7.1.1 数系的扩充和复数的概念 导学案(Word版无答案)

资源下载
  1. 二一教育资源

7.1.1 数系的扩充和复数的概念 导学案(Word版无答案)

资源简介

7.1.1 数系的扩充和复数的概念(导学案)
教学重难点 教学目标 核心素养
复数的有关概念 了解数系的扩充过程,理解复数的概念 数学抽象
复数的分类 理解复数的分类 数学抽象
复数相等 掌握复数相等的充要条件及其应用 数学运算
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复数是如何定义的?其表示方法又是什么?
2.复数分为哪两大类?
3.复数相等的条件是什么?
二、新知探究
探究点1:复数的概念
例1:下列命题:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R,且a>b,则a+i>b+i;
③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;
④实数集是复数集的真子集.
其中正确的命题是(  )
A.① B.②
C.③ D.④
解析:对于复数a+bi(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.
答案:D
规律方法1:判断与复数有关的命题是否正确的方法
(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.
(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+bi的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.
提醒:解答复数概念题,一定要紧扣复数的定义,牢记i的性质.
探究点2:复数的分类
例2:当实数m为何值时,复数z=+(m2-2m)i:(1)为实数?(2)为虚数?(3)为纯虚数?
解:(1)当即m=2时,复数z是实数.
(2)当m2-2m≠0且m≠0,即m≠0且m≠2时,复数z是虚数.
(3)当即m=-3时,复数z是纯虚数.
规律方法2:解决复数分类问题的方法与步骤
(1)化标准式:解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.
(3)下结论:设所给复数为z=a+bi(a,b∈R),
①z为实数 b=0;
②z为虚数 b≠0;
③z为纯虚数 a=0且b≠0.
探究点3:复数相等
例3:(1)若z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i(m,n∈R),且z1=z2,则m+n=(  )
A.4或0 B.-4或0
C.2或0 D.-2或0
(2)若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值是________.
答案:(1)A (2)-2
解析:(1)由z1=z2,得n2-3m-1=-3且n2-m-6=-4,解得m=2,n=±2,所以m+n=4或0,故选A.
(2)因为log2(x2-3x-2)+ilog2(x2+2x+1)>1,
所以即解得x=-2.
规律方法3:复数相等的充要条件
复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.
注意:在两个复数相等的充要条件中,注意前提条件是a,b,c,d∈R,即当a,b,c,d∈R时,a+bi=c+di a=c且b=d.若忽略前提条件,则结论不能成立. 
三、课堂总结
1.复数的有关概念
(1)复数的定义
形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.
(2)复数集
全体复数所构成的集合C={a+bi|a,b∈R}叫做复数集.
(3)复数的表示方法
复数通常用字母z表示,即z=a+bi(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.
2.复数相等的充要条件
在复数集C={a+bi|a,b∈R}中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等当且仅当a=c且b=d.
3.复数的分类
(1)复数z=a+bi(a,b∈R)
(2)复数集、实数集、虚数集、纯虚数集之间的关系
名师点拨:复数bi(b∈R)不一定是纯虚数,只有当b≠0时,复数bi(b∈R)才是纯虚数.
四、课堂检测
1.若复数z=ai2-bi(a,b∈R)是纯虚数,则一定有(  )
A.b=0 B.a=0且b≠0
C.a=0或b=0 D.ab≠0
解析:选B.z=ai2-bi=-a-bi,由纯虚数的定义可得a=0且b≠0.
2.若复数z=m2-1+(m2-m-2)i为实数,则实数m的值为(  )
A.-1 B.2
C.1 D.-1或2
解析:选D.因为复数z=m2-1+(m2-m-2)i为实数,
所以m2-m-2=0,解得m=-1或m=2.
3.若复数z=(m+1)+(m2-9)i<0,则实数m的值等于____________.
答案:-3
解析:因为z<0,所以解得m=-3.
4.已知=(x2-2x-3)i(x∈R),则x=________.
答案:3
解析:因为x∈R,所以∈R,
由复数相等的条件得解得x=3.

展开更多......

收起↑

资源预览