资源简介 考点一 “转移研究对象法”在受力分析中的应用应用牛顿第三定律转移研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.1.[转移研究对象法的应用]建筑工人用如图5所示的定滑轮装置运送建筑材料.质量为70 kg的工人站在地面上,通过定滑轮将20 kg的建筑材料以0.5 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)( )A.510 N B.490 N C.890 N D.910 N2.建筑工人用如图所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,人拉绳的方向与水平面成30°角,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)A.490 N B.500 N C.595 N D.700 N答案 C考点一 牛顿第二定律的理解1.内容及表达式物体加速度的大小跟所受外力的合力成正比,跟它的质量成反比,加速度的方向跟合外力方向相同.表达式:F=ma.2.对定律的理解(1)矢量性a为研究对象在合外力作用下产生的加速度;a与合外力方向一致.(2)瞬时对应性一物体所受合外力恒定时,加速度恒定,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为0时,加速度为0,物体就处于静止或匀速直线运动状态.1.分析物体的运动性质,要从受力分析入手,求合力,然后根据牛顿第二定律分析加速度的变化.2.特别要注意加速度与合力具有瞬时对应关系,而速度是不能突变的,速度的变化是需要时间的,Δv=aΔt.1.[速度、加速度、合外力之间的关系](多选)下列关于速度、加速度、合外力之间的关系,正确的是( )A.物体的速度越大,则加速度越大,所受的合外力也越大B.物体的速度为0,则加速度为0,所受的合外力也为0C.物体的速度为0,则加速度可能很大,所受的合外力也可能很大D.物体的速度很大,但加速度可能为0,所受的合外力也可能为0答案 CD2.[应用定律定性分析](多选)如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块加速度为0答案 BC3.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则( )A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为0D.物体从A到O的过程中加速度逐渐减小答案 A4.如图所示,一个小球自由下落到将弹簧压缩到最短后开始竖直向上反弹,从开始反弹至小球到达最高点,小球的速度和加速度的变化情况为( )A.速度一直变小直到零B.速度先变大,然后变小直到为零C.加速度一直变小,方向向上D.加速度先变小后变大解析:B考点二 应用牛顿第二定律分析瞬时问题两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.[思维深化](1)如图2、图3中小球m1、m2原来均静止,现如果均从图中B处剪断,则图2中的弹簧和图3中的下段绳子,它们的拉力将分别如何变化?图2 图3(2)如果均从图中A处剪断,则图2中的弹簧和图3中的下段绳子的拉力又将如何变化呢?(3)由(1)(2)的分析可以得出什么结论?答案 (1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.1.[静态的瞬时问题](多选)质量均为m的A、B两个小球之间连接一个质量不计的弹簧,放在光滑的台面上.A球紧靠墙壁,如图所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间( )A.A球的加速度为 B.A球的加速度为0C.B球的加速度为 D.B球的加速度为答案 BD2.[静态的瞬时问题](多选)如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长量分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0 C.Δl1=2Δl2 D.Δl1=Δl2答案 AC3.如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g解析:B4.如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为gsin θB.两图中A球的加速度均为0C.图乙中轻杆的作用力一定不为0D.图甲中B球的加速度是图乙中B球加速度的2倍答案 D考点三 动力学中的图象问题1.动力学中常见的图象v-t图象、x-t图象、F-t图象、F-a图象等.2.解决图象问题的关键(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原来是否从0开始.(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解.求解图象问题的基本思路看清坐标轴所表示的物理量及单位并注意坐标原点是否从0开始,明确因变量与自变量间的制约关系,明确物理量的变化趋势,分析图线进而弄懂物理过程,写出相应的函数关系式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.1.[图象物理意义的理解](多选)一质点在外力作用下做直线运动,其速度v随时间t变化的图象如图所示.