资源简介 中小学教育资源及组卷应用平台10.2 直方图(第2课时) 教案课题 10.2 直方图(第2课时) 单元 第10单元 学科 数学 年级 七年级(下)学习目标 1.进一步认识频数分布直方图.2.能从频数分布表和频数分布直方图中获取有关信息,作出合理的判断和预测.重点 进一步理解直方图的相关概念,学习并运用直方图中的数量关系解决相关问题。难点 进一步体会直方图的应用价值,引导学生用数学的思维分析世界.教学过程教学环节 教师活动 学生活动 设计意图导入新课 一、创设情景,引出课题 上节课,我们学习了一种新的描述数据的统计图——直方图,了解了相关定义:组距、组数和频数,也学习了绘制直方图的步骤:求、定、列、画.同时明确了直方图的作用——能够显示数据分布情况. 思考自议进一步认识频数分布直方图. 进一步体会直方图的应用价值,引导学生用数学的思维分析世界.讲授新课 提炼概念 进一步理解直方图的相关概念,学习并运用直方图中的数量关系解决相关问题。三、典例精讲 例 为了考察某种大麦穗长的分布情况,在一块试验田里抽取了 100 根麦穗,量得它们的长度如下表(单位:cm):列出样本的频数分布表,画出频数分布直方图.解:(1)计算最大值与最小值的差.在样本数据中,最大值是 7.4,最小值是 4.0,它们的差是 7.4-4.0=3.4.(2)决定组距和组数 最大值与最小值的差是3.4cm,若取组距为0.3cm,那么由于 可以分成12组,组数合适,于是取组距为0.3cm,组数为12。 (3)列频数分布表.(4)画频数分布直方图.从上表和上图看到,麦穗长度大部分落在5.2 cm 至7.0 cm 之间,其他范围较少. 长度在 5.8 ≤ x<6.1 范围内的麦穗根数最多,有 28 根, 而长度在 4.0 ≤ x<4.3,4.3 ≤ x<4.6,4.6 ≤ x<4.9,7.0 ≤ x<7.3,7.3 ≤ x<7.6 范围内的麦穗根数很少,总共只有7根. 能从频数分布表和频数分布直方图中获取有关信息,作出合理的判断和预测. 进一步理解直方图的相关概念,学习并运用直方图中的数量关系解决相关问题。课堂检测 四、巩固训练1.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图如图所示,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有 50 名学生D.最喜欢田径的人数占总人数的 10%C 2. 江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出直方图(如图).(1)他家这个月一共打了多少次长途电话?(2)通话时间不足10min的多少次?(3)哪个时间范围的通话最多?哪个时间范围的通话最少?(1)约102次;(2)约53次;(3)0~5min的通话时间最多,10~15min的通话时间最少.3.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和如图所示的频数分布直方图(每组含前一个边界值,不含后一个边界值).(1)求 a 的值.(2)已知收集的可回收垃圾以 0.8 元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到 50 元?解:(1)由题中频数分布直方图可知,收集的可回收垃圾的质量在 4.5 kg~5.0 kg 范围内的频数 a=4.(2)∵ 该年级这周收集的可回收垃圾的质量小于 4.5×2+5×4+5.5×3+6=51.5(kg),∴ 该年级这周收集的可回收垃圾被回收后所得金额小于 51.5×0.8=41.2(元),不能达到 50 元.4.一个面粉批发商统计了前48个星期的销售量(单位:t): 24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.(1)在样本数据中,最大值是24.4,最小值是18.5,它们的差是 24.4-18.5=5.9.决定组距和组数.最大值与最小值的差是5.9,如果取组距为1.0, 可以分成6组,组数适合.于是取组距为1.0 ,组数为6. (3)列频数分布表.画频数分布直方图.5.某中学九年级部分同学参加全国初中数学竞赛,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如图所示,请根据直方图回答下列问题:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他数据,例如该中学没有获得满分的同学等等。请再写出两条信息。解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2)(7+5+2)÷32=43.75%,所以该中学的参赛同学获奖率是43.75%;(3)该中学参赛同学的成绩均不低于60分;成绩在80~90分数段的人数最多。课堂小结 课堂小结21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com)(共24张PPT)人教版 七年级下10.2 直方图(第2课时)情境引入数据处理过程收集数据整理数据描述数据频数分布直方图组距、组数、频数分析数据求、定、列、画相关定义基本步骤条形图扇形图折线图调查得出结论复习典例精讲例 为了考察某种大麦穗长的分布情况,在一块试验田里抽取了 100 根麦穗,量得它们的长度如下表(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.5 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3列出样本的频数分布表,画出频数分布直方图.