资源简介 7.4 勾股定理的逆定理【学习目标】1、探索并理解勾股定理的逆定理得出过程;2、会运用勾股定理的逆定理判断已知三边长度的三角形是不是直角三角形.【知识准备】1、勾股定理的内容:直角三角形两条直角边的平方和等于 .2、在直角三角形中,两直角边长分别是3和4,则斜边长是 .3、已知直角三角形其中两边的长分别为5㎝和3㎝,则第三边的长是_________.【自学提示】一、自学教材第56页-57页例1内容,完成下列题目:(一)“实验与探究”部分:1、长度为12单位的细绳首尾相接围成的△ABC的三边的长分别为:(图上标出即可)2、该△ABC的长 (填“=”或“≠” )3、你用三角尺或量角器检验可知∠B 90°,所以该△ABC是 三角形.4、图7-15中,最长为13单位的边所对角的度数为 ,所以该△也是 .5、结合图7-16,利用勾股定理和SSS可得出:勾股定理的逆定理:如果两条直角边的平方和等于第三边的平方,那么这个三角形是 .(二)勾股定理的逆定理的应用:1、判断由线段,,组成的三角形是不是直角三角形:(1),,; (2),,.2、如果把一个直角三角形的三边同时扩大到原来的倍,得到的新三角形还是直角三角形吗?【问题积累】在学习中还存在哪些疑问?【共同释疑】(用多媒体出示)1、已知的三边分别a,b,c a=, b=2mn, c=(m>n,m,n是正整数),是直角三角形吗?说明理由.2、例2(该四边形ABCD的面积是多少?)【当堂测试】1、如果三条线段长,,满足,其中最长的边为 ,最长的边所对角的度数为 ,该三角形是 三角形.2、有6根细木棒,它们的长度分别是2,4,6,8,10,12,从中取出三根首尾顺次连接搭成一个直角三角形,则这三根细木棒的长度分别是( )A、2,4,8 B、4,8,10 C、6,8,10 D、8,10,123、已知三角形的三条边的长度分别是,,,试判断该三角形是否是直角三角形.4、如图所示,点D是上的一点,若AB=10,AD=8,AC=17,BD=6,求BC的长. 展开更多...... 收起↑ 资源预览