资源简介 极坐标与参数方程一、知识梳理1、极坐标系1)定义:在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ, θ)就叫做点M的极坐标。这样建立的坐标系叫做极坐标系。2)极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应惟一点P(,),但平面内任一个点P的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P(,)(极点除外)的全部坐标为(,+)或(,+),(Z).极点的极径为0,而极角任意取.若对、的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定>0,0≤<或<0,<≤等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.3)直线相对于极坐标系的几种不同的位置方程的形式分别为:⑴ ⑵ ⑶⑷ ⑸ ⑹4)圆相对于极坐标系的几种不同的位置方程的形式分别为:⑴ ⑵ ⑶⑷ ⑸ ⑹5、极坐标与直角坐标互化公式:二、参数方程曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即 并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1、过定点(x0,y0),倾斜角为的直线:其中参数t是以定点P(x0,y0)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离.根据t的几何意义,有以下结论..设A、B是直线上任意两点,它们对应的参数分别为tA和tB,则==..线段AB的中点所对应的参数值等于.2、中心在(x0,y0),半径等于r的圆: (为参数)3、中心在原点,焦点在x轴(或y轴)上的椭圆: (为参数) (或 )4、中心在点(x0,y0)焦点在平行于x轴的直线上的椭圆的参数方程二、经典例题题型一:极坐标与直角坐标的互化1)直线方程:例1、写出直线,,和的直角坐标方程;写出直线的极坐标方程。圆的方程例2、写出,,的直角坐标方程。写出,的极坐标方程。题型二:参数方程与普通方程的互化1)直线方程例3、写出直线为参数),和的普通方程。写出经过点,倾斜角的参数方程;圆的方程例4、写出和为参数)的普通方程。写出和的参数方程3)椭圆方程例5、写出和的普通方程写出和的参数方程。在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.求C和l的直角坐标方程;题型三:交点问题在极坐标系下,已知圆和直线。(1)求圆和直线的直角坐标方程;(2)当时,求直线于圆公共点的极坐标。例6、在平面直角坐标系中,曲线的参数方程是(为参数)(Ⅰ)将的方程化为普通方程;(Ⅱ)以为极点,轴的正半轴为极轴建立极坐标系. 设曲线的极坐标方程是, 求曲线与交点的极坐标.例7、在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围.题型四:轨迹问题例7、在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos (θ-)=1(0≤θ<2π),M,N分别为曲线C与x轴,y轴的交点.(1)写出曲线C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程例8、已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)将圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.例9、以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系中取相同单位的长度. 已知直线的方程为,曲线的参数方程为,点是曲线上的一动点.(Ⅰ)求线段的中点的轨迹方程; (Ⅱ) 求曲线上的点到直线的距离的最小值.题型五:弦长问题例1、在平面直角坐标系xOy中,直线l的参数方程为(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2sin θ.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)若点P坐标为(3,),圆C与直线l交于A、B两点,求|PA|+|PB|的值.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.例3、已知曲线C:+=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.例4、已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l经过定点P(3,5),倾斜角为.(1)写出直线l的参数方程和曲线C的标准方程;(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.例5、在平面直角坐标系xOy中,已知直线l经过点P( ,1),倾斜角α=.在极坐标系(与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=2cos(θ-).(1)写出直线l的参数方程,并把圆C的极坐标方程化为直角坐标方程;(2)设l与圆C相交于A,B两点,求|PA|+|PB|的值.例6、已知曲线C1的极坐标方程为ρ2cos 2θ=8,曲线C2的极坐标方程为θ=,曲线C1,C2相交于A,B两点.(1)求A,B两点的极坐标;(2)曲线C1与直线(t为参数)分别相交于M,N两点,求线段MN的长度.例7、极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为(t为参数).曲线C的极坐标方程为ρsin2θ=8cos θ.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,与x轴的交点为F,求+的值.例8、在直角坐标系中,曲线C的参数方程为(为参数). 以原点为极点,轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为.(Ⅰ)判断点与直线的位置关系,说明理由;(Ⅱ) 设直线与直线的两个交点为、,求的值.