2022年福建省宁德市中考数学一检试卷(word版含解析)

资源下载
  1. 二一教育资源

2022年福建省宁德市中考数学一检试卷(word版含解析)

资源简介

2022年福建省宁德市中考数学一检试卷
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2的相反数是(  )
A.2 B.﹣2 C. D.﹣
2.下列运算正确的是(  )
A.a+a2=a3 B.a2 a3=a6 C.a5÷a3=a2 D.(a2)3=a5
3.如图是3个相同的小正方体组合而成的几何体,它的俯视图是(  )
A. B. C. D.
4.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为(  )
A.60﹣x=20%(120+x) B.60+x=20%×120
C.180﹣x=20%(60+x) D.60﹣x=20%×120
5.下列尺规作图,能判断AD是△ABC边上的高是(  )
A. B.
C. D.
6.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于(  )
A.15° B.30° C.45° D.60°
7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是(  )
A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+8
8.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有(  )
A.5个 B.4个 C.3个 D.2个
9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为(  )
A. B. C. D.
10.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为(  )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
二、填空题:本题共6小题.每小题4分,共24分.
11.计算:()0﹣1=   .
12.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=   .
13.把二次函数y=x2+3x+4的图象向右平移2个单位,再向下平移5个单位,所得图象对应的函数解析式是    .
14.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为   .
15.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是   .
16.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:
①CD=CP=CQ;
②∠PCQ的大小不变;
③△PCQ面积的最小值为;
④当点D在AB的中点时,△PDQ是等边三角形,
其中所有正确结论的序号是   .
三、解答题:本题共9小题,共86分.
17.计算:+(π﹣3)0﹣2cos30°.
18.解不等式组:
19.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
21.已知正比例函数y1=ax(a≠0)与反比例函数y2=(k≠0)的图象在第一象限内交于点A(2,1)
(1)求a,k的值;
(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答y1>y2时x的取值范围.
22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:
(1)被调查的学生共有   人.
(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为   度;
(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?
23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
24.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
25.已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
参考答案
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2的相反数是(  )
A.2 B.﹣2 C. D.﹣
【分析】根据相反数的定义求解即可.
解:2的相反数为:﹣2.
故选:B.
2.下列运算正确的是(  )
A.a+a2=a3 B.a2 a3=a6 C.a5÷a3=a2 D.(a2)3=a5
【分析】分别利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分析得出答案.
解:A、a+a2无法计算,故此选项错误;
B、a2 a3=a5,故此选项错误;
C、a5÷a3=a2,正确;
D、(a2)3=a6,故此选项错误;
故选:C.
3.如图是3个相同的小正方体组合而成的几何体,它的俯视图是(  )
A. B. C. D.
【分析】根据从上边看得到的图形是俯视图,可得答案.
解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,
故选:C.
4.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为(  )
A.60﹣x=20%(120+x) B.60+x=20%×120
C.180﹣x=20%(60+x) D.60﹣x=20%×120
【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.
解:设把x公顷旱地改为林地,根据题意可得方程:60﹣x=20%(120+x).
故选:A.
5.下列尺规作图,能判断AD是△ABC边上的高是(  )
A. B.
C. D.
【分析】过点A作BC的垂线,垂足为D,则AD即为所求.
解:过点A作BC的垂线,垂足为D,
故选:B.
6.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于(  )
A.15° B.30° C.45° D.60°
【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
解:∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB﹣∠ECB=15°,
故选:A.
7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是(  )
A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+8
【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.
解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,
设P点坐标为(x,y),
∵P点在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周长为8,
∴2(x+y)=8,
∴x+y=4,
即该直线的函数表达式是y=﹣x+4,
故选:A.
8.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有(  )
A.5个 B.4个 C.3个 D.2个
