资源简介 对数函数【学习目标】(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y=logax与指数函数y=ax互为反函数(a>0,且a≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.【学习重难点】对数的概念与对数函数.【学习过程】【第1课时】一、自主学习知识点一:对数函数的概念函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).形如y=2log2x,y=log2都不是对数函数,可称其为对数型函数.知识点二:对数函数的图象与性质a>1 0<a<1图 象性 质 定义域(0,+∞)值域R过点(1,0),即当x=1时,y=0在(0,+∞)上是增函数 在(0,+∞)上是减函数底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点三:反函数一般地,指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的定义域与值域正好互换.教材解难:1.教材P130思考根据指数与对数的关系,由y=(x≥0)得到x=logy(0<y≤1).如图,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,与y=(x≥0)的图象有且只有一个交点(x0,y0).这就说明,对于任意一个y∈(0,1],通过对应关系x=logy,在[0,+∞)上都有唯一确定的数x和它对应,所以x也是y的函数.也就是说,函数x=logy,y∈(0,1]刻画了时间x随碳14含量y的衰减而变化的规律.2.教材P132思考利用换底公式,可以得到y=logx=-log2x.因为点(x,y)与点(x,-y)关于x轴对称,所以y=log2x图象上任意一点P(x,y)关于x轴的对称点P1(x,-y)都在y=logx的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x轴对称.根据这种对称性,就可以利用y=log2x的图象画出y=logx的图象.3.教材P138思考一般地,虽然对数函数y=logax(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=logax(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,logax可能会大于kx,但由于logax的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有logax<kx.4.4.1对数函数的概念基础自测:1.下列函数中是对数函数的是( )A.y=logxB.y=log(x+1)C.y=2logxD.y=logx+1解析:形如y=logax(a>0,且a≠1)的函数才是对数函数,只有A是对数函数.答案:A2.函数y=ln(1-x)的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1]解析:由题意,得解得0≤x<1;故函数y=ln(1-x)的定义域为[0,1).答案:B3.函数y=loga(x-1)(0<a<1)的图象大致是( )解析:∵0<a<1,∴y=logax在(0,+∞)上单调递减,故A,B可能正确;又函数y=loga(x-1)的图象是由y=logax的图象向右平移一个单位得到,故A正确.答案:A4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.解析:因为f(x)=log2x在[2,3]上是单调递增的,所以log22≤log2x≤log23,即1≤log2x≤log23.答案:[1,log23]二、素养提升题型一:对数函数的概念例1:下列函数中,哪些是对数函数?(1)y=loga(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=logx6(x>0,且x≠1);(5)y=log6x.解析:(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=logax(a>0且a≠1)来判断.方法归纳:判断一个函数是对数函数的方法跟踪训练1:若函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=________.解析:由a2-a+1=1,解得a=0或a=1.又底数a+1>0,且a+1≠1,所以a=1.答案:1对数函数y=logax系数为1.题型二:求函数的定义域(教材P130例1)例2:求下列函数的定义域:(1)y=log3x2;(2)y=loga(4-x)(a>0,且a≠1).解析:(1)因为x2>0,即x≠0,所以函数y=log3x2的定义域是{x|x≠0}.(2)因为4-x>0,即x<4,所以函数y=loga(4-x)的定义域是{x|x<4}.真数大于0.教材反思:求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2:求下列函数的定义域:(1)y=lg(x+1)+;(2)y=log(x-2)(5-x).解析:(1)要使函数有意义,需即∴-1<x<1,∴函数的定义域为(-1,1).(2)要使函数有意义,需∴∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解.题型三:对数函数的图象问题例3:(1)函数y=x+a与y=logax的图象只可能是下图中的( )(2)已知函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log32)=________.(3)如图所示的曲线是对数函数y=logax,y=logbx,y=logcx,y=logdx的图象,则a,b,c,d与1的大小关系为________.