例9、直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足=,点的轨迹为. (Ⅰ)求的方程; (Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.例10、已知曲线 (t为参数) , (为参数)(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)过曲线的左顶点且倾斜角为的直线交曲绒于A,B两点,求.例11、过点作倾斜角为的直线与曲线交于点,求的最小值及相应的的值。例12、在平面直角坐标系中, 以为极点, 轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为, 直线l的参数方程为: (为参数) ,两曲线相交于, 两点.(Ⅰ)写曲线直角坐标方程和直线普通方程;(Ⅱ)若, 求的值.例13、在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.例14、已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(t是参数) . (I) 将曲线C的极坐标方程和直线的参数方程分别化为直角坐标方程和普通方程;(Ⅱ) 若直线与曲线C相交于A,B两点,且,试求实数m的值题型六:范围与最值问题例1、在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为. 由直线上的点向圆引切线,求切线长的最小值.例2、已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 (Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的取值范围.例3、以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系中取相同单位的长度. 已知直线的方程为,曲线的参数方程为,点是曲线上的一动点.(Ⅰ)求线段的中点的轨迹方程; (Ⅱ) 求曲线上的点到直线的距离的最小值.例4、已知直线的参数方程为为参数) ,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面≤的公共点,求的取值范围.例5、已知直线l:(t为参数),曲线C1:(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)若把曲线C1上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.例6、在极坐标系中,圆C的极坐标方程为ρ2=4ρ(cos θ+sin θ)-6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上一动点,试求x+y的最大值,并求出此时点P的直角坐标.例7、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的方程为.(1)求与交点的直角坐标;(2)过原点作直线,使与, 分别相交于点, (, 与点均不重合),求的最大值.例8、已知直线的参数方程为 (其中为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(其中).(1)若点的直角坐标为,且点在曲线内,求实数的取值范围;(2)若,当变化时,求直线被曲线截得的弦长的取值范围.例9、在直角坐标系中,圆,圆,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(1)求的极坐标方程;(2)设曲线(为参数且),与圆交于,求的最大值.例10、在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.例11、在平面直角坐标系xOy中,已知M是椭圆+=1上在第一象限的点,A(2,0),B(0,2)是椭圆两个顶点,求四边形OAMB的面积的最大值.题型七:面积问题例1、在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.例2、在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.例3、直线的极坐标方程为,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的参数方程为为参数).(1)将曲线上各点纵坐标伸长到原来的2倍,得到曲线,写出的极坐标方程;(2)射线与交点为,射线与交点为,求四边形的面积.例4、在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)在极坐标系中,射线与曲线,分别交于,两点(异于极点),定点,求的面积.例5、在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为,直线的极坐标方程为.(I )写出的极坐标方程和的平面直角坐标方程;(Ⅱ) 若直线的极坐标方程为,设与的交点为与的交点为求的面积.例6、在平面直角坐标系中,曲线的参数方程为 (为参数)以坐标原点为极点, 轴正半轴为极轴建立极坐标系.(1)求曲线的普通方程和极坐标方程;(2)直线的极坐标方程为,若与的公共点为,且是曲线的中心,求的面积.例7、在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.题型八:综合类型例1、已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为求点的直角坐标;(2)设为上任意一点,求的取值范围。例2、在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.例3、(2017新课标Ⅰ)在直角坐标系中,曲线的参数方程为,(为参数),直线的参数方程为(为参数).(1)若,求与的交点坐标;(2)若上的点到距离的最大值为,求.例4、在直角坐标系中,直线的参数方程为 (为参数),直线的参数方程为(为参数).设与的交点为,当变化时,的轨迹为曲线.(1)写出的普通方程;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设:,为与的交点,求的极径. 展开更多...... 收起↑ 资源预览