资源简介 2020-2021真题汇编-解三角形一、正弦定理、余弦定理的简单应用1.(2020·全国·高考真题(文))在△ABC中,cosC=,AC=4,BC=3,则tanB=( )A. B.2 C.4 D.82.(2020·全国·高考真题(理))在△ABC中,cosC=,AC=4,BC=3,则cosB=( )A. B. C. D.3.(2021·全国·高考真题(文))在中,已知,,,则( )A.1 B. C. D.34.(2020·山东·高考真题)在中,内角,,的对边分别是,,,若,且 ,则等于( )A.3 B. C.3或 D.-3或5.(2021·山东·高考真题)在△中,,,,等于______.7.(2020·全国·高考真题(文))△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.8.(2020·海南·高考真题)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________ 注:如果选择多个条件分别解答,按第一个解答计分.二、解三角形-面积、周长问题9.(2020·全国·高考真题(文))的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=c,b=2,求的面积;(2)若sinA+sinC=,求C.10.(2020·全国·高考真题(理))中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求周长的最大值.11.(2020·北京·高考真题)在中,,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a的值:(Ⅱ)和的面积.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.12.(2021·北京·高考真题)在中,,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.条件①:;条件②:的周长为;条件③:的面积为;13.(2021·全国·高考真题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形 若存在,求出的值;若不存在,说明理由.三、解三角形的实际应用14.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )A.表高 B.表高C.表距 D.表距15.(2021·浙江·高考真题)在中,,M是的中点,,则___________,___________.16.(2020·全国·高考真题(理))如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.17.(2021·湖南·高考真题)如图,在中,,点D在BC边上,且,,(1)求AC的长;(2)求的值.18.(2020·江苏·高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求的值;(2)在边BC上取一点D,使得,求的值.19.(2021·全国·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.四、三角部分的综合问题20.(2021·天津·高考真题)在,角所对的边分别为,已知,.(I)求a的值;(II)求的值;(III)求的值.21.(2020·天津·高考真题)在中,角所对的边分别为.已知 .(Ⅰ)求角的大小;(Ⅱ)求的值;(Ⅲ)求的值.22.(2020·浙江·高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围.23.(2021·江苏·高考真题)已知向量,,设函数.(1)求函数的最大值;(2)在锐角中,三个角,,所对的边分别为,,,若,,求的面积.2020-2021真题汇编-解三角形解析版一、正弦定理、余弦定理的简单应用1.(2020·全国·高考真题(文))在△ABC中,cosC=,AC=4,BC=3,则tanB=( )A. B.2 C.4 D.8【答案】C【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求【详解】设故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.2.(2020·全国·高考真题(理))在△ABC中,cosC=,AC=4,BC=3,则cosB=( )A. B. C. D.【答案】A【分析】根据已知条件结合余弦定理求得,再根据,即可求得答案.【详解】在中,,,根据余弦定理:可得 ,即由故.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.3.(2021·全国·高考真题(文))在中,已知,,,则( )A.1 B. C. D.3【答案】D【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.4.(2020·山东·高考真题)在中,内角,,的对边分别是,,,若,且 ,则等于( )A.3 B. C.3或 D.-3或【答案】A【分析】利用余弦定理求出,并进一步判断,由正弦定理可得,最后利用两角和的正切公式,即可得到答案;【详解】,,,,,,,,故选:A.5.(2021·山东·高考真题)在△中,,,,等于______.【答案】【分析】由和角正弦公式求函数值,再应用正弦定理求即可.【详解】,由正弦定理可知,,∴.故答案为:6.(2021·全国·高考真题(理))记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.【答案】【分析】由三角形面积公式可得,再结合余弦定理即可得解.【详解】由题意,,所以,所以,解得(负值舍去).故答案为:.7.(2020·全国·高考真题(文))△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.【答案】(1);(2)证明见解析【分析】(1)根据诱导公式和同角三角函数平方关系,可化为,即可解出;(2)根据余弦定理可得,将代入可找到关系,再根据勾股定理或正弦定理即可证出.【详解】(1)因为,所以,即,解得,又,所以;(2)因为,所以,即①,又②, 将②代入①得,,即,而,解得,所以,故,即是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.8.(2020·海南·高考真题)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________ 注:如果选择多个条件分别解答,按第一个解答计分.【答案】详见解析【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得的值,得到角的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由可得:,不妨设,则:,即.选择条件①的解析:据此可得:,,此时.选择条件②的解析:据此可得:,则:,此时:,则:.选择条件③的解析:可得,,与条件矛盾,则问题中的三角形不存在.解法二:∵,∴,,∴,∴,∴,∴,若选①,,∵,∴,∴c=1;若选②,,则,;若选③,与条件矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.二、解三角形-面积、周长问题9.(2020·全国·高考真题(文))的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=c,b=2,求的面积;(2)若sinA+sinC=,求C.【答案】(1);(2).【分析】(1)已知角和边,结合关系,由余弦定理建立的方程,求解得出,利用面积公式,即可得出结论;(2)将代入已知等式,由两角差的正弦和辅助角公式,化简得出有关角的三角函数值,结合的范围,即可求解.【详解】(1)由余弦定理可得,的面积;(2),,,.【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.