资源简介 (共24张PPT)圆柱的体积北师大版 六年级下新知导入新知讲解想一想,怎样计算圆柱的体积呢?V=shV=sh新知讲解想办法验证猜想是否正确?新知讲解想办法验证猜想是否正确?圆柱底面周长的一半圆柱的高底面半径新知讲解想办法验证猜想是否正确?新知讲解尝试解决刚才的问题:3.14×0.42×5=3.14×0.16×5=3.14×0.8=2.512(m3)答:需要2.512m3木材。新知讲解尝试解决刚才的问题:3.14×(6÷2)2×16=3.14×9×16=452.16(cm3)=452.16(毫升)答:一个杯子能装452.16毫升水。合作探究讨论:V =π(d÷2)2hV =πr2hV =π(C÷π÷2)2h新知讲解我会推导:为了推导圆柱的体积,我们可以将圆柱转化为( ),长方体的底面积等于圆柱的( ),长方体的高等于圆柱的( ),长方体的体积等于圆柱的( )。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。长方体底面积高体积底面积高底面积高新知讲解金箍棒底面周长是12.56cm,长是200cm。这根金箍棒的体积是多少立方厘米?底面半径:12.56÷3.14÷2=2(cm)底面积:3.14×22=12.56(cm3)体积:12.56×200=2512(cm3)答:这根金箍棒的体积是2512cm3。新知讲解如果这根金箍棒是铁制的,每立方厘米的铁重7.9g,这根金箍棒重多少千克?7.9×2512=19844.8(g)=19.8448(kg)答:这根金箍棒重19.8448千克。新知讲解做中学:把一张长5厘米、宽4厘米的长方形纸分别绕它的长和宽旋转一周(如下图),形成两个圆柱。3.14×42×5=251.2(m3)3.14×52×4=314(m3)314>251.2答:绕宽旋转一周形成的圆柱体积大。新知讲解做中学:把一张长5厘米、宽4厘米的长方形纸,横着卷成圆柱形,再竖着卷成圆柱形。3.14×(5÷3.14÷2)2×4≈7.96(m3)7.96>6.37答:横着卷形成的圆柱体积大。3.14×(4÷3.14÷2)2×5≈6.37(m3)新知讲解做中学:下面的长方体和圆柱哪个体积大?说说你的比较方法4×4=16(dm2)3.14×22=12.56(m2)16>12.56答:长方体的体积大。新知讲解体积变形:求小铁块的体积2cm2cm10cm3.14×(10÷2)2×2=157(cm3)新知讲解体积变形:将一个棱长为6分米的正方体钢材熔铸成底面半径为3分米的圆柱体,这个圆柱有多长 6×6×6=216(dm3)3.14×32=28.26(dm2)216÷28.26≈7.64(dm)新知讲解体积变形:把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?3.14×(6÷2)2×6=3.14×9×6=175.84(dm3)课堂练习我会比较:分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。4×3×8=96(cm3)6×6×6=216(cm3)3.14×(5÷2)2×8=157(cm3)课堂总结这节课你们都学会了哪些知识?板书设计课本:第13页第4题。作业布置板书设计圆柱的体积https://www.21cnjy.com/help/help_extract.php中小学教育资源及组卷应用平台《圆柱的体积》教学设计课题 圆柱的体积 单元 一 学科 数学 年级 六学习目标 1.结合具体情境和实践活动,了解圆柱体积的含义,进一步理解体积和容积的含义。2.通过“类比猜想——验证说明”的过程来探索圆柱体积的计算方法,掌握圆柱体积的计算方法,能正确计算圆柱的体积和解决一些简单的实际问题。3.通过把圆柱切割拼成近似的长方体,从而推导出圆柱的体积计算公式,向学生渗透转化思想,建立空间观念,培养学生的判断、推理能力和迁移能力。重点 理解和掌握圆柱的体积计算公式,会求圆柱的体积。难点 理解圆柱体积计算公式的推导过程教学过程教学环节 教师活动 学生活动 设计意图导入新课 一、情境导入1.(配乐)课件出示主题图。学生思考,小组讨论。