资源简介 8.5.3平面与平面平行的判定导学案【学习目标】1.理解并掌握平面与平面平行的判定定理,明确定理中“相交”两字的重要性2.能利用判定定理解决有关面面平行问题【自主学习】知识点1 平面与平面平行的判定定理表示 定理 图形 文字 符号平面与平面平 行的判定定理 一个平面内的 .与另一个平面平行,则这两个平面平行 β∥α【合作探究】探究一 面面平行判定定理的理解【例1】在长方体ABCD A1B1C1D1中,E,F,G,H分别为棱A1B1,BB1,CC1,C1D1的中点,则下列结论中正确的是( )A.AD1∥平面EFGHB.BD1∥GHC.BD∥EFD.平面EFGH∥平面A1BCD1归纳总结:【练习1】下列命题中,错误的命题是 ( )A.平行于同一直线的两个平面平行B.平行于同一平面的两个平面平行C.平行于同一平面的两直线关系不确定D.两平面平行,一平面内的直线必平行于另一平面探究二 平面与平面平行的证明【例2】如图所示,在三棱柱ABC A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.归纳总结:【练习2】如图所示,在正方体ABCD A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、B、D四点共面;(2)平面MAN∥平面EFDB.探究三 线面平行、面面平行的综合应用【例3】已知底面是平行四边形的四棱锥P ABCD,点E在PD上,且PE:ED=2:1,在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.归纳总结:【练习3】如图,在正方体ABCD A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.课后作业A组 基础题一、选择题1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是( )A.相交 B.平行C.异面 D.不确定2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是( )A.α、β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,α∥β,b∥β3.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是( )A.0 B.1 C.2 D.34.在正方体ABCD-A1B1C1D1中,M为棱A1D1的动点,O为底面ABCD的中心,E、F分别是A1B1、C1D1的中点,下列平面中与OM扫过的平面平行的是( )A.面ABB1A1 B.面BCC1B1C.面BCFE D.面DCC1D15.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有( )A.1对 B.2对 C.3对 D.4对6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是( )A.①③ B.①④ C.②③ D.②④7.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB;④平面PAD∥平面PAB.其中正确的有( )A.①③ B.①④C.①②③ D.②③二、填空题8.已知平面α、β和直线a、b、c,且a∥b∥c,a α,b、c β,则α与β的关系是_____.9.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.10.已知a和b是异面直线,且a 平面α,b 平面β,a∥β,b∥α,则平面α与β的位置关系是________.三、解答题11.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.12.已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.13.如图,在四棱锥C-ABED中,四边形ABED是正方形,G,F分别是线段EC,BD的中点.(1)求证:GF∥平面ABC;(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.B组 能力提升一、选择题1.(多选题)如图是正方体的平面展开图,在这个正方体中,下列命题中,正确的有( )A.BM∥平面DE B.CN∥平面AFC.平面BDM∥平面AFN D.平面BDE∥平面NCF二、填空题2.已知l,m是两条不同的直线,α,β是两个不同的平面,有下面四个命题:①若l α,m α,l∥β,m∥β,则α∥β;②若l α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l∥α,m∥l,则m∥α.其中所有真命题的序号是________.3.如图,四棱锥P ABCD的底面是平行四边形,PA=PB=AB=2,E、F分别是AB、CD的中点,平面AGF∥平面PEC,PD∩平面AGF=G,ED与AF相交于点H,则GH=________.三、解答题4.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.5.如图,四边形ABCD为矩形,A,E,B,F四点共面,且△ABE和△ABF均为等腰直角三角形,∠BAE=∠AFB=90°.求证:平面BCE∥平面ADF.6.如图①,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,得到四棱锥P ABCD,如图②.图① 图②求证:在四棱锥P ABCD中,AP∥平面EFG.8.5.3平面与平面平行的判定导学案【学习目标】1.理解并掌握平面与平面平行的判定定理,明确定理中“相交”两字的重要性2.能利用判定定理解决有关面面平行问题【自主学习】知识点1 平面与平面平行的判定定理表示 定理 图形 文字 符号平面与平面平 行的判定定理 一个平面内的两相交直线与另一个平面平行,则这两个平面平行 β∥α【合作探究】探究一 面面平行判定定理的理解【例1】在长方体ABCD A1B1C1D1中,E,F,G,H分别为棱A1B1,BB1,CC1,C1D1的中点,则下列结论中正确的是( )A.AD1∥平面EFGHB.BD1∥GHC.BD∥EFD.平面EFGH∥平面A1BCD1【答案】 D[解析] 在长方体ABCD A1B1C1D1中,E,F,G,H分别为棱A1B1,BB1,CC1,C1D1的中点,在A中,AD1与BC1平行,而BC1与平面EFGH相交,故AD1不平行于平面EFGH,故A错误;在B中,BD1∩CD1=D1,CD1∥GH,故BD1不可能平行于GH,故B错误;在C中,BD∩A1B=B,A1B∥EF,故BD与EF不可能平行,故C错误.在D中,EF∥A1B,FG∥BC,A1B∩BC=B,EF∩FG=F,所以平面EFGH∥平面A1BCD1,故D正确.归纳总结:解决此类问题的关键有两点:1借助常见几何体进行分析,使得抽象问题具体化.2把握住面面平行的判定定理的关键“一个平面内两条相交直线均平行于另一个平面”【练习1】下列命题中,错误的命题是 ( )A.平行于同一直线的两个平面平行B.平行于同一平面的两个平面平行C.平行于同一平面的两直线关系不确定D.两平面平行,一平面内的直线必平行于另一平面【答案】A解析:如图,正方体ABCD A1B1C1D1中, BB1∥平面ADD1A1,BB1∥平面DCC1D1,而平面ADD1A1∩平面DCC1D1=DD1.探究二 平面与平面平行的证明【例2】如图所示,在三棱柱ABC A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.[分析] 要证平面A1EB∥平面ADC1,只需证平面A1EB内有两条相交直线平行于平面ADC1即可.[证明] 如图,由棱柱的性质知,B1C1∥BC,B1C1=BC.又D、E分别为BC,B1C1的中点,所以C1E∥DB,C1E=DB.