【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.
解:过A作AE⊥BC,
∵AB=AC,
∴EC=BE=BC=4,
∴AE==3,
∵D是线段BC上的动点(不含端点B、C).
∴3≤AD<5,
∴AD=3或4,
∵线段AD长为正整数,
∴AD的可以有三条,长为4,3,4,
∴点D的个数共有3个,
故选:C.
9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为(  )
A. B. C. D.
【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.
解:∵在△ABC中,∠ACB=90°,AC=BC=4,
∴∠A=∠B,
由折叠的性质得到:△AEF≌△DEF,
∴∠EDF=∠A,
∴∠EDF=∠B,
∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,
∴∠CDE=∠BFD.
又∵AE=DE=3,
∴CE=4﹣3=1,
∴在直角△ECD中,sin∠CDE==,
∴sin∠BFD=.
故选:A.
10.如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为(  )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.
解:∵在菱形ABOC中,∠A=60°,菱形边长为2,
∴OC=2,∠COB=60°,
过C作CE⊥OB于E,
则∠OCE=30°,
∴OE=OC=1,CE=,
∴点C的坐标为(﹣1,),
∵顶点C在反比例函数y=的图象上,
∴=,得k=﹣,
即y=﹣,
故选:B.
二、填空题:本题共6小题.每小题4分,共24分.
11.计算:()0﹣1= 0 .
【分析】根据零指数幂:a0=1(a≠0)进行计算即可.
解:原式=1﹣1=0,
故答案为:0.
12.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .
【分析】根据直角三角形斜边上的中线等于斜边的一半解答.
解:∵∠ACB=90°,D为AB的中点,
∴CD=AB=×6=3.
故答案为:3.
13.把二次函数y=x2+3x+4的图象向右平移2个单位,再向下平移5个单位,所得图象对应的函数解析式是   .
【分析】首先把y=x2+4x+3化为顶点式,再根据“左加右减、上加下减”的原则进行解答即可.
解:∵y=x2+3x+4=(x+)2+,
∴把二次函数y=x2+3x+4的图象向右平移2个单位,再向下平移5个单位,所得图象对应的函数解析式是y=(x+﹣2)2+﹣5,即:.
故答案为:.
14.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 8 .
【分析】由A,B为双曲线上的两点,利用反比例系数k的几何意义,求出矩形ACOG与矩形BEOF面积,再由阴影DGOF面积求出空白面积之和即可.
解:∵点A、B是双曲线y=上的点,
∴S矩形ACOG=S矩形BEOF=6,
∵S阴影DGOF=2,
∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=8,
故答案为:8
15.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是 (2+,1) .
【分析】过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.
解:过点D作DG⊥BC于点G,
∵四边形BDCE是菱形,
∴BD=CD.
∵BC=2,∠D=60°,
∴△BCD是等边三角形,
∴BD=BC=CD=2,
∴CG=1,GD=CD sin60°=2×=,
∴D(2+,1).
故答案为:(2+,1).
16.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:
①CD=CP=CQ;
②∠PCQ的大小不变;
③△PCQ面积的最小值为;
④当点D在AB的中点时,△PDQ是等边三角形,
其中所有正确结论的序号是 ①②④ .
【分析】①由折叠直接得到结论;
②由折叠的性质求出∠ACP+∠BCQ=120°,再用周角的意义求出∠PCQ=120°;
③先作出△PCQ的边PC上的高,用三角函数求出QE=CQ,得到S△PCQ=CD2,判断出△PCQ面积最小时,点D的位置,求出最小的CD=CF,即可;
④先判断出△APD是等边三角形,△BDQ是等边三角形,再求出∠PDQ=60°,即可.
解:①∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,
∴CP=CD=CQ,
∴①正确;
②∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,
∴∠ACP=∠ACD,∠BCQ=∠BCD,
∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,
∴∠PCQ=360°﹣(∠ACP+BCQ+∠ACB)=360°﹣(120°+120°)=120°,
∴∠PCQ的大小不变;
∴②正确;
③如图,
过点Q作QE⊥PC交PC延长线于E,
∵∠PCQ=120°,
∴∠QCE=60°,
在Rt△QCE中,sin∠QCE=,
∴QE=CQ×sin∠QCE=CQ×sin60°=CQ,
∵CP=CD=CQ
∴S△PCQ=CP×QE=CP×CQ=CD2,
∴CD最短时,S△PCQ最小,
即:CD⊥AB时,CD最短,
过点C作CF⊥AB,此时CF就是最短的CD,
∵AC=BC=4,∠ACB=120°,
∴∠ABC=30°,
∴CF=BC=2,
即:CD最短为2,
∴S△PCQ最小=CD2=×22=,
∴③错误,
④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,
∴AD=AP,∠DAC=∠PAC,
∵∠DAC=30°,
∴∠PAD=60°,
∴△APD是等边三角形,
∴PD=AD,∠ADP=60°,
同理:△BDQ是等边三角形,
∴DQ=BD,∠BDQ=60°,
∴∠PDQ=60°,
∵当点D在AB的中点,
∴AD=BD,
∴PD=DQ,
∴△DPQ是等边三角形.
∴④正确,
故答案为:①②④.
三、解答题:本题共9小题,共86分.
17.计算:+(π﹣3)0﹣2cos30°.
【分析】根据零指数幂的意义和特殊角的三角函数值得到原式=2+1﹣2×,然后进行乘法运算后合并即可.
解:原式=2+1﹣2×
=2+1﹣
=+1.
18.解不等式组:
【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.
解:,
解不等式①得:x≤1,
解不等式②得:x<4,
故不等式组的解集为x≤1.
19.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
【分析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=,求得OE,即可作出判断.
【解答】证明:过点O作OE⊥AB于点E,
∵OA=OB,∠AOB=62°,
∴∠OAB=∠OBA=59°,
在Rt△AEO中,OE=OA sin∠OAB
=140×sin59°
≈140×0.86
=120.4,
∵120.4<122,
∴这件连衣裙垂挂在晒衣架上会拖落到地面.
20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;
(2)由AC=BD,DE=AC,得出BD=DE即可.
【解答】(1)证明:∵四边形ABCD是矩形,
∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,
