资源简介 数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.等差数列求和公式:2、等比数列求和公式:4、[例1] 已知,求的前n项和.解:由由等比数列求和公式得 (利用常用公式)===1-[例2] 设Sn=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得 , (利用常用公式)∴ ===∴ 当 ,即n=8时,二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.[例3] 求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设………………………. ② (设制错位)①-②得 (错位相减)再利用等比数列的求和公式得:∴[例4] 求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………………………①………………………………② (设制错位)①-②得 (错位相减)∴练习:求:Sn=1+5x+9x2+······+(4n-3)xn-1解:Sn=1+5x+9x2+······+(4n-3)xn-1 ①①两边同乘以x,得x Sn=x+5 x2+9x3+······+(4n-3)xn ②①-②得,(1-x)Sn=1+4(x+ x2+x3+······+ )-(4n-3)xn当x=1时,Sn=1+5+9+······+(4n-3)=2n2-n当x≠1时,Sn= 1 1-x [ 4x(1-xn) 1-x +1-(4n-3)xn ]三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5] 求的值解:设…………. ①将①式右边反序得…………..② (反序)又因为①+②得 (反序相加)=89∴ S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,= (分组求和)当时,=[例7] 求数列{n(n+1)(2n+1)}的前n项和.解:设∴ =将其每一项拆开再重新组合得Sn= (分组)== (分组求和)=练习:求数列的前n项和。解:五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1) (2)(3) (4)(5)(6)[例9] 求数列的前n项和.解:设 (裂项)则 (裂项求和)==[例10] 在数列{an}中,,又,求数列{bn}的前n项的和.解: ∵ ∴ (裂项)∴ 数列{bn}的前n项和(裂项求和)= =[例11] 求证:解:设∵ (裂项)∴ (裂项求和)====∴ 原等式成立练习:求 1 3, 1 1 5, 1 3 5, 1 63之和。解:六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设Sn= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ (找特殊性质项)∴Sn= (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{an}:,求S2002.解:设S2002=由可得……∵ (找特殊性质项)∴ S2002= (合并求和)====5[例14] 在各项均为正数的等比数列中,若的值.解:设由等比数列的性质 (找特殊性质项)和对数的运算性质 得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15] 求之和.解:由于 (找通项及特征)∴= (分组求和)===[例16] 已知数列{an}:的值.解:∵ (找通项及特征)= (设制分组)= (裂项)∴ (分组、裂项求和)== 展开更多...... 收起↑ 资源预览