解析:(1)A中,由y=x+a的图象知a>1,而y=logax为减函数,A错;B中,0<a<1,而y=logax为增函数,B错;C中,0<a<1,且y=logax为减函数,所以C对;D中,a<0,而y=logax无意义,也不对.(2)依题意可知定点A(-2,-1),f(-2)=3-2+b=-1,b=-,故f(x)=3x-,f(log32)=3-=2-=.(3)由题干图可知函数y=logax,y=logbx的底数a>1,b>1,函数y=logcx,y=logdx的底数0<c<1,0<d<1.过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a>1>d>c.答案:(1)C(2)(3)b>a>1>d>c(1)由函数y=x+a的图象判断出a的范围.(2)依据loga1=0,a0=1,求定点坐标.(3)沿直线y=1自左向右看,对数函数的底数由小变大.方法归纳:解决对数函数图象的问题时要注意:(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x趋近于0时,函数图象会越来越靠近y轴,但永远不会与y轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a的取值范围是a>1,还是0<a<1.(3)牢记特殊点.对数函数y=logax(a>0,且a≠1)的图象经过点:(1,0),(a,1)和.跟踪训练3:(1)如图所示,曲线是对数函数y=logax(a>0,且a≠1)的图象,已知a取,,,,则相应于C1,C2,C3,C4的a值依次为( )A.,,,B.,,,C.,,,D.,,,(2)函数y=loga|x|+1(0<a<1)的图象大致为( )解析:(1)方法一:作直线y=1与四条曲线交于四点,由y=logax=1,得x=a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C1,C2,C3,C4对应的a值分别为,,,,故选A.方法二:由对数函数的图象在第一象限内符合底大图右的规律,所以底数a由大到小依次为C1,C2,C3,C4,即,,,.故选A.增函数底数a>1,减函数底数0<a<1.(2)函数为偶函数,在(0,+∞)上为减函数,(-∞,0)上为增函数,故可排除选项B,C,又x=±1时y=1,故选A.先去绝对值,再利用单调性判断.答案:(1)A(2)A三、学业达标(一)选择题1.下列函数是对数函数的是( )A.y=2+log3xB.y=loga(2a)(a>0,且a≠1)C.y=logax2(a>0,且a≠1)D.y=lnx解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=logax”的形式,A,B,C全错,D正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2xB.y=2log4xC.y=log2x或y=2log4xD.不确定解析:由对数函数的概念可设该函数的解析式为y=logax(a>0,且a≠1,x>0),则2=loga4即a2=4得a=2.故所求解析式为y=log2x.答案:A3.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.答案:D4.已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象只能是下图中的( )解析:由函数y=loga(-x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=ax为增函数,所以图象B适合.答案:B(二)填空题5.若f(x)=logax+(a2-4a-5)是对数函数,则a=________.解析:由对数函数的定义可知,∴a=5.答案:56.已知函数f(x)=log3x,则f+f(15)=________.解析:f+f(15)=log3+log315=log327=3.答案:37.函数f(x)=loga(2x-3)(a>0且a≠1)的图象恒过定点P,则P点的坐标是________.解析:令2x-3=1,解得x=2,且f(2)=loga1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).答案:(2,0)(三)解答题8.求下列函数的定义域:(1)y=log3(1-x);(2)y=;(3)y=log7.解析:(1)由1-x>0,得x<1,∴函数y=log3(1-x)的定义域为(-∞,1).(2)由log2x≠0,得x>0且x≠1.∴函数y=的定义域为{x|x>0且x≠1}.(3)由>0,得x<.∴函数y=log7的定义域为.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知,当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.尖子生题库:10.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x+1)的定义域与值域是多少?与x轴的交点是什么?解析:y=log2xy=log2(x+1),如图.定义域为(-1,+∞),值域为R,与x轴的交点是(0,0).【第二学时】一、素养提升题型一:比较大小(教材P133例3)例1:比较下列各题中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)loga5.1,loga5.9(a>0,且a≠1).解析:(1)log23.4和log28.5可看作函数y=log2x的两个函数值.因为底数2>1,对数函数y=log2x是增函数,且3.4<8.5,所以log23.4<log28.5.(2)log0.31.8和log0.32.7可看作函数y=log0.3x的两个函数值.因为底数0.3<1,对数函数y=log0.3x是减函数,且1.8<2.7,所以log0.31.8>log0.32.7.