人教版八年级下册第十九章一次函数【知识梳理素材】

资源下载
  1. 二一教育资源

人教版八年级下册第十九章一次函数【知识梳理素材】

资源简介

第十九章 一次函数【知识梳理】
一次函数
19.1 函数
常量与变量
(1)变量和常量的定义:
在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.
(2)方法:
①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化;
②常量和变量是相对于变化过程而言的.可以互相转化;
③不要认为字母就是变量,例如π是常量.
函数的概念
函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.
说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
函数关系式
用来表示函数关系的等式叫做函数解析式,也称为函数关系式.
注意:
①函数解析式是等式.
②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.
③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=-y+9就表示x是y的函数.
函数自变量的取值范围
自变量的取值范围必须使含有自变量的表达式都有意义.
①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.
②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.
③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
函数值
函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;
②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.
函数的图象
函数的图象定义
对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.
注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..
动点问题的函数图象
函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.
用图象解决问题时,要理清图象的含义即会识图.
函数的表示方法
函数的三种表示方法:列表法、解析式法、图象法.
其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.
19.2 一次函数
一次函数的定义
(1)一次函数的定义:
一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
(2)注意:
①又一次函数的定义可知:函数为一次函数 其解析式为y=kx+b(k≠0,k、b是常数)的形式.
②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
③一般情况下自变量的取值范围是任意实数.
④若k=0,则y=b(b为常数),此时它不是一次函数.
正比例函数的定义
(1)正比例函数的定义:
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.
(2)正比例函数图象的性质
正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.
当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.
“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.
一次函数图象上点的坐标特征
一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是
直线上任意一点的坐标都满足函数关系式y=kx+b.
一次函数的图象
注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.
(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.
当b>0时,向上平移;b<0时,向下平移.
注意:①如果两条直线平行,则其比例系数相等;反之亦然;
②将直线平移,其规律是:上加下减,左加右减;
③两条直线相交,其交点都适合这两条直线.
一次函数的性质
一次函数的性质:
k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
一次函数图象与系数的关系
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
①k>0,b>0 y=kx+b的图象在一、二、三象限;
②k>0,b<0 y=kx+b的图象在一、三、四象限;
③k<0,b>0 y=kx+b的图象在一、二、四象限;
④k<0,b<0 y=kx+b的图象在二、三、四象限.
一次函数图象与几何变换
直线y=kx+b,(k≠0,且k,b为常数)
①关于x轴对称,就是x不变,y变成-y:-y=kx+b,即y=-kx-b;
(关于X轴对称,横坐标不变,纵坐标是原来的相反数)
②关于y轴对称,就是y不变,x变成-x:y=k(-x)+b,即y=-kx+b;
(关于y轴对称,纵坐标不变,横坐标是原来的相反数)
③关于原点对称,就是x和y都变成相反数:-y=k(-x)+b,即y=kx-b.
(关于原点轴对称,横、纵坐标都变为原来的相反数)
待定系数法求一次函数解析式
待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.
一次函数与一元一次不等式
(1)一次函数与一元一次不等式的关系
从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
用画函数图象的方法解不等式kx+b>0(或<0)
19.3 课题学习 选择方案
根据实际问题列一次函数关系式
根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.
一次函数的应用
1、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
2、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.
3、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.
(2)理清题意是采用分段函数解决问题的关键.
一次函数综合题
(1)一次函数与几何图形的面积问题
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.
(2)一次函数的优化问题
通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.
(3)用函数图象解决实际问题
从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.

展开更多......

收起↑

资源预览