合作学习6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.5 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3解:(1)计算最大值与最小值的差.在样本数据中,最大值是 7.4,最小值是 4.0,它们的差是 7.4-4.0=3.4.(3)列频数分布表.分组 划记 频数4.0≤ x<4.3 14.3≤ x<4.6 14.6≤ x<4.9 24.9≤ x<5.2 正 55.2≤ x<5.5 正 正 115.5≤ x<5.8 正 正 正 15续表:分组 划记 频数5.8≤ x<6.1 正正正正正 286.1≤ x<6.4 正正 136.4≤ x<6.7 正正 116.7≤ x<7.0 正正 107.0≤ x<7.3 27.3≤ x<7.6 1合计 100(4)画频数分布直方图.从上表和上图看到,麦穗长度大部分落在5.2 cm 至7.0 cm 之间,其他范围较少. 长度在 5.8 ≤ x<6.1 范围内的麦穗根数最多,有 28 根, 而长度在 4.0 ≤ x<4.3,4.3 ≤ x<4.6,4.6 ≤ x<4.9,7.0 ≤ x<7.3,7.3 ≤ x<7.6 范围内的麦穗根数很少,总共只有7根.归纳概念运用统计表(图)解决问题的方法解题时可采用数形结合法,注意频数分布直方图能显示各项的具体数量,而扇形统计图能显示各项所占的百分比的大小,且扇形统计图中所有扇形所占的百分比之和为 1,某项的具体数量除以其所占的百分比即可得到总体的数量.1.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图如图所示,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有 50 名学生D.最喜欢田径的人数占总人数的 10%足球8612+20+8+4+6=504÷50×100%=8%C课堂练习2. 江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出直方图(如图).(1)他家这个月一共打了多少次长途电话?(2)通话时间不足10min的多少次?(3)哪个时间范围的通话最多?哪个时间范围的通话最少?约102次;约53次;0~5min的通话时间最多,10~15min的通话时间最少.3.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和如图所示的频数分布直方图(每组含前一个边界值,不含后一个边界值).组别 频数4.0~4.5 24.5~5.0 a5.0~5.5 35.5~6.0 1某校七年级各班一周收集的可回收垃圾的质量的频数分布表某校七年级各班一周收集的可回收垃圾的质量的频数分布直方图(1)求 a 的值.解:(1)由题中频数分布直方图可知,收集的可回收垃圾的质量在 4.5 kg~5.0 kg 范围内的频数 a=4.组别 频数4.0~4.5 24.5~5.0 a5.0~5.5 35.5~6.0 1某校七年级各班一周收集的可回收垃圾的质量的频数分布表某校七年级各班一周收集的可回收垃圾的质量的频数分布直方图(2)已知收集的可回收垃圾以 0.8 元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到 50 元?(2)∵ 该年级这周收集的可回收垃圾的质量小于 4.5×2+5×4+5.5×3+6=51.5(kg),∴ 该年级这周收集的可回收垃圾被回收后所得金额小于 51.5×0.8=41.2(元),不能达到 50 元.某校七年级各班一周收集的可回收垃圾的质量的频数分布直方图5.一个面粉批发商统计了前48个星期的销售量(单位:t):24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.解:(1)计算最大与最小值的差.在样本数据中,最大值是24.4,最小值是18.5,差是 24.4-18.5=5.9.(2)决定组距和组数.最大值与最小值的差是5.9,如果取组距为1.0,那么由于 可以分成6组,组数适合.于是取组距为1.0 ,组数为6.(3)列频数分布表.销售量 划 记 频 数18.5≤x<19.5 正 619.5≤x<20.5 正 720.5≤x<21.5 正 921.5≤x<22.5 正正 1222.5≤x<23.5 正 823.5≤x<24.5 正 6合计 48(4)画频数分布直方图.频数销售量141210864218.519.520.521.522.523.524.55.某中学九年级部分同学参加全国初中数学竞赛,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如图所示,请根据直方图回答下列问题:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他数据,例如该中学没有获得满分的同学等等。请再写出两条信息。