 氨分子和水分子都是极性分子,相似相溶(3)2NA C(4)××10109.N、P、As、Ga、Cr、Cu等元素形成的化合物种类繁多,具有重要的研究价值和应用价值。请回答下列问题:(1)基态Cr原子的价电子排布式为________。(2)N2F2分子中,氮原子的杂化轨道类型为________,N2F2可能的两种结构为____________。(3)PCl3和PCl5是磷元素形成的两种重要化合物,请根据价层电子对互斥理论推测PCl3的立体构型:______________。(4)砷化镓的熔点为1 238 ℃,具有空间网状结构,作为半导体,性能比硅更优良。砷化镓属于________晶体。已知氮化硼与砷化镓属于同类型晶体,则两种晶体熔点较高的是________(填化学式),其理由是________________________________________________________。上述两种晶体的四种元素电负性最小的是________(填元素符号)。(5)铜的化合物种类很多,如图所示的是氯化亚铜的晶胞结构,已知晶胞的棱长为a cm,则氯化亚铜密度的计算式为ρ=________ g·cm-3(用NA表示阿伏加德罗常数的值)。答案:(1)3d54s1 (2)sp2 (3)三角锥形 (4)原子 BN 二者均为共价晶体,B—N键的键长比Ga—As键的键长短,键能更大 Ga (5)解析:(1)Cr的原子序数为24,基态原子的核外电子排布式为1s22s22p63s23p63d54s1,价电子排布式为3d54s1。(2)在N2F2分子中,F原子与N原子共用1对电子达到8电子稳定结构,两个N原子间需共用两对电子达到8电子稳定结构,即因此1个N原子形成2个σ键,1个π键,还有1对孤电子对,因此价层电子对数为3,杂化轨道类型为sp2。因为存在N==N键,类比C==C键的顺反异构可知,可形成的两种分子结构为和。(3)磷原子最外层有5个电子,其中3个电子分别和氯原子形成三对共用电子对,另有一对孤电子对,根据价层电子对互斥理论推测PCl3的立体构型为三角锥形。(4)砷化镓是具有空间网状结构的晶体,熔点为1 238 ℃,熔点较高,为共价晶体,氮化硼与砷化镓均属于共价晶体,B—N键的键长比Ga—As键的键长短,键能更大,故氮化硼晶体熔点较高。一般情况下,非金属性越强,电负性越大,四种元素中Ga的非金属性最弱,元素电负性最小。(5)氯化亚铜密度计算公式为ρ×V×NA=N×M,氯化亚铜的摩尔质量(M)为99.5 g·mol-1,根据晶胞图可知1个CuCl晶胞中Cu+有8×+6×=4个,Cl-有4个,所以该晶胞中含有4个CuCl,已知晶胞的棱长为a cm,体积为a3cm3,代入上述公式得ρ= g·cm-3。10.同周期元素中卤族元素的非金属性最强,能形成许多具有强氧化性的物质,回答下列问题。(1)写出基态溴原子核外电子排布式________________________________________________,氟、氯、溴、氧四种元素中,电负性由大到小的顺序为________________。(2)卤素单质的熔点、沸点随着元素原子序数的递增而升高,其原因是__________________;卤素可形成众多的二元化合物:如OF2、S2Cl2、NF3、PCl3、SnCl2、CCl4等。则SnCl2的分子构型为________,OF2的中心原子杂化类型为________。(3)氯化铬酰(CrO2Cl2)是有机合成中常用的氧化剂或氯化剂,它是易溶于CS2、CCl4的液体,则其晶体类型最可能是__________晶体,分子结构最可能是下列图Ⅰ中的___________。(4)氯元素能形成多种含氧酸,已知常温下电离常数K(HclO)=3×10-8、K(HclO2)=1.1×10-2,试从结构上加以解释________________________________________________。(5)氟化钙主要用作冶炼金属的助熔剂,其晶胞结构如图Ⅱ所示,则编号为①的微粒是________(写具体的微粒符号),若该晶体的密度为ρ g·cm-3,则晶胞Ca2+、F-的最短距离为________ cm(阿伏加德罗常数用NA表示,只写出计算式)。答案:(1)[Ar]3d104s24p5(或1s22s22p63s23p63d104s24p5) F>O>Cl>Br(2)卤素单质是分子晶体,分子间作用力随着相对分子质量的增大而增大,而相对分子质量随着原子序数的增大而增大 V形 sp3(3)分子 a(4)HclO、HclO2中氯元素化合价分别为+1价、+3价,正电性越高,导致Cl—O—H中O的电子更向Cl偏移,越易电离出H+,K值更大一些(5)Ca2+ 解析:(1)由周期表中电负性递变规律并结合元素的性质可确定O、F、Cl、Br电负性大小顺序为F>O>Cl>Br。