师:星期天,笑笑跟着父母去公园游玩,看到一个楼阁前面立着许多柱子,好奇地问:这么粗的柱子,需要多少木材呢 实际上是求什么 生:圆柱的体积。2.(配乐)课件出示主题图。师:一天,淘气和爸爸在家里边喝水边聊天,看着桌上的杯子,淘气问:一个杯子能装多少水呢 要求杯子能装多少水,实际上是求什么 生:杯子的容积。师:杯子的容积也就是谁的体积 生:水的体积。师:装在杯子里的水是什么形状的 生:圆柱形。师:那么要求水的体积实际上就是求谁的体积 生:圆柱的体积。师:生活中像这样的事例还有很多,它们都跟什么知识有关 生:圆柱的体积。师:这节课我们就来研究圆柱体积的计算方法。 学生思考,小组讨论。 本环节演示操作,首先激发了学生学习数学的兴趣,进而引发了学生的动脑思考,有助于提高学生的思维能力和探究能力讲授新课 二、实际操作,探究新知。 师: 回想一下,我们已经研究过哪些立体图形的体积 它们的体积是怎样计算的 长方体和正方体的体积计算公式是什么 生1:长方体和正方体。生2:长方体的体积=长×宽×高。生3:正方体的体积=边长×边长×边长。生4:长方体和正方体统一的体积计算公式是V=Sh。(板书:V=Sh)师:你能根据长方体和正方体的体积计算方法,猜想一下圆柱的体积该怎样计算吗 小组讨论、猜想。生:圆柱的体积=底面积×高。师: 这一猜想是否正确呢 需要推导验证。我们可采用“转化法”验证,以前学习什么知识时运用了“转化法” 生:圆的面积。师:首先回忆一下圆的面积计算公式是怎样推导出来的 学生可能说出通过分割、拼合的方法变成长方形、平行四边形、三角形或者梯形来推导出圆的面积。这时教师要及时总结,不论是拼成哪种图形,都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。教具演示:师:这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个近似的长方形。长方形的长相当于圆周长的一半,长方形的宽就相当于圆的半径,所以用“半周长×半径”就可以求出圆的面积,半周长就等于πr,半径是r,所以圆的面积是πr2。师:那么你们能运用“转化法”试着推导出圆柱的体积计算公式吗 学生以小组为单位进行推导验证。指名汇报,并电脑演示转化推导过程。2. 探究普遍规律。师:我们可以通过分割、拼合转化成已学过面积计算公式的图形推导出圆的面积,圆柱能不能也转化成已学过体积计算公式的图形来求出它的体积呢 各小组围绕下面几个问题进行讨论:(1)圆柱可以转化为什么样的立体图形 (2)转化成的立体图形是不是平时学过的标准立体图形 怎样才能使它成为平时学过的标准立体图形 (3)转化后的体积与圆柱的体积大小是否有变化 (4)根据转化后的形体与转化前圆柱各部分间的对应关系,推导出圆柱的体积。学生讨论,教师参与小组讨论。师:下面哪个小组来进行汇报 学生汇报、演示。生1:圆柱通过分割、拼合可以转化为长方体。生2:转化后的长方体不是标准的长方体,只有把圆柱无限分割才可以拼成一个近似的长方体。生3:长方体是由圆柱转化而成的,在转化的过程中,体积既没有增加,也没有减少。生4:长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱的高。因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高。师:以上是采用“转化法”(化曲为直)来推导验证的,还有没有其他的验证方法呢 学习教材第8页叠硬币法,这种方法又叫积分法。 师:无论是转化法还是积分法,都验证了大家的猜想是正确的——圆柱的体积=底面积×高。师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。用字母如何表示圆柱的体积计算公式呢 生:V=Sh。(板书:V=Sh)师:要想求圆柱的体积必须要知道什么条件 生:底面积和高。师:如果已知底面半径、直径、周长和高,怎样求体积 生1:已知底面半径和高,可用公式V=πr2h求得。生2:已知底面直径和高,可用公式V=πh求得。生3:已知底面周长和高,可用公式V=πh求得。3. 深化体验。课件出示教材第8页主题图及问题。(1)笑笑了解到一根柱子的底面半径为0.4m,高为5m。