60708090100110120人数分数)(每组含最低分,不含最高分)解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2)(7+5+2)÷32=43.75%,所以该中学的参赛同学获奖率是43.75%;(3)该中学参赛同学的成绩均不低于60分;成绩在80~90分数段的人数最多。课堂总结作业布置教材课后配套作业题。https://www.21cnjy.com/help/help_extract.php中小学教育资源及组卷应用平台10.2 直方图(第2课时) 学案课题 10.2 直方图(第2课时) 单元 第10单元 学科 数学 年级 七年级下册学习目标 1.进一步认识频数分布直方图.2.能从频数分布表和频数分布直方图中获取有关信息,作出合理的判断和预测.重点 进一步理解直方图的相关概念,学习并运用直方图中的数量关系解决相关问题。难点 进一步体会直方图的应用价值,引导学生用数学的思维分析世界.教学过程导入新课 【引入思考】上节课,我们学习了一种新的描述数据的统计图——直方图,了解了相关定义:组距、组数和频数,也学习了绘制直方图的步骤:求、定、列、画.同时明确了直方图的作用——能够显示数据分布情况.新知讲解 提炼概念进一步理解直方图的相关概念,学习并运用直方图中的数量关系解决相关问题。典例精讲 例 为了考察某种大麦穗长的分布情况,在一块试验田里抽取了 100 根麦穗,量得它们的长度如下表(单位:cm):列出样本的频数分布表,画出频数分布直方图.课堂练习 巩固训练 1.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图如图所示,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有 50 名学生D.最喜欢田径的人数占总人数的 10% 2. 江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出直方图(如图).(1)他家这个月一共打了多少次长途电话?(2)通话时间不足10min的多少次?(3)哪个时间范围的通话最多?哪个时间范围的通话最少?3.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和如图所示的频数分布直方图(每组含前一个边界值,不含后一个边界值).(1)求 a 的值.(2)已知收集的可回收垃圾以 0.8 元/kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到 50 元?4.一个面粉批发商统计了前48个星期的销售量(单位:t): 24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.5.某中学九年级部分同学参加全国初中数学竞赛,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如图所示,请根据直方图回答下列问题:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他数据,例如该中学没有获得满分的同学等等。请再写出两条信息。答案引入思考提炼概念典例精讲 解:(1)计算最大值与最小值的差.在样本数据中,最大值是 7.4,最小值是 4.0,它们的差是 7.4-4.0=3.4.(2)决定组距和组数 最大值与最小值的差是3.4cm,若取组距为0.3cm,那么由于 可以分成12组,组数合适,于是取组距为0.3cm,组数为12。 (3)列频数分布表.(4)画频数分布直方图.从上表和上图看到,麦穗长度大部分落在5.2 cm 至7.0 cm 之间,其他范围较少. 长度在 5.8 ≤ x<6.1 范围内的麦穗根数最多,有 28 根, 而长度在 4.0 ≤ x<4.3,4.3 ≤ x<4.6,4.6 ≤ x<4.9,7.0 ≤ x<7.3,7.3 ≤ x<7.6 范围内的麦穗根数很少,总共只有7根.巩固训练1.C2.(1)约102次;(2)约53次;(3)0~5min的通话时间最多,10~15min的通话时间最少.3.解:(1)由题中频数分布直方图可知,收集的可回收垃圾的质量在 4.5 kg~5.0 kg 范围内的频数 a=4.(2)∵ 该年级这周收集的可回收垃圾的质量小于 4.5×2+5×4+5.5×3+6=51.5(kg),∴ 该年级这周收集的可回收垃圾被回收后所得金额小于 51.5×0.8=41.2(元),不能达到 50 元.4.(1)在样本数据中,最大值是24.4,最小值是18.5,它们的差是 24.4-18.5=5.9.决定组距和组数.最大值与最小值的差是5.9,如果取组距为1.0, 可以分成6组,组数适合.于是取组距为1.0 ,组数为6. (3)列频数分布表.画频数分布直方图.5.解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2)(7+5+2)÷32=43.75%,所以该中学的参赛同学获奖率是43.75%;(3)该中学参赛同学的成绩均不低于60分;成绩在80~90分数段的人数最多。课堂小结21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://www.21cnjy.com/" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 10.2 直方图(第2课时) 教案.doc 10.2 直方图(第2课时)学案.doc 10.2 直方图(第2课时)课件.ppt