由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,
∴AD=EC,
在△ACD和△EDC中,,
∴△ACD≌△EDC(SAS);
(2)解:△BDE是等腰三角形;理由如下:
∵AC=BD,DE=AC,
∴BD=DE,
∴△BDE是等腰三角形.
21.已知正比例函数y1=ax(a≠0)与反比例函数y2=(k≠0)的图象在第一象限内交于点A(2,1)
(1)求a,k的值;
(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答y1>y2时x的取值范围.
【分析】(1)将A坐标代入双曲线解析式中,求出k的值,确定出反比例函数解析式,将A坐标代入一次函数解析式中,求出a的值,确定出一次函数解析式;
(2)画出两函数图象,由函数图象,即可得到y1>y2时x的取值范围.
解:(1)将A(2,1)代入正比例函数解析式得:1=2a,即a=,
故y1=x;
将A(2,1)代入双曲线解析式得:1=,即k=2,
故y2=;
(2)如图所示:
由图象可得:当y1>y2时,﹣2<x<0或x>2.
22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:
(1)被调查的学生共有 300 人.
(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为 108 度;
(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?
【分析】(1)根据统计图中的数据可以求得本次调查的人数;
(2)根据条形统计图中的数据可以求得在扇形统计图中,表示“比较了解”的扇形的圆心角度数;
(3)根据统计图中的数据可以求得从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率.
解:(1)由题意可得,
被调查的学生有:60÷20%=300(人),
故答案为:300;
(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为:360°×=108°,
故答案为:108;
(3)由题意可得,
从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是:=0.4,
即从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是0.4.
23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
【分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.
(3)根据(2)的结论分情况讨论.
解:(1)当0≤x≤50时,设y=k1x,根据题意得50k1=1500,
解得k1=30;
∴y=30x;
当x>50时,设y=k2x+b,
根据题意得,
,解得,
∴y=24x+300.
∴y=,
(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,
∴40≤a≤60,
当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.
当a=40 时.wmin=2700 元,
当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.
当a=60时,wmin=2740 元,
∵2740>2700,
∴当a=40时,总费用最少,最少总费用为2700 元.
此时乙种水果100﹣40=60(千克).
答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.
(3)由题意可设甲种水果为千克,乙种水果为千克
当时,即0≤a≤125,
则甲种水果的进货价为30元/千克,
(40﹣30)×a+(36﹣25)×≥1650,
解得a≥,
与0≤a≤125矛盾,故舍去;
当时,即a>125,
则甲种水果的进货总成本是(9.6a+300)元,
≥1650,
解得a≥150,
∴a的最小值为150.
24.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD tan∠DAM=即可;
(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;
(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,可以看到点N是在以A为圆心3为半径的圆上运动,所以当射线BN与圆相切时,DF最大,此时B、N、M三点共线,由折叠性质得:AD=AH,推出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.
解:(1)由折叠性质得:△ANM≌△ADM,
∴∠MAN=∠DAM,
∵AN平分∠MAB,∠MAN=∠NAB,
∴∠DAM=∠MAN=∠NAB,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DAM=30°,
∴DM=AD tan∠DAM=3×tan30°=3×=;
(2)延长MN交AB延长线于点Q,如图1所示:
∵四边形ABCD是矩形,
∴AB∥DC,
∴∠DMA=∠MAQ,
由折叠性质得:△ANM≌△ADM,
∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,
∴∠MAQ=∠AMQ,
∴MQ=AQ,
设NQ=x,则AQ=MQ=1+x,
∵∠ANM=90°,
∴∠ANQ=90°,
在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,
∴(x+1)2=32+x2,
解得:x=4,
∴NQ=4,AQ=5,
∵AB=4,AQ=5,
∴S△NAB=S△NAQ=×AN NQ=××3×4=;
(3)过点A作AH⊥BF于点H,如图2所示:
∵四边形ABCD是矩形,
∴AB∥DC,
∴∠HBA=∠BFC,
∵∠AHB=∠BCF=90°,
∴△ABH∽△BFC,
∴=,
∵AH≤AN=3,AB=4,
∴可以看到点N是在以A为圆心3为半径的圆上运动,所以当射线BN与圆相切时,DF最大,此时B、N、M三点共线,如图3所示:
由折叠性质得:AD=AH,
∵AD=BC,
∴AH=BC,
∵=,
∴CF=BH,
由勾股定理得:BH===,
∴CF=,
∴DF的最大值=DC﹣CF=4﹣.
25.已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.
(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;
(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.
解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,
则c=4a;
(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),
且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),
又△ABC为等腰直角三角形,
∴点A为抛物线的顶点;
①c=1,顶点A(1,0),
抛物线的解析式:y=x2﹣2x+1,
②,
x2﹣(2+k)x+k=0,
x=(2+k±),
xD=xB=(2+k﹣),yD=﹣1;
则D,
yC=(2+k2+k),
C,A(1,0),
∴直线AD表达式中的k值为:kAD==,直线AC表达式中的k值为:kAC=,
∴kAD=kAC,点A、C、D三点共线.

展开更多......

收起↑

资源预览