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有( )A.t1 B.t2 C.t3 D.t4答案 AC2.[图象和牛顿第二定律的结合](多选)如图7a,一物块在t=0时刻滑上一固定斜面,其运动的vt图线如图b所示.若重力加速度及图b中的v0、v1、t1均为已知量,则可求出( )A.斜面的倾角 B.物块的质量C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度答案 ACD3.[图象的应用]如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是下列选项中的( )答案 A4.(多选)如图所示,一质量为m的滑块,以初速度v0从倾角为θ的斜面底端滑上斜面,当其速度减为零后又沿斜面返回底端,已知滑块与斜面间的动摩擦因数为μ,若滑块所受的摩擦力为Ff、所受的合外力为F合、加速度为a、速度为v,规定沿斜面向上为正方向,在滑块沿斜面运动的整个过程中,这些物理量随时间变化的图象大致正确的是( )答案 AD5.(多选)将一小球以一定的初速度竖直向上抛出并开始计时,小球所受空气阻力的大小与小球的速率成正比,已知t2时刻小球落回抛出点,其运动的v–t图象如图所示,则在此过程中( )A.t=0时,小球的加速度最大B.当小球运动到最高点时,小球的加速度大于重力加速度gC.t2=2t1D.小球的速度大小先减小后增大,加速度大小先增大后减小【答案】AB考点四 应用整体法与隔离法处理连接体问题1.连接体问题的类型物物连接体、轻杆连接体、弹簧连接体、轻绳连接体.2.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).3.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.4.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”.1.[弹簧与物体构成的连接体]如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀加速直线运动(m1在光滑地面上,m2在空中).已知力F与水平方向的夹角为θ.则m1的加速度大小为( )A. B. C. D.答案 A2.如图,质量均为m的A、B两个小物体置于倾角为30°的斜面上,它们相互接触但不粘连.其中B与斜面同动摩擦因数为,A为光滑物体,同时由静止释放两个物体,重力加速度为g.则下列说法正确的是( )A.两个物体在下滑过程中会分开B.两个物体会一起向下运动,加速度为C.两个物体会一起向下运动.加速度为D.两个物体会一起向下运动,它们之间的相互作用力为解析:C3.如图所示,在光滑的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻质弹簧相连.当用水平恒力F作用于B上且两物块共同向右运动时,弹簧的伸长量为x1;当用同样大小的力F竖直匀加速提升两物块时,弹簧的伸长量为x2,则x1:x2等于( )A.x1:x2=1:1 B.x1:x2=1:2 C.x1:x2=2:1 D.x1:x2=2:3解析:A4.质量分别为m和2m的物块、B用轻弹簧相连,设两物块与接触面间的动摩擦因数都相同.当用水平力F作用于B上且两物块在粗糙的水平面上,共同向右加速运动时,弹簧的伸长量为x1,如图甲所示;当用同样大小的力F竖直共同加速提升两物块时,弹簧的伸长量为x2,如图乙所示;当用同样大小的力F沿固定斜面向上拉两物块使之共同加速运动时,弹簧的伸长量为x3,如图丙所示,则x1:x2:x3等于( )A.1:1:1 B.1:2:3 C.1:2:1 D.无法确定解析:A5.(多选)质量不等的两物块A和B其质量分别为mA和mB,置于光滑水平面上.如图所示.当水平恒力下作用于左端A上,两物块一起加速运动时,AB间的作用力大小为N1.当水平力F作用于右端B上两物块一起加速运动时,AB间作用力大小为N2,则( )A.两次物体运动的加速度大小相等 B.N1+N2<FC.N1+N2=F D.N1:N2=mB:mA解析:ACD6.如图所示,用绳子连接的A和B两个物体,放在光滑的水平桌面上,已知A的质量为B的三倍.若用大小为F的水平力向右拉A时,A与B间绳子的张力为T1;若用同样大的力F水平向左拉B时,A与B 间绳子的张力为T2,则T1与T2 之比为( )A.3:1 B.1:3 C.4:3 D.3:4解析:B7.质量分别为M和m的物块形状大小均相同,将它们通过轻绳和光滑定滑轮连接,如图甲所示,绳子在各处均平行于倾角为α的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦.若互换两物块位置,按图乙放置,然后释放M,斜面仍保持静止.则下列说法正确的是( )A.轻绳的拉力等于Mg B.轻绳的拉力等于mgsinαC.轻绳的拉力等于mg D.轻绳的拉力等于(M+m)g解析:C考点五 动力学两类基本问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.解决两类动力学问题的两个关键点1.把握“两个分析”“一个桥梁”两个分析:物体的受力情况分析和运动过程分析.一个桥梁:加速度是联系物体运动和受力的桥梁.2.寻找多过程运动问题中各过程间的相互联系.如第一个过程的末速度就是下一个过程的初速度,画图找出各过程的位移之间的联系.1.如图所示,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m的小球P.