2022年最新人教版八年级数学下册第十九章一次函数专题练习 练习题(word版 含解析)

资源下载
  1. 二一教育资源

2022年最新人教版八年级数学下册第十九章一次函数专题练习 练习题(word版 含解析)

资源简介

人教版八年级数学下册第十九章-一次函数专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数的一般形式是(k,b是常数)( )
A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x
2、函数y=x-1的图象经过(  )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
3、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2x<kx+b≤0的解集为( )
A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤0
4、如图,一次函数(为常数,且)的图像经过点,则关于的不等式的解集为( )
A. B. C. D.
5、周六早上,小王和小李相约晨跑,他们约定从各自的家出发,在位于同一直线上的公园大门见面,小王先出发,途中等了1分钟红绿灯,然后以之前的速度继续向公园大门前行,小李比小王晚1分钟出发,结果比小王早1分钟到达,两人均匀速行走.下图是两人距离公园的路程与小王行走的时间之间的函数关系图象,若点A的坐标是,则下列说法中,错误的是( )
A.点A代表的实际意义是小李与小王相遇 B.当小李出发时,小王与小李相距120米
C.小李家距离公园大门的路程是560米 D.小李每分钟比小王多走20米
6、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是(  )
A.k1>k2>k3>k4 B.k1>k2>k4>k3
C.k2>k1>k3>k4 D.k4>k3>k2>k1
7、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )
A. B. C. D.
8、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
9、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
10、在函数y=中,自变量x的取值范围是 (  )
A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点(m,n)在函数y=2x+1的图象上,则n﹣2m的值是_____.
2、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220 ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U )
3、如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,﹣1),则由函数图象得不等式kx+bmx+n的解集为___.
4、已知y=kx的正比例函数,当x=3时,y=6,则k=____.
5、(1)写出一个一次函数的表达式,使得它经过点(1,3):______
(2)写出一个一次函数的表达式,使得y随x的增大而减小,且经过第一象限:_______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.
(1)爷爷这一天从公园返回到家用多长时间?
(2)爷爷散步时最远离家多少米?
(3)爷爷在公园锻炼多长时间?
(4)直接写出爷爷在出发后多长时间离家450m.
2、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:
(1)在上升或下降过程中,无人机的速度为多少?
(2)图中a表示的数是 ;b表示的数是 ;
(3)无人机在空中停留的时间共有 分钟.
3、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费,每月用电不超过100度,按每度0.48元计算,每月用电超过100度,其中的100度仍按原标准收费,超过部分按每度0.50元计费.
(1)设月用电x度时,应交电费y元,写出y与x的函数关系式,并写出自变量的取值范围.
(2)小王家一月份用电130度,应交电费多少元?
(3)小王家二月份交电费70元,求小王家二月份用了多少度电?
4、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
5、已知y是关于x的一次函数,且点(0,4),(1,2)在此函数图象上.
(1)求这个一次函数表达式;
(2)求当时x的取值范围;
(3)在函数图象上有点P,点P到y轴的距离为2,直接写出P点的坐标.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据一次函数的概念填写即可.
【详解】
解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,
故选:C.
【点睛】
本题考查了一次函数的概念,做题的关键是注意k≠0.
2、D
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:∵一次函数的一次项系数为,常数项为,
∴此函数的图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
3、B
【解析】
【分析】
根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.
【详解】
解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),
∴不等式2x<kx+b的解集是x<-1,
∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),
∴不等式kx+b≤0的解集是x≥-2,
∴不等式2x<kx+b≤0的解集是-2≤x<-1,
故选:B.
【点睛】
本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.
4、A
【解析】
【分析】
根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可.
【详解】
解:∵当x=-3时,kx+b=2,
且y随x的增大而减小,
∴不等式的解集,
故选A.
【点睛】
本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.
5、C
【解析】
【分析】
根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,可判断A选项;根据小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,路程为420米,可得小王的速度,小李到目的地用时6分钟,从A点到终点用时1.5分钟,路程为120米,可得小李的速度,然后根据路程、速度、时间的关系可得小李家离公园大门的路程,判断C选项;由两人的速度可判断D选项;最后依据两人的行走过程判断B选项即可.
【详解】
解:根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,故A选项正确;
由题意,小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,
小王的速度为:(米/分);
小李到目的地用时:(分钟),从A点到终点用时:(分钟),路程为120米,
∴小李的速度为:(米/分);总路程为:(米),
∴小李家离公园大门的路程为480米,故C选项错误;
,小李每分钟比小王多走20米,故D选项正确;
当小李出发时,小王已经出发1分钟,走过的路程为:(米),
剩余路程为:(米),
小李距离目的地路程为480(米),
两人相距:(米),故B选项正确;
综合可得:C选项错误,A、B、D正确,
故选:C.
【点睛】
题目主要考查根据实际行走函数图象获取信息,利用速度、时间、路程的关系结合图象求解是解题关键.
6、A
【解析】
【分析】
首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