(3)loga5.1和loga5.9可看作函数y=logax的两个函数值.对数函数的单调性取决于底数a是大于1还是小于1,因此需要对底数a进行讨论.当a>1时,因为函数y=logax是增函数,且5.1<5.9,所以loga5.1<loga5.9;当0<a<1时,因为函数y=logax是减函数,且5.1<5.9,所以loga5.1>loga5.9.构造对数函数,利用函数单调性比较大小.教材反思比较对数值大小时常用的三种方法跟踪训练1:(1)设a=log2π,b=logπ,c=π-2,则( )A.a>b>cB.b>a>cC.a>c>bD.c>b>a(2)比较下列各组值的大小:①log0.5,log0.6.②log1.51.6,log1.51.4.③log0.57,log0.67.④log3π,log20.8.解析:(1)a=log2π>1,b=logπ<0,c=π-2∈(0,1),所以a>c>b.(2)①因为函数y=logx是减函数,且0.5<0.6,所以log0.5>log0.6.②因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4.③因为0>log70.6>log70.5,所以<,即log0.67<log0.57.④因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.答案:(1)C(2)①log0.5>log0.6.②log1.51.6>log1.51.4.③log0.67<log0.57.④log3π>log20.8. (1)选择中间量0和1,比较大小.(2)①②③利用对数函数的单调性比较大小.④用中间量0比较大小.题型二:解对数不等式例2:(1)已知log0.72x<log0.7(x-1),则x的取值范围为________;(2)已知loga(x-1)≥loga(3-x)(a>0,且a≠1),求x的取值范围.解析:(1)∵函数y=log0.7x在(0,+∞)上为减函数,∴由log0.72x<log0.7(x-1)得解得x>1,即x的取值范围是(1,+∞).(2)loga(x-1)≥loga(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式loga(x-1)≥loga(3-x)中x的取值范围为[2,3);当0<a<1时,不等式loga(x-1)≥loga(3-x)(a>0且a≠1)中x的取值范围是(1,2].答案:(1)(1,+∞)(2)答案见解析(1)利用函数y=log0.7x的单调性求解.(2)分a>1和0<a<1两种情况讨论,解不等式.方法归纳:两类对数不等式的解法:(1)形如logaf(x)<logag(x)的不等式.①当0<a<1时,可转化为f(x)>g(x)>0;②当a>1时,可转化为0<f(x)<g(x).(2)形如logaf(x)<b的不等式可变形为logaf(x)<b=logaab.①当0<a<1时,可转化为f(x)>ab;②当a>1时,可转化为0<f(x)<ab.跟踪训练2:(1)满足不等式log3x<1的x的取值集合为________;(2)根据下列各式,确定实数a的取值范围:①log1.5(2a)>log1.5(a-1);②log0.5(a+1)>log0.5(3-a).解析:(1)因为log3x<1=log33,所以x满足的条件为即0<x<3.所以x的取值集合为{x|0<x<3}.(2)①函数y=log1.5x在(0,+∞)上是增函数.因为log1.5(2a)>log1.5(a-1),所以解得a>1,即实数a的取值范围是a>1.②函数y=log0.5x在(0,+∞)上是减函数,因为log.0.5(a+1)>log0.5(3-a),所以解得-1<a<1.即实数a的取值范围是-1<a<1.答案:(1){x|0<x<3}(2)①(1,+∞);②(-1,1)(1)log33=1.(2)由对数函数的单调性求解.题型三:对数函数性质的综合应用例3:已知函数f(x)=loga(1+x)+loga(3-x)(a>0且a≠1).(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-2,求实数a的值.解析:(1)由题意得解得-1<x<3,所以函数f(x)的定义域为(-1,3).(2)因为f(x)=loga[(1+x)(3-x)]=loga(-x2+2x+3)=loga[-(x-1)2+4],若0<a<1,则当x=1时,f(x)有最小值loga4,所以loga4=-2,a-2=4,又0<a<1,所以a=.若a>1,则当x=1时,f(x)有最大值loga4,f(x)无最小值.综上可知,a=.真数大于0.分0<a<1,a>1两类讨论.方法归纳:1.解答y=logaf(x)型或y=f(logax)型函数需注意的问题①要注意变量的取值范围.例如,f(x)=log2x,g(x)=x2+x,则f(g(x))=log2(x2+x)中需要g(x)>0;g(f(x))=(log2x)2+log2x中需要x>0.②判断y=logaf(x)型或y=f(logax)型函数的奇偶性,首先要注意函数中变量的范围,再利用奇偶性定义判断.2.形如y=logaf(x)的函数的单调性判断首先要确保f(x)>0,当a>1时,y=logaf(x)的单调性在f(x)>0的前提下与y=f(x)的单调性一致.当0<a<1时,y=logaf(x)的单调性在f(x)>0的前提下与y=f(x)的单调性相反.跟踪训练3 已知函数f(x)=log2(1+x2).求证:(1)函数f(x)是偶函数;(2)函数f(x)在区间(0,+∞)上是增函数.证明:(1)函数f(x)的定义域是R,f(-x)=log2[1+(-x)2]=log2(1+x2)=f(x),所以函数f(x)是偶函数.(2)设0<x1<x2,则f(x1)-f(x2)=log2(1+x)-log2(1+x)=log2,由于0<x1<x2,则0<x<x,则0<1+x<1+x,所以0<<1.又函数y=log2x在(0,+∞)上是增函数,所以log2<0.