横杆右边用一根细线吊一相同的小球Q.当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,则下列说法正确的是( )A.小车一定向右做匀加速运动B.轻杆对小球P的弹力沿轻杆方向C.小球P受到的合力大小为mgtan θD.小球Q受到的合力大小为mgtan α答案 D2.如图所示,放在固定粗糙斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则( )A.物块可能匀速下滑B.物块将以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑答案 C3.(多选)如图所示,bc为固定在小车上的水平横杆,上面穿着质量为M的滑块,滑块又通过细线悬吊着一个质量为m的小铁球.此时小车正以大小为a的加速度向右做匀加速直线运动,而滑块、小铁球均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大,滑块始终和小车保持相对静止,当加速度增大到2a时( )A.横杆对滑块向上的弹力不变B.横杆对滑块的摩擦力变为原来的2倍C.细线对小铁球的竖直方向的分力增大了D.细线对小铁球的水平方向的分力增大了,增大的倍数小于2答案 AB4.如图甲所示,质量m=1 kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5 s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v-t图象)如图乙所示,g取10 m/s2,求:(1)2 s内物块的位移大小x和通过的路程L;(2)沿斜面向上运动两个阶段加速度大小a1、a2和拉力大小F.答案 (1)0.5 m 1.5 m (2)4 m/s2 4 m/s2 8 N5.[已知受力分析运动]如图所示,楼梯口一倾斜的天花板与水平面成θ=37°,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m=0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数为0.5,天花板长为L=4 m,取sin 37°=0.6,试求:(1)刷子沿天花板向上运动的加速度大小;(2)工人把刷子从天花板底端推到顶端所用的时间.答案 (1)2 m/s2 (2)2 s6.如图甲所示,质量为m=1 kg的物体置于倾角为37°的固定斜面上(斜面足够长),对物体施加平行于斜面向上的恒力F,作用时间t1=1 s时撤去力F,物体运动的部分v-t图象如图乙所示,设物体受到的最大静摩擦力等于滑动摩擦力,取g=10 m/s2.求:(1)物体与斜面间的动摩擦因数;(2)拉力F的大小;(3)t=4 s时物体的速度.答案 (1)0.5 (2)30 N (3)2 m/s,沿斜面向下考点一 “转移研究对象法”在受力分析中的应用应用牛顿第三定律转移研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.1.[转移研究对象法的应用]建筑工人用如图5所示的定滑轮装置运送建筑材料.质量为70 kg的工人站在地面上,通过定滑轮将20 kg的建筑材料以0.5 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)( )A.510 N B.490 N C.890 N D.910 N2.建筑工人用如图所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,人拉绳的方向与水平面成30°角,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)A.490 N B.500 N C.595 N D.700 N考点一 牛顿第二定律的理解1.内容及表达式物体加速度的大小跟所受外力的合力成正比,跟它的质量成反比,加速度的方向跟合外力方向相同.表达式:F=ma.2.对定律的理解(1)矢量性a为研究对象在合外力作用下产生的加速度;a与合外力方向一致.(2)瞬时对应性一物体所受合外力恒定时,加速度恒定,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为0时,加速度为0,物体就处于静止或匀速直线运动状态.1.分析物体的运动性质,要从受力分析入手,求合力,然后根据牛顿第二定律分析加速度的变化.2.特别要注意加速度与合力具有瞬时对应关系,而速度是不能突变的,速度的变化是需要时间的,Δv=aΔt.1.[速度、加速度、合外力之间的关系](多选)下列关于速度、加速度、合外力之间的关系,正确的是( )A.物体的速度越大,则加速度越大,所受的合外力也越大B.物体的速度为0,则加速度为0,所受的合外力也为0C.物体的速度为0,则加速度可能很大,所受的合外力也可能很大D.物体的速度很大,但加速度可能为0,所受的合外力也可能为02.[应用定律定性分析](多选)如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块加速度为03.如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则( )A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为0D.物体从A到O的过程中加速度逐渐减小4.