你能算出它的体积吗 点名学生分别回答下面的问题。师:这道题已知什么 要求什么 能不能根据公式直接计算 生:已知底面半径和高,求体积,可以根据V=πr2h直接计算。同桌交流,共同解答。V=πr2h=3.14×0.42×5=2.512(m3)(2)从水杯里面量,水杯的底面直径是6cm,高是16cm,这个水杯能装多少毫升水 学生试做、汇报。V=πh=3.14××16=452.16(cm3)=452.16(mL)三、探究汇报成果师:通过大家的动手操作,运用分割、拼合的方法推导出了圆柱的体积计算公式,大家来总结一下吧!生:可根据公式V=Sh求出圆柱的体积。 小组讨论、猜想学生以小组为单位进行推导验证学生讨论,教师参与小组讨论。 本环节鼓励学生经历“类比猜想——验证说明”的探究过程,引导学生在已有知识和经验的基础上,进行大胆猜想,并充分展示学生的思维,然后引导学生设计验证方案。这样的教学为学生的主动探索与发现提供了空间,有利于学生进行观察、实验、猜测、验证、推理等数学探究活动,使学生逐步经历数学知识的形成过程本环节通过学生动手操作、合作交流及教师的演示,从多渠道推导出圆柱的体积计算公式。在整个学习过程中,学生始终处于积极主动的探索状态,不仅学会了知识,还知道了怎样去学课堂小结 今天你学到了什么?板书 圆柱的体积长方体的体积=底面积×高 ↓ ↓ ↓圆柱的体积=底面积×高 ↓ ↓ ↓V = S × h21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台圆柱的体积A 类求下面各圆柱的体积。(1)底面半径是2分米,高是3分米。 (2)底面直径是6厘米,高是1分米。(3)底面周长是125.6分米,高是9分米。(考查知识点:圆柱的体积计算公式;能力要求:会用圆柱的体积计算公式求圆柱的体积)B 类1.一个圆柱形粮囤,从里面量底面周长是6.28米,高1.5米。如果每立方米稻谷约重600千克,这个粮囤大约能装多少千克稻谷 2.有一个圆柱形水池,底面直径是20米,深4米。现在计划修建一个和原水池容积相等、底面周长是80米的正方形的长方体水池,应挖几米深 (考查知识点:圆柱的体积计算公式;能力要求:会用圆柱的体积计算公式解决实际问题)课堂作业新设计A 类:(1)V=πr2h=3.14×22×3=37.68 (立方分米)(2)1分米=10厘米 V=πh=3.14××10=282.6(立方厘米)(3)V=πh=3.14×(125.6÷2÷3.14)2×9=11304(立方分米)B 类:1.3.14×(6.28÷2÷3.14)2×1.5×600=2826(千克)2.80÷4=20(米) 3.14×(20÷2)2×4÷(20×20)=3.14(米)教材第9页“试一试”3.14×(12.56÷2÷3.14)2×200=2512(立方厘米)2512×7.9÷1000=19.8448(千克)21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台 圆柱的体积项目 内 容1.长方体或正方体的体积=( )×( )。2.什么是圆柱的体积 3.怎样计算圆柱的体积 分析与解答:长方体、正方体的体积都等于底面积乘高,圆柱的体积是不是也等于“底面积×高”呢 (1)如图①,从堆硬币来看,用( )×( )能计算出圆柱的体积。(2)如图②,把圆柱转化成( )后,( )不变。圆柱的底面积=( )的底面积,圆柱的高=( )的高,因为长方体的体积=底面积×高,所以圆柱的体积=( )×( )。 ① ②心中有数 4.通过预习,我知道了圆柱的体积=( )×高。5.一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升 温馨提示 知识准备:长方体、正方体体积的计算方法。参考答案:1.底面积 高2.圆柱所占空间的大小就是圆柱的体积3.(1)底面积 高(2)长方体 体积 长方体 长方体 底面积 高4.底面积5.28.26升21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 《圆柱的体积》同步练习 .doc 《圆柱的体积》学案.doc 《圆柱的体积》教学设计.doc 《圆柱的体积》课件.ppt