(2020·全国·高考真题(理))中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求周长的最大值.【答案】(1);(2).【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,.(2)由余弦定理得:,即.(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为.【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.11.(2020·北京·高考真题)在中,,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a的值:(Ⅱ)和的面积.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ), ;选择条件②(Ⅰ)6(Ⅱ), .【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得,再根据正弦定理求,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ)(Ⅱ)由正弦定理得:选择条件②(Ⅰ)由正弦定理得:(Ⅱ)【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.12.(2021·北京·高考真题)在中,,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求边上中线的长.条件①:;条件②:的周长为;条件③:的面积为;【答案】(1);(2)答案不唯一,具体见解析.【分析】(1)由正弦定理化边为角即可求解;(2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求;若选择③:由面积公式可求各边长,再由余弦定理可求.【详解】(1),则由正弦定理可得,,,,,,解得;(2)若选择①:由正弦定理结合(1)可得,与矛盾,故这样的不存在;若选择②:由(1)可得,设的外接圆半径为,则由正弦定理可得,,则周长,解得,则,由余弦定理可得边上的中线的长度为:;若选择③:由(1)可得,即,则,解得,则由余弦定理可得边上的中线的长度为:.13.(2021·全国·高考真题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形 若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在,且.【分析】(1)由正弦定理可得出,结合已知条件求出的值,进一步可求得、的值,利用余弦定理以及同角三角函数的基本关系求出,再利用三角形的面积公式可求得结果;(2)分析可知,角为钝角,由结合三角形三边关系可求得整数的值.【详解】(1)因为,则,则,故,,,所以,为锐角,则,因此,;(2)显然,若为钝角三角形,则为钝角,由余弦定理可得,解得,则,由三角形三边关系可得,可得,,故.三、解三角形的实际应用14.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )A.表高 B.表高C.表距 D.表距【答案】A【分析】利用平面相似的有关知识以及合分比性质即可解出.【详解】如图所示:由平面相似可知,,而 ,所以,而 ,即= .故选:A.【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.15.(2021·浙江·高考真题)在中,,M是的中点,,则___________,___________.【答案】【分析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.【详解】由题意作出图形,如图,在中,由余弦定理得,即,解得(负值舍去),所以,在中,由余弦定理得,所以;在中,由余弦定理得.故答案为:;.16.(2020·全国·高考真题(理))如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.【答案】【分析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.17.(2021·湖南·高考真题)如图,在中,,点D在BC边上,且,,(1)求AC的长;(2)求的值.【答案】(1)(2)【分析】(1)由已知利用余弦定理直接求解.(2)利用,结合两角差的正弦公式即可得解.【详解】(1),,,在中,由余弦定理得,(2),所以,又由题意可得,18.(2020·江苏·高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求的值;(2)在边BC上取一点D,使得,求的值.【答案】(1);(2).【分析】(1)利用余弦定理求得,利用正弦定理求得.(2)根据的值,求得的值,由(1)求得的值,从而求得的值,进而求得的值.【详解】(1)由余弦定理得,所以.由正弦定理得.(2)由于,,所以.由于,所以,所以.所以.由于,所以.所以.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.19.(2021·全国·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.(2)由题设,应用余弦定理求、,又,可得,结合已知及余弦定理即可求.【详解】(1)由题设,,由正弦定理知:,即,∴,又,∴,得证.(2)由题意知:,∴,同理,∵,∴,整理得,又,∴,整理得,解得或,由余弦定理知:,当时,不合题意;当时,;综上,.【点睛】关键点点睛:第二问,根据余弦定理及得到的数量关系,结合已知条件及余弦定理求.四、三角部分的综合问题20.(2021·天津·高考真题)在,角所对的边分别为,已知,.(I)求a的值;(II)求的值;(III)求的值.【答案】(I);(II);(III)【分析】(I)由正弦定理可得,即可求出;(II)由余弦定理即可计算;(III)利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I)因为,由正弦定理可得,,;(II)由余弦定理可得;(III),,,,所以.21.(2020·天津·高考真题)在中,角所对的边分别为.已知 .(Ⅰ)求角的大小;(Ⅱ)求的值;(Ⅲ)求的值.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【分析】(Ⅰ)直接利用余弦定理运算即可;(Ⅱ)由(Ⅰ)及正弦定理即可得到答案;(Ⅲ)先计算出进一步求出,再利用两角和的正弦公式计算即可.【详解】(Ⅰ)在中,由及余弦定理得,又因为,所以;(Ⅱ)在中,由, 及正弦定理,可得;(Ⅲ)由知角为锐角,由,可得 ,进而,所以.【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.22.(2020·浙江·高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围.【答案】(I);(II)【分析】(I)首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B的大小;(II)结合(1)的结论将含有三个角的三角函数式化简为只含有∠A的三角函数式,然后由三角形为锐角三角形确定∠A的取值范围,最后结合三角函数的性质即可求得的取值范围.【详解】(I)由结合正弦定理可得:△ABC为锐角三角形,故.(II)结合(1)的结论有:.由可得:,,则,.即的取值范围是.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.23.(2021·江苏·高考真题)已知向量,,设函数.(1)求函数的最大值;(2)在锐角中,三个角,,所对的边分别为,,,若,,求的面积.【答案】(1);(2).【分析】(1)结合平面向量的数量积运算、二倍角公式和辅助角公式,可得,进而可得的最大值;(2)由锐角,推出,再结合(B),求得,由正弦定理知,再利用余弦定理求出,,最后由三角形面积公式得解.【详解】(1)因为,,所以函数∴当时,(2)∵为锐角三角形,.又即 展开更多...... 收起↑ 资源预览