资源简介 第十八章 平行四边形18.2 矩形(基础巩固)【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质例1、如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.【思路点拨】(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.【答案与解析】解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.【总结升华】本题主要考查了矩形的性质、勾股定理等知识的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.举一反三:【变式】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是 _________ .【答案】;提示:因为ECFP为矩形,所以有EF=PC.PC最小时是直角三角形斜边上的高.类型二、矩形的判定例2、已知:平行四边形ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,BC=AD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF.∴△BEC≌△DFA.(2)四边形AECF是矩形.∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴AE∥CF且AE=CF.∴四边形AECF是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.【总结升华】要证明△BEC和△DFA全等,主要运用判定定理(边角边);四边形AECF是矩形,先证明四边形AECF是平行四边形,再证这个平行四边形对角线相等或者有一个角是直角.举一反三:【变式】如图,将□ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.【答案】证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.例3、如图所示,ABCD四个内角的角平分线分别交于点E、F、G、H.求证:四边形EFGH是矩形.【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.【答案与解析】证明:在ABCD中,AD∥BC,∴ ∠BAD+∠ABC=180°,∵ AE、BE分别平分∠BAD、∠ABC,∴ ∠BAE+∠ABE=∠BAD+∠ABC=90°.∴ ∠HEF=∠AEB=90°.同理:∠H=∠F=90°.∴ 四边形EFGH是矩形.【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.类型三、直角三角形斜边上的中线的性质例4、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.13【答案】C;【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.举一反三:【变式】如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD外一点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.【答案】解:连接OP.∵ 四边形ABCD是平行四边形.∴ AO=CO,BO=DO,∵ ∠APC=∠BPD=90°,∴ OP=AC,OP=BD,∴ AC=BD.∴ 四边形ABCD是矩形.【巩固练习】一.选择题1.下列说法中正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分2.若矩形对角线相交所成钝角为120°,短边长3.6,则对角线的长为( ).A. 3.6 B. 7.2 C. 1.8 D. 14.43.矩形邻边之比3∶4,对角线长为10,则周长为( ).A.14 B.28 C.20 D.224.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是( )A. B. C. D.5. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三个角是否都为直角6. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )A. B. C.4 D.二.填空题7.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10,则AB=______,BC=______.8.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.9. 如图,矩形纸片ABCD中,AD=4,AB=10,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=__________.10.如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是________.11.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为 .12. 如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是______.三.解答题13.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE∶BE=1∶3,OF=4,求∠ADB的度数和BD的长.14.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若CF=9,BF=12,DF=15,求证:AF平分∠DAB. 15.如图所示,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCED是矩形.答案与解析一.选择题1.【答案】D;【解析】∵对角线相等的平行四边形是矩形,∴A不正确; ∵对角线互相垂直的四边形不一定是菱形,∴B不正确; ∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确; ∵矩形的对角线互相平分且相等,∴D正确;2.【答案】B;【解析】直角三角形中,30°所对的边等于斜边的一半.3.【答案】B;【解析】由勾股定理,可算得邻边长为6和8,则周长为28.4.【答案】D;【解析】∠2>∠1.5.【答案】D;6.【答案】A;【解析】先证△ADF≌△BEF,则DF为△ABC中位线,再证明四边形BCDE是矩形,BE=,可求面积.二.填空题7.【答案】5,5;【解析】可证△AOB为等边三角形,AB=AO=CO=BO.8.【答案】;【解析】由勾股定理算得斜边AB=,CD=AB=.9.【答案】5.8;【解析】设DE=,则AE=AB-BE=AB-DE=10-.在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即,解得=5.8.10.【答案】;【解析】根据∠EDC:∠EDA=1:2,可得∠EDC=30°,∠EDA=60°,进而得出△OCD是等边三角形,再由AC=10,求得DE.11.【答案】5;【解析】∵矩形ABCD中,E是BC的中点,∴AB=CD,BE=CE,∠B=∠C=90°,可证得△ABE≌△DCE(SAS),∴AE=DE,∵∠AED=90°,∴∠DAE=45°,∴∠BAE=90°﹣∠DAE=45°,∴∠BEA=∠BAE=45°,∴AB=BE=AD=×10=5.12.【答案】12;【解析】推出四边形FCGE是矩形,得出FC=EG,FE=CG,EF∥CG,EG∥CA,求出∠BEG=∠B,推出EG=BG,同理AF=EF,求出矩形CFEG的周长是CF+EF+EG+CG=AC+BC,代入求出即可.三.解答题13.【解析】解:由矩形的性质可知OD=OC.又由OE∶BE=1∶3可知E是OD的中点.又因为CE⊥OD,根据三线合一可知OC=CD,即OC=CD=OD,即△OCD是等边三角形,故∠CDB=60°.所以∠ADB=30°.又因为CD=2OF=8,即BD=2OD=2CD=16.14.【解析】证明:(1)∵四边形ABCD为平行四边形, ∴DC∥AB,即DF∥BE, 又∵DF=BE, ∴四边形DEBF为平行四边形, 又∵DE⊥AB, ∴∠DEB=90°, ∴四边形DEBF为矩形; (2)∵四边形DEBF为矩形, ∴∠BFC=90°, ∵CF=9,BF=12, ∴BC==15, ∴AD=BC=15, ∴AD=DF=15, ∴∠DAF=∠DFA, ∵AB∥CD, ∴∠FAB=∠DFA, ∴∠FAB=∠DFA, ∴AF平分∠DAB.15.【解析】证明:在△ADB和△AEC中,∵ AD=AE,∠BAD=∠CAE,AB=AC.∴ △ADB≌△AEC,∴ BD=CE.又∵ DE=BC,∴ 四边形BCED是平行四边形.∵ ∠BAD=∠CAE,∴ ∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE.在△DAC和△EAB中,∵ DA=EA,∠DAC=∠EAB,AC=AB.∴ △DAC≌△EAB,∴ DC=EB.∴ 四边形BCED是矩形(对角线相等的平行四边形是矩形). 展开更多...... 收起↑ 资源预览