如图所示,一个小球自由下落到将弹簧压缩到最短后开始竖直向上反弹,从开始反弹至小球到达最高点,小球的速度和加速度的变化情况为( )A.速度一直变小直到零B.速度先变大,然后变小直到为零C.加速度一直变小,方向向上D.加速度先变小后变大考点二 应用牛顿第二定律分析瞬时问题两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.[思维深化](1)如图2、图3中小球m1、m2原来均静止,现如果均从图中B处剪断,则图2中的弹簧和图3中的下段绳子,它们的拉力将分别如何变化?图2 图3(2)如果均从图中A处剪断,则图2中的弹簧和图3中的下段绳子的拉力又将如何变化呢?(3)由(1)(2)的分析可以得出什么结论?答案 (1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.1.[静态的瞬时问题](多选)质量均为m的A、B两个小球之间连接一个质量不计的弹簧,放在光滑的台面上.A球紧靠墙壁,如图所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间( )A.A球的加速度为 B.A球的加速度为0C.B球的加速度为 D.B球的加速度为2.[静态的瞬时问题](多选)如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长量分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0 C.Δl1=2Δl2 D.Δl1=Δl23.如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g4.如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为gsin θB.两图中A球的加速度均为0C.图乙中轻杆的作用力一定不为0D.图甲中B球的加速度是图乙中B球加速度的2倍考点三 动力学中的图象问题1.动力学中常见的图象v-t图象、x-t图象、F-t图象、F-a图象等.2.解决图象问题的关键(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原来是否从0开始.(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解.求解图象问题的基本思路看清坐标轴所表示的物理量及单位并注意坐标原点是否从0开始,明确因变量与自变量间的制约关系,明确物理量的变化趋势,分析图线进而弄懂物理过程,写出相应的函数关系式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.1.[图象物理意义的理解](多选)一质点在外力作用下做直线运动,其速度v随时间t变化的图象如图所示.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有A.t1 B.t2 C.t3 D.t42.[图象和牛顿第二定律的结合](多选)如图7a,一物块在t=0时刻滑上一固定斜面,其运动的vt图线如图b所示.若重力加速度及图b中的v0、v1、t1均为已知量,则可求出A.斜面的倾角 B.物块的质量C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度3.[图象的应用]如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是下列选项中的( )4.(多选)如图所示,一质量为m的滑块,以初速度v0从倾角为θ的斜面底端滑上斜面,当其速度减为零后又沿斜面返回底端,已知滑块与斜面间的动摩擦因数为μ,若滑块所受的摩擦力为Ff、所受的合外力为F合、加速度为a、速度为v,规定沿斜面向上为正方向,在滑块沿斜面运动的整个过程中,这些物理量随时间变化的图象大致正确的是( )5.(多选)将一小球以一定的初速度竖直向上抛出并开始计时,小球所受空气阻力的大小与小球的速率成正比,已知t2时刻小球落回抛出点,其运动的v–t图象如图所示,则在此过程中( )A.t=0时,小球的加速度最大B.当小球运动到最高点时,小球的加速度大于重力加速度gC.t2=2t1D.小球的速度大小先减小后增大,加速度大小先增大后减小考点四 应用整体法与隔离法处理连接体问题1.连接体问题的类型物物连接体、轻杆连接体、弹簧连接体、轻绳连接体.2.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).3.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.4.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”.1.[弹簧与物体构成的连接体]如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀加速直线运动(m1在光滑地面上,m2在空中).已知力F与水平方向的夹角为θ.则m1的加速度大小为( )A. B. C. D.2.如图,质量均为m的A、B两个小物体置于倾角为30°的斜面上,它们相互接触但不粘连.其中B与斜面同动摩擦因数为,A为光滑物体,同时由静止释放两个物体,重力加速度为g.则下列说法正确的是( )A.两个物体在下滑过程中会分开B.两个物体会一起向下运动,加速度为C.两个物体会一起向下运动.加速度为D.两个物体会一起向下运动,它们之间的相互作用力为3.