(2)卤素单质是分子晶体,分子间作用力随着相对分子质量的增大而增大,而相对分子质量随着原子序数的增大而增大。SnCl2中每个锡原子形成2个σ键,另外还有1对孤电子对,故中心原子锡为sp2杂化,分子为V形,同理分析知OF2的中心原子杂化类型为sp3。(3)由CrO2Cl2的溶解性及CCl4是非极性分子知,CrO2Cl2最可能是非极性分子,故其分子结构中的两个氯原子、两个氧原子处于对称位置,故其最可能的结构为a。(4)HclO、HclO2可表示为HOCl和HOClO,相应地氯元素化合价分别为+1价、+3价,正电性越高,导致Cl—O—H中O的电子更向Cl偏移,越易电离出H+,K值更大一些。(5)晶胞中,①代表的微粒个数为8×+6×=4,另一种微粒个数为8,其个数之比为1∶2,所以①代表Ca2+,化学式为CaF2。设晶胞边长为a cm,则a3·ρ·NA=4×78,得a=,则面对角线为× cm,其为× cm,边长的为× cm,所以其最短距离为 cm= cm。11.X、Y、Z、W、R五种短周期非金属元素,原子序数依次增大。X、Y、Z、W为同周期元素,X原子的最高能级有两个空轨道,Y为同周期形成化合物种类最多的元素,Z原子的第一电离能大于W原子的第一电离能,R和Z同主族。请回答下列问题:(1)Y、Z、W三种元素的电负性由大到小的顺序为________________(用元素符号表示)。(2)R的基态原子的价层电子排布图为________________________。(3)W的常见氢化物的氢键的键能小于HF氢键的键能,但W的常见氢化物沸点高于HF沸点的原因是___________________________________________________________________。(4)某种分子式为Y4Z4W8的物质(该物质中同种原子的化学环境完全相同,不含碳碳双键)是一种威力极强的炸药,则可推知其结构简式为____________。Y原子的杂化方式为________。(5)XR是一种耐磨材料,可由X的三溴化物和R的三溴化物于高温下在氢气的氛围中合成。①R的三溴化物分子的立体构型为_________________________________________。②合成XR的化学方程式为_______________________________________________。(6) Y与W形成的某种常见化合物的晶胞结构如图所示,该晶体中分子的配位数为________,若晶胞的棱长为a nm,阿伏加德罗常数的值为NA,晶体的密度为________ g·cm-3。答案:(1)O>N>C(2)(3)每个H2O平均形成的氢键数目比每个HF平均形成的氢键数目多(4) sp3杂化(5)①三角锥形 ②BBr3+PBr3+3H2BP+6HBr(6)12 解析:X、Y、Z、W、R五种短周期非金属元素原子序数依次增大,X、Y、Z、W为同周期元素,结合元素周期表可知,X、Y、Z、W位于第二周期,R位于第三周期,X原子的最高能级有两个空轨道;即第二能层有两个空轨道,则2p轨道只有一个电子,故X为B元素;Y为同周期形成化合物种类最多的元素,即Y为C元素;Z与W处于同一周期,且Z的第一电离能大于W的第一电离能,则Z为N元素,W为O元素,R与Z同主族,所以R为P元素。(1)Z为N元素、W为O元素、Y为C元素,同周期元素,从左到右,电负性逐渐增大,故三种元素的电负性由大到小的顺序为O>N>C。(2)R为P元素,其基态原子的价层电子排布图为。(3)W的常见氢化物为H2O,每个H2O分子能形成4个分子间氢键,而每个HF分子只能形成2个分子间氢键,所以虽然H2O氢键的键能小于HF氢键的键能,但H2O的沸点高于HF的沸点。(4)Y4Z4W8的分子式为C4N4O8,该物质中同种原子的化学环境完全相同,不含碳碳双键,说明分子具有对称性,该物质是一种威力极强的炸药,说明含有硝基,由此可推知其结构简式为,每个C原子连接4个σ键,无孤对电子,故为sp3杂化。(5)①R的三溴化物分子式为PBr3,PBr3中P的价层电子对数为4,且含有一对孤电子对,因此PBr3分子的立体构型为三角锥形。②BP可由B的三溴化物和P的三溴化物于高温下在氢气的氛围中合成,所以合成XR的化学方程式为BBr3+PBr3+3H2BP+6HBr。