资源简介 专题:截长补短一.解答题(共6小题)1.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.2.如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.3.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.4.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2 h3.5.如图1,∠PAQ=90°,分别在∠PAQ的两边AP,AQ上取点B,E,使AB=AE,点D在∠PAQ的平分线AM上,DF⊥AB于点F,点F在线段AB上(不与点A重合),以AB,AD为邻边作 ABCD,连接CF,EF.(1)猜想CF与EF之间的关系,并证明你的猜想;(2)如图2,连接CE交AM于点H.①求证:AD+2DH=AB.②若AB=9,=,求线段BC的长.6.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=AM.专题:截长补短参考答案与试题解析一.解答题(共6小题)1.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.【分析】(1)证明△BCG≌△DCE(SAS)可得结论.(2)①如图2中,在线段BG上截取BK=DH,连接CK.证明△BCK≌△DCH(SAS),推出CK=CH,∠BCK=∠DCH,推出△KCH是等腰直角三角形,即可解决问题.②分两种情形:如图3﹣1中,当D,G,E三点共线时∠DEC=45°,连接BD.如图3﹣2中,当D,H,E三点共线时∠DEC=45°,连接BD,分别求解即可解决问题.【解答】(1)证明:如图1中,证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BG⊥DE.(2)①如图2中,在线段BG上截取BK=DH,连接CK.由(1)可知,∠CBK=∠CDH,∵BK=DH,BC=DC,∴△BCK≌△DCH(SAS),∴CK=CH,∠BCK=∠DCH,∴∠KCH=∠BCD=90°,∴△KCH是等腰直角三角形,∴HK=CH,∴BH﹣DH=BH﹣BK=KH=CH.②如图3﹣1中,当D,G,E三点共线时∠DEC=45°,连接BD.由(1)可知,BH=DE,且CE=CH=1,EH=CH,∵BC=3,∴BD=BC=3,设DH=x,则BH=DE=x+,在Rt△BDH中,∵BH2+DH2=BD2,∴(x+)2+x2=(3)2,解得x=或(舍弃).如图3﹣2中,当H,E重合时,∠DEC=45°,连接BD.设DH=x,∵BG=DH,∴BH=DH﹣HG=x﹣,在Rt△BDH中,∵BH2+DH2=BD2,∴(x﹣)2+x2=(3)2,解得x=或(舍弃),综上所述,满足条件的DH的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.如图,四边形ABCD是正方形,点F是射线AD上的动点,连接CF,以CF为对角线作正方形CGFE(C,G,F,E按逆时针排列),连接BE,DG.(1)当点F在线段AD上时.①求证:BE=DG;②求证:CD﹣FD=BE;(2)设正方形ABCD的面积为S1,正方形CGFE的面积为S2,以C,G,D,F为顶点的四边形的面积为S3,当时,请直接写出的值.【分析】(1)①证明△BCE≌△DCG(SAS)可得结论.②如图1中,设CD交FG于点O,过点G作GT⊥DG交CD于T.证明△DGT是等腰直角三角形,再证明△DGF≌△TGC即可解决问题.(2)分两种情形:当点F在线段AD上时,如图1中,当点F在AD的延长线上时,分别求解即可.【解答】(1)①证明:如图1中,∵四边形ABCD,四边形EFGC都是正方形,∴∠BCD=∠ECG=90°,CB=CD,CE=CG,∴∠BCE=∠DCG,∴△BCE≌△DCG(SAS),∴BE=DG.②证明:如图1中,设CD交FG于点O,过点G作GT⊥DG交CD于T.∵∠FDC=∠FGC=90°,∴C,F,D,G四点共圆,∴∠CDG=∠CFG=45°,∵GT⊥DG,∴∠DGT=90°,∴∠GDT=∠DTG=45°,∴GD=GT,∵∠DGT=∠FGC=90°,∴∠DGF=∠TGC,∵GF=GC,∴△GDF≌△GTC(SAS),∴DF=CT,∴CD﹣DF=CD﹣CT=DT=DG.解法二:提示,连接AC,证明△ACF∽△DCG,推出AF=DG,可得结论.(2)解:当点F在线段AD上时,如图1中,∵,∴可以假设S2=13k,S1=25k,∴BC=CD=5,CE=CG=,∴CF=,在Rt△CDF中,DF==,∴DF=CT=,DT=4∴DG=GT=2,∴S3=S△GFC+S△DFG=××+××2=k,∴==.