如图所示,在光滑的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻质弹簧相连.当用水平恒力F作用于B上且两物块共同向右运动时,弹簧的伸长量为x1;当用同样大小的力F竖直匀加速提升两物块时,弹簧的伸长量为x2,则x1:x2等于( )A.x1:x2=1:1 B.x1:x2=1:2 C.x1:x2=2:1 D.x1:x2=2:34.质量分别为m和2m的物块、B用轻弹簧相连,设两物块与接触面间的动摩擦因数都相同.当用水平力F作用于B上且两物块在粗糙的水平面上,共同向右加速运动时,弹簧的伸长量为x1,如图甲所示;当用同样大小的力F竖直共同加速提升两物块时,弹簧的伸长量为x2,如图乙所示;当用同样大小的力F沿固定斜面向上拉两物块使之共同加速运动时,弹簧的伸长量为x3,如图丙所示,则x1:x2:x3等于( )A.1:1:1 B.1:2:3 C.1:2:1 D.无法确定5.(多选)质量不等的两物块A和B其质量分别为mA和mB,置于光滑水平面上.如图所示.当水平恒力下作用于左端A上,两物块一起加速运动时,AB间的作用力大小为N1.当水平力F作用于右端B上两物块一起加速运动时,AB间作用力大小为N2,则( )A.两次物体运动的加速度大小相等 B.N1+N2<FC.N1+N2=F D.N1:N2=mB:mA6.如图所示,用绳子连接的A和B两个物体,放在光滑的水平桌面上,已知A的质量为B的三倍.若用大小为F的水平力向右拉A时,A与B间绳子的张力为T1;若用同样大的力F水平向左拉B时,A与B 间绳子的张力为T2,则T1与T2 之比为( )A.3:1 B.1:3 C.4:3 D.3:47.质量分别为M和m的物块形状大小均相同,将它们通过轻绳和光滑定滑轮连接,如图甲所示,绳子在各处均平行于倾角为α的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦.若互换两物块位置,按图乙放置,然后释放M,斜面仍保持静止.则下列说法正确的是( )A.轻绳的拉力等于Mg B.轻绳的拉力等于mgsinαC.轻绳的拉力等于mg D.轻绳的拉力等于(M+m)g考点五 动力学两类基本问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.解决两类动力学问题的两个关键点1.把握“两个分析”“一个桥梁”两个分析:物体的受力情况分析和运动过程分析.一个桥梁:加速度是联系物体运动和受力的桥梁.2.寻找多过程运动问题中各过程间的相互联系.如第一个过程的末速度就是下一个过程的初速度,画图找出各过程的位移之间的联系.1.如图所示,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m的小球P.横杆右边用一根细线吊一相同的小球Q.当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,则下列说法正确的是( )A.小车一定向右做匀加速运动B.轻杆对小球P的弹力沿轻杆方向C.小球P受到的合力大小为mgtan θD.小球Q受到的合力大小为mgtan α2.如图所示,放在固定粗糙斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则( )A.物块可能匀速下滑B.物块将以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑3.(多选)如图所示,bc为固定在小车上的水平横杆,上面穿着质量为M的滑块,滑块又通过细线悬吊着一个质量为m的小铁球.此时小车正以大小为a的加速度向右做匀加速直线运动,而滑块、小铁球均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大,滑块始终和小车保持相对静止,当加速度增大到2a时( )A.横杆对滑块向上的弹力不变B.横杆对滑块的摩擦力变为原来的2倍C.细线对小铁球的竖直方向的分力增大了D.细线对小铁球的水平方向的分力增大了,增大的倍数小于24.如图甲所示,质量m=1 kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5 s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v-t图象)如图乙所示,g取10 m/s2,求:(1)2 s内物块的位移大小x和通过的路程L;(2)沿斜面向上运动两个阶段加速度大小a1、a2和拉力大小F.5.[已知受力分析运动]如图所示,楼梯口一倾斜的天花板与水平面成θ=37°,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m=0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数为0.5,天花板长为L=4 m,取sin 37°=0.6,试求:(1)刷子沿天花板向上运动的加速度大小;(2)工人把刷子从天花板底端推到顶端所用的时间.6.如图甲所示,质量为m=1 kg的物体置于倾角为37°的固定斜面上(斜面足够长),对物体施加平行于斜面向上的恒力F,作用时间t1=1 s时撤去力F,物体运动的部分v-t图象如图乙所示,设物体受到的最大静摩擦力等于滑动摩擦力,取g=10 m/s2.求:(1)物体与斜面间的动摩擦因数;(2)拉力F的大小;(3)t=4 s时物体的速度. 展开更多...... 收起↑ 资源列表 2022年高考物理二轮专项突破3-牛顿定律基础-学生版.doc 2022年高考物理二轮专项突破3-牛顿定律基础-教师版.doc