资源简介 中小学教育资源及组卷应用平台第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);2.感受生活中存在的变量之间的依赖关系.3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测.【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,,速度60千米/时是常量,时间和里程为变量. 是自变量,是因变量.要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.21教育网要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如),我们可以根据任何一个自变量的值求出相应的因变量的值.21·cn·jy·com特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方 ( http: / / www.21cnjy.com )法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.www.21-cn-jy.com特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.2·1·c·n·j·y【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y与提出概念所用的时间x(分钟)之间有如表所示的关系:21*cnjy*com提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱www-2-1-cnjy-com【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【来源:21cnj*y.co*m】【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支 ( http: / / www.21cnjy.com )出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x(人) 500 1000 1500 2000 2500 3000 …y(元) ﹣3000 ﹣2000 ﹣1000 0 1000 2000 …(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是 变量和 变量;(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元, ( http: / / www.21cnjy.com )故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.2-1-c-n-j-y【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动秒内的速度经测量如下表:时间(秒)速度(米/秒)(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间表示时间,表示速度,那么随着的变化,的变化趋势是什么?(3)当每增加秒,的变化情况相同吗?在哪个时间段内,增加的最快?(4)若高速公路上小汽车行驶速度的上限为千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.21cnjy.com【答案】(1)时间与速度;时间;速度;(2)到和到,随着的增大而增大,而到,随着的增大而减小;(3)不相同;第秒时;(4)秒.【来源:21·世纪·教育·网】【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出的变化趋势;(3)根据表中的数据可得出的变化情况以及在哪秒钟,的增加最大;(4)根据小汽车行驶速度的上限为千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用表示时间,表示速度,那么随着的变化,的变化趋势是到和到,随着的增大而增大,而到,随着的增大而减小;21世纪教育网版权所有(3)当每增加秒,的变化情况不相同,在第秒时,的增加最大;(4)由题意得:千米/小时=(米/秒),由,且,所以估计大约还需秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【版权所有:21教育】【训练】某路公交车每月有人次乘坐,每月的收入为元,每人次乘坐的票价相同,下面的表格是与的部分数据.21*cnjy*com/人次 500 1000 1500 2000 2500 3000 …/元 1000 2000 4000 6000 …(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润收入支出费用)【答案】(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量;(2)表格见解析;(3)7000人次.【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论;(3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论;解:(1)反映了收入y与人次x两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,表格补充如下:( http: / / www.21cnjy.com / )(3)(元)(人次)答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?( http: / / www.21cnjy.com / )【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.21·世纪*教育网试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角 ( http: / / www.21cnjy.com )形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【出处:21教育名师】( http: / / www.21cnjy.com / )【答案】y=﹣x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=AP BD,代入数值,即可求出y与x之间的关系式.21教育名师原创作品【详解】如图,过点B作BD⊥AC于D.( http: / / www.21cnjy.com / )∵S△ABC=AC BD=AB BC,∴BD=;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=AP BD=×(10﹣x)×=﹣x+24,∴y与x之间的关系式为:y=﹣x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条 ( http: / / www.21cnjy.com )笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?( http: / / www.21cnjy.com / )【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度=2(米/秒),小明的速度为=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.( http: / / www.21cnjy.com / )(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度 乙的速度(大于、等于、小于);(3)6时表示 ;(4)路程为150km,甲行驶了 小时,乙行驶了 小时;(5)9时甲在乙的 (前面、后面、相同位置);(6)乙比甲先走了3小时,对吗? .【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=千米/小时,乙的速度是100÷3=千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.考点:函数的图象.【训练】根据图回答下列问题.( http: / / www.21cnjy.com / ) (1)图中表示哪两个变量间的关系 (2)A、B两点代表了什么 (3)你能设计一个实际事例与图中表示的情况一致吗 【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元; (3)这可以表示某户人家在“五一”长假中的消费情况: 5月1日花150元 5月2日花100元 5月3日花250元 5月4日花200元 5月5日花300元 5月6日花150元 5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元; (3)这可以表示某户人家在“五一”长假中的消费情况: 5月1日花150元 5月2日花100元 5月3日花250元 5月4日花200元 5月5日花300元 5月6日花150元 5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览