所以f(x1)<f(x2).所以函数f(x)在区间(0,+∞)上是增函数.(1)函数是偶函数,f(-x)=f(x).(2)用定义法证明函数是增函数.题型四:几类函数模型的增长差异例4:(1)下列函数中,增长速度最快的是( )A.y=2018xB.y=x2018C.y=log2018xD.y=2018x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如表:x 1 5 10 15 20 25 30y1 2 26 101 226 401 626 901y2 2 32 1024 32768 1.05×106 3.36×107 1.07×109y3 2 10 20 30 40 50 60y4 2 4.322 5.322 5.907 6.322 6.644 6.907则关于x呈指数型函数变化的变量是________.解析:(1)比较幂函数、指数函数与对数函数、一次函数可知,指数函数增长速度最快.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.答案:(1)A(2)y2(1)由题意,指数函数增长速度最快.(2)观察变量y1,y2,y3,y4的变化情况→→跟踪训练4:分析指数函数y=2x与对数函数y=log2x在区间[1,+∞)上的增长情况.解析:指数函数y=2x,当x由x1=1增加到x2=3时,x2-x1=2,y2-y1=23-21=6;对数函数y=log2x,当x由x1=1增加到x2=3时,x2-x1=2,而y2-y1=log23-log21≈1.5850.由此可知,在区间[1,+∞)上,指数函数y=2x随着x的增长函数值的增长速度快,而对数函数y=log2x的增长速度缓慢.在同一平面直角坐标系内作出函数y=2x和y=log2x的图象,从图象上可观察出函数的增长变化情况.如图:二、学业达标(一)选择题1.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.b<c<aD.a<c<b解析:因为0=log0.51<a=log0.50.9<log0.50.5=1,b=log1.10.9<log1.11=0,c=1.10.9>1.10=1,所以b<a<c,故选B.答案:B2.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1解析:在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.答案:B3.若loga<1(a>0,且a≠1),则实数a的取值范围是( )A.B.∪(1,+∞)C.(1,+∞)D.(0,1)解析:当a>1时,loga<0<1,成立.当0<a<1时,y=logax为减函数.由loga<1=logaa,得0<a<.综上所述,0<a<或a>1.答案:B4.函数y=log0.4(-x2+3x+4)的值域是( )A.(0,2]B.[-2,+∞)C.(-∞,-2]D.[2,+∞)解析:-x2+3x+4=-2+≤,又-x2+3x+4>0,则0<-x2+3x+4≤,函数y=log0.4x为(0,+∞)上的减函数,则y=log0.4(-x2+3x+4)≥log0.4=-2,函数的值域为[-2,+∞).答案:B(二)填空题5.函数f(x)=logax(a>0,且a≠1)在[2,3]上的最大值为1,则a=________.解析:当a>1时,f(x)的最大值是f(3)=1,则loga3=1,∴a=3>1.∴a=3符合题意.当0<a<1时,f(x)的最大值是f(2)=1.则loga2=1,∴a=2>1.∴a=2不合题意,综上知a=3.答案:36.已知函数f(x)=log2为奇函数,则实数a的值为________.解析:由奇函数得f(x)=-f(-x),log2=-log2,=,a2=1,因为a≠-1,所以a=1.答案:17.如果函数f(x)=(3-a)x与g(x)=logax的增减性相同,则实数a的取值范围是________.解析:若f(x),g(x)均为增函数,则则1<a<2;若f(x),g(x)均为减函数,则无解.答案:(1,2)(三)解答题8.比较下列各组对数值的大小:(1)log1.6与log2.9;(2)log21.7与log23.5;(3)log3与log3;(4)log0.3与log20.8.解析:(1)∵y=logx在(0,+∞)上单调递减,1.6<2.9,∴log1.6>log2.9.(2)∵y=log2x在(0,+∞)上单调递增,而1.7<3.5,∴log21.7<log23.5.(3)借助y=logx及y=logx的图象,如图所示.在(1,+∞)上,前者在后者的下方,∴log3<log3.(4)由对数函数性质知,log0.3>0,log20.8<0,∴log0.3>log20.8.9.已知loga(2a+3)<loga3a,求a的取值范围.解析:(1)当a>1时,原不等式等价于解得a>3.(2)当0<a<1时,原不等式等价于解得0<a<1.综上所述,a的范围是(0,1)∪(3,+∞).尖子生题库:10.已知a>0且a≠1,f(logax)=.(1)求f(x);(2)判断f(x)的单调性和奇偶性;(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-2m)<0,求m的取值范围.解析:(1)令t=logax(t∈R),则x=at,且f(t)=,所以f(x)=(ax-a-x)(x∈R);(2)因为f(-x)=(a-x-ax)=-f(x),且x∈R,所以f(x)为奇函数.当a>1时,ax-a-x为增函数,并且注意到>0,所以这时f(x)为增函数;当0<a<1时,类似可证f(x)为增函数.所以f(x)在R上为增函数;(3)因为f(1-m)+f(1-2m)<0,且f(x)为奇函数,所以f(1-m)<f(2m-1).因为f(x)在(-1,1)上为增函数,所以解之,得<m<1.即m的取值范围是.21 / 21 展开更多...... 收起↑ 资源预览