(6)由Y与W形成的化合物的晶胞图可以看出该化合物为CO2,每个CO2分子周围距离最近且相等的CO2分子共有12个,故该晶体中分子的配位数为12;若晶胞的棱长为a nm,阿伏加德罗常数的值为NA,每个结构单元中含有CO2分子的数目为8×+6×=4,则ρ== g·cm-3= g·cm-3。12.周期表前四周期的元素a、b、c、d、e的原子序数依次增大。a和b的价电子层中未成对电子均只有1个,均能与水剧烈反应,并且a-和b+具有相同的电子构型,c的最外层电子数为其电子层数的2倍,补充维生素D可促进d的吸收,e的价电子层中的未成对电子数为4。回答下列问题:(1)a、b、c中第一电离能最大的是________(填元素符号),e的价层电子排布图为________________________________________________________________________。(2)a-与b+具有相同的电子构型,但r(b+)小于r(a-),原因是_______________________。(3)c的最高价氧化物在气态时以单分子形式存在,中心原子的杂化方式为________,其分子的立体构型为________,它的三聚体环状结构如图甲所示,该结构中S—O键键长有两类,一类键长约为140 pm,另一类键长约为160 pm,较短的键为________(填图中字母),含有化学键的类型有________________。(4)CO能与e形成e(CO)5,该化合物的熔点为253 K,沸点为376 K,该物质属于________晶体。比较c的氢化物与同族相邻两种元素所形成的氢化物的稳定性、沸点高低并分别说明理由。稳定性:________,理由:____________________________________________________;沸点:________,理由:______________________________________________________。(5)a和d生成的化合物的晶胞如图乙所示,可用于冶金、化工和建材等很多行业,已知晶胞参数为0.546 2 nm,阿伏加德罗常数的值为NA,则其密度为________________________(列出计算式)g·cm-3。答案:(1)F (2)Na+的核电荷数比F-大,原子核对核外电子的吸引力大(3)sp2 平面三角形 m σ键、π键(4)分子 H2O>H2S>H2Se 键长:H—OH—S>H—Se H2O>H2Se>H2S 水分子间有氢键,其他两种分子间无氢键,相对分子质量:H2Se>H2S,范德华力:H2Se>H2S(5)解析:a和b的价电子层中未成对电子均只有1个,均能与水剧烈反应,并且a-和b+具有相同的电子构型,故a和b分别为F元素和Na元素;a、b、c、d、e的原子序数依次增大,c的最外层电子数为其电子层数的2倍,故c为S元素;补充维生素D可促进d的吸收,故d为Ca元素;e的价电子层中的未成对电子数为4,故e为Fe元素。(1)a、b、c分别为F元素、Na元素、S元素,随原子序数递增,同周期元素第一电离能总体呈增大趋势,同主族元素的第一电离能逐渐减小,故第一电离能最大的是F元素;e为Fe元素,它的价层电子排布图为。(2)a-与b+分别为F-、Na+,r(Na+)小于r(F-),原因是Na+的核电荷数大,对核外电子的吸引力大,所以离子半径小。(3)根据价层电子对互斥理论可以确定SO3中中心原子S的孤电子对数为(6-3×2)×=0,成键电子对数为3,即中心原子S为sp2杂化,其分子的立体构型为平面三角形;由题图可知,与n键相连的O被2个S共用形成S—O键,与m键相连的O与S形成S===O键,S===O键键长较短;该三聚体中含有的化学键类型有σ键和π键。(4)e为Fe元素,CO能与Fe形成Fe(CO)5,该化合物的熔点为253 K,沸点为376 K,熔、沸点比较低,属于分子晶体;c为S元素,c的同族相邻两种元素分别为O元素和Se元素,三种元素所形成的氢化物分别为H2O、H2S、H2Se,稳定性:H2O>H2S>H2Se,因为键长越短,键能越大,化合物越稳定;沸点:H2O>H2Se>H2S,因为水分子间有氢键,其他两种分子间无氢键,相对分子质量:H2Se>H2S,范德华力:H2Se>H2S,范德华力越大,物质的沸点越高。(5)a和d生成的化合物为CaF2,从题图乙可以看出,晶胞中白球个数为4,黑球个数为8,结合化合物CaF2的分子式可知图中黑球表示F-,白球表示Ca2+,每个晶胞中含有4个Ca2+和8个F-,所以晶体密度ρ== g·cm-3。21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览