【详解】
解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,
再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.
则k1>k2>k3>k4,
故选:A.
【点睛】
本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
7、D
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答.
【详解】
解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.
故选:D.
【点睛】
本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
8、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
9、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m<0,n>0
∴y随x增大而减小,
∵1<3,
∴y1>y2.
故选:A.
【点睛】
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.
10、D
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
解:∵x-3≥0,
∴x≥3,
∵x-4≠0,
∴x≠4,
综上,x≥3且x≠4,
故选:D.
【点睛】
主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
二、填空题
1、1
【解析】
【分析】
直接把点(m,n)代入函数y=2x+1即可得出结论.
【详解】
∵点(m,n)在函数y=2x+1的图象上,
∴2m+1=n,即n﹣2m=1.
故答案为:1.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
2、220≤P≤440
【解析】
【分析】
由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.
【详解】
解:三者关系式为:P·R=U ,可得,
把电阻的最小值R=110代入得,得到输出功率的最大值,
把电阻的最大值R=220代入得,得到输处功率的最小值,
即用电器输出功率P的取值范围是220≤P≤440.
故答案为:220≤P≤440.
【点睛】
本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.
3、x2
【解析】
【分析】
观察函数图象,写出一次函数y=kx+b的图象不在一次函数y=mx+n的图象上方的自变量的取值范围即可.
【详解】
解:当x2时,kx+bmx+n,
所以不等式kx+bmx+n的解集为x2.
故答案为:x2.
【点睛】
本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
4、2
【解析】
【分析】
将点代入函数解析式求解即可.
【详解】
解:由题意可得,正比例函数经过点,
则,解得
故答案为:2
【点睛】
此题考查了待定系数法求解函数解析式,解题的关键是掌握正比例函数的性质.
5、 y=2x+1(答案不唯一) y= x+3(答案不唯一)
【解析】
【分析】
(1)根据要求写即可,只要写出的函数解析式过点(1,3)均可;
(2)由题意及一次函数的性质,k<0,且b>0,满足这两个条件的一次函数解析式均可.
【详解】
(1)y=2x+1
当x=1时,y=2+1=3
即所写的函数解析式满足条件
故答案为:y=2x+1(答案不唯一)
(2)y= x+3
故答案为:y= x+3(答案不唯一)
【点睛】
本题考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是关键,注意这里的答案都不唯一.
三、解答题
1、(1)15;(2)900;(3)10;(4)10分钟或分钟
【解析】
【分析】
(1)根据图中表示可得结果;
(2)根据图象可知最远就是到公园的距离;
(3)根据图象可得平行的部分就是在公园的时间;
(4)求出相应直线的函数解析式,即可得解;
【详解】
(1)由图可知,时间为(分);
(2)由图可知,最远离家900米;
(3)爷爷在公园锻炼的时间(分);
(4)如图,设直线AB所在解析式为,
把点代入可得:,
∴解析式为,
当时,;
设直线CD所在解析式为,
把点,代入得,
,解得,
∴解析式为,
当时,;
∴爷爷在出发后10分钟或分钟离家450m.
【点睛】
本题主要考查了函数图像的应用,准确分析计算是解题的关键.
2、(1)无人机的速度为25米/分;(2)2;15;(3)9.
【解析】
【分析】
(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;
(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;
(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.
【详解】
解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,
∴无人机的速度为75-50=25米/分;
(2)由题意得:,,
故答案为:2,15;
(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,
故答案为:9
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.
3、(1);(2)63元;(3)144度
【解析】
【分析】
(1)根据收费标准,列出分段函数即可解决问题;
(2)x=130,代入y=0.50x-2即可;
(3)因为70>63,所以把y=70代入y=0.50x-2,解方程即可.
【详解】
(1)由题意得:;
(2)0.50×130-2=63(元),
答:小王家一月份用电130度,应交电费63元.
(3)∵70>63,
∴0.50x-2=70,
解得:x=144.
答:小王家二月份交电费70元,求小王家二月份用了144度电.
【点睛】
本题考查了一次函数的应用,解题的关键是学会用用分段函数表示函数关系式,灵活运用所学知识解决问题.
4、(1);(2)5;(3)点P的坐标为(,-)或(-,)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x, x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB==4,
∵MN垂直平分AB,
∴BN=AN=AB=2.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h==.
△PAM的面积S△PAM=AM h=|m|=SOABC=AO OB=32,
解得m=± ,
故点P的坐标为(,-)或(-,).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB (yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,).
综上所述,点P的坐标为(,-)或(-,).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
5、(1);(2);(3)P点坐标为(2,0),(-2,8)
【解析】
【分析】
(1)由点的坐标利用待定系数法即可求出一次函数表达式;
(2)将代入后,再结合一次函数的性质即可得出结论.
(3)点P到y轴的距离为2,即点P的横坐标为2或者-2,代入解析式即可.
【详解】
(1)设,把点(0,4),(1,2)代入得:
解得:,

(2)当时,
当时,;
当时,.

y随x的增大而减小.
∴x的范围是.
(3)∵点P到y轴的距离为2,
∴点P的横坐标为2或者-2
∵P点在上
∴P点坐标为(2,0),
【点睛】
本题考查了待定系数法求一次函数解析式以及一次函数的性质,解题的关键是:熟练掌握待定系数法,理解一次函数图像上的点与函数解析式得关系.

展开更多......

收起↑

资源预览