当点F在AD的延长线上时,同法可得,S3=S△DCF+S△FGC=×5×+××=9k,∴=,综上所述,的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四边形的面积等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE DF=AF DC,设AE=AD=a(a>0),则有a (a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE DF=AF DC,设AE=AD=a(a>0),则有a (a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)证明:如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.【点评】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.4.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2 h3.【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先作出两个直角三角形,再判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠PAB+∠PBA=45°∴∠PBC=∠PAB又∵∠APB=∠BPC=135°,∴△PAB∽△PBC(2)∵△PAB∽△PBC∴在Rt△ABC中,AC=BC,∴∴∴PA=2PC(3)如图,过点P作PD⊥BC于D,PE⊥AC于E,PF⊥AB于点F,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△PAB∽△PBC,∴,∴∴.即:h12=h2 h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.5.如图1,∠PAQ=90°,分别在∠PAQ的两边AP,AQ上取点B,E,使AB=AE,点D在∠PAQ的平分线AM上,DF⊥AB于点F,点F在线段AB上(不与点A重合),以AB,AD为邻边作 ABCD,连接CF,EF.(1)猜想CF与EF之间的关系,并证明你的猜想;(2)如图2,连接CE交AM于点H.①求证:AD+2DH=AB.②若AB=9,=,求线段BC的长.【分析】(1)如图1,作辅助线,构建全等三角形,证明△CGF≌△FAE(SAS),得CF=EF,∠GFC=∠AEF,根据同角的余角相等可得:∠CFE=90°,所以CF⊥EF;(2)①如图2,作辅助线,构建正方形ABRE和平行四边形CDER,先证明四边形BAER是正方形,得RE=AB=CD,再证明四边形CDER是平行四边形,则DH=RH,由AR=AB,代入可得结论;②设HD=2x,AH=7x,代入①中的等式可得x的值,从而求得:BC=AD=5.【解答】解:(1)CF=EF,且CF⊥EF,理由是:如图1,过C作CG⊥AP于G,∵DF⊥AP,∴DF∥CG,∵四边形ABCD是平行四边形,∴AB∥CD,即CD∥FG,∵∠GFD=90°,∴四边形GFDC是矩形,∴CG=DF=AF,FG=CD=AB=AE,∵∠CGF=∠FAE=90°,∴△CGF≌△FAE(SAS),∴CF=EF,∠GFC=∠AEF,∵∠AFE+∠AEF=90°,∴∠AFE+∠GFC=90°,∴∠CFE=90°,∴CF⊥EF;(2)①如图2,过B作BR⊥AP,交AM于R,连接RE、CR、DE,∵∠PAE=90°,∴BR∥AE,∵∠BAR=45°,∴△ABR是等腰直角三角形,∴AB=BR=AE,AR=AB,∴四边形BAER是正方形,∴RE=AB=CD,∵AB∥RE,AB∥CD,∴CD∥RE,∴四边形CDER是平行四边形,∴DH=RH,∵AR=AB,∴AD+RD=AB,∴AD+2DH=AB;②∵,设HD=2x,AH=7x,∴AD=5x,由①知:AD+2DH=AB,5x+4x=9,x=,∴BC=AD=5.【点评】本题是四边形的综合题,考查了三角形全等的性质和判定,平行四边形的性质和判定,正方形的性质和判定,等腰直角三角形的性质和判定,综合性较强,作辅助线是本题的关键.6.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=AM.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.第1页(共1页) 展开更多...... 收起↑ 资源预览