则四边形C1DBE为平行四边形,因此EB∥C1D.又C1D 平面ADC1,EB 平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1∥BD,EB1=BD,所以四边形EDBB1为平行四边形,则ED∥B1B,ED=B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED∥A1A,ED=A1A,则四边形EDAA1为平行四边形,所以A1E∥AD.又A1E 平面ADC1,AD 平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E 平面A1EB,EB 平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.归纳总结:判定两个平面平行与判定线面平行一样,应遵循先找后作的原则,先在一个平面内找两条与另一个平面平行的相交直线,找不到再引辅助线【练习2】如图所示,在正方体ABCD A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、B、D四点共面;(2)平面MAN∥平面EFDB.证明:(1)连接B1D1,如图.∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1,而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.(2)由题知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN 平面EFDB,BD 平面EFDB.∴MN∥平面EFDB.如图,连接MF.∵M、F分别是A1B1,C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD,MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM 平面BDFE,DF 平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.探究三 线面平行、面面平行的综合应用【例3】已知底面是平行四边形的四棱锥P ABCD,点E在PD上,且PE:ED=2:1,在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.[分析] 解答本题应抓住BF∥平面AEC.先找BF所在的平面平行于平面AEC,再确定F的位置.[解] 存在.证明:如图所示,连接BD、AC交于O点,连接OE,过B点作OE的平行线交PD于点G,过点G作GF∥CE,交PC于点F,连接BF.∵BG∥OE,BG 平面AEC,OE 平面AEC,∴BG∥平面AEC.同理,GF∥平面AEC,又BG∩GF=G,∴平面BGF∥平面AEC.又∵BF 平面BGF,∴BF∥平面AEC.∵BG∥OE,O是BD中点,∴E是GD中点.又∵PE:ED=2:1,∴G是PE中点.而GF∥CE,∴F为PC中点.综上,当点F是PC中点时,BF∥平面AEC.归纳总结:1要证明两平面平行,只需在其中一个平面内找到两条相交直线平行于另一个平面.2解决此类问题时,可应用平面中直线平行的判定自行构造一个与目标平面平行的平面,再根据性质判断目标点的位置.【练习3】如图,在正方体ABCD A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB.∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB 平面BDD1B1,EG 平面BDD1B1,∴直线EG∥平面BDD1B1.(2)如图,连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD 平面BDD1B1,FG 平面BDD1B1,∴FG∥平面BDD1B1,且EG 平面EFG,FG 平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.课后作业A组 基础题一、选择题1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是( )A.相交 B.平行C.异面 D.不确定【答案】 B解析 因为l∩m=P,所以过l与m确定一个平面β.又因l∥α,m∥α,l∩m=P,所以β∥α.2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是( )A.α、β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,α∥β,b∥β【答案】 D解析 A错,若a∥b,则不能断定α∥β;B错,若三点不在β的同一侧,α与β相交;C错,若a∥b,则不能断定α∥β.故选D.3.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是( )A.0 B.1 C.2 D.3【答案】 B解析 设m∩n=P,记m与n确定的平面为γ.由题意知:γ∥α,γ∥β,则α∥β.故①正确.②、③均错误.4.在正方体ABCD-A1B1C1D1中,M为棱A1D1的动点,O为底面ABCD的中心,E、F分别是A1B1、C1D1的中点,下列平面中与OM扫过的平面平行的是( )A.面ABB1A1 B.面BCC1B1C.面BCFE D.面DCC1D1【答案】 C解析 取AB、DC的中点分别为E1和F1,OM扫过的平面即为面A1E1F1D1(如图),故面A1E1F1D1∥面BCFE.5.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有( )A.1对 B.2对 C.3对 D.4对【答案】 D解析 由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中互相平行的有4对.6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是( )A.①③ B.①④ C.②③ D.②④【答案】 A解析 ∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1.∵BC1∥AD1,∴FG∥AD1,∵FG 平面AA1D1D,AD1 平面AA1D1D,∴FG∥平面AA1D1D,故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故②错误;∵FG∥BC1,FG 平面BC1D1,BC1 平面BC1D1,FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.7.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB;④平面PAD∥平面PAB.其中正确的有( )A.①③ B.①④C.①②③ D.②③【答案】 C解析 把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面PAD∥BC.二、填空题8.已知平面α、β和直线a、b、c,且a∥b∥c,a α,b、c β,则α与β的关系是_____.【答案】 相交或平行解析 b、c β,a α,a∥b∥c,若α∥β,满足要求;若α与β相交,交线为l,b∥c∥l,a∥l,满足要求,故【答案】为相交或平行.9.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.【答案】 平行解析 假若α∩β=l,则在平面α内,与l相交的直线a,设a∩l=A,对于β内的任意直线b,若b过点A,则a与b相交,若b不过点A,则a与b异面,即β内不存在直线b∥a.故α∥β.10.已知a和b是异面直线,且a 平面α,b 平面β,a∥β,b∥α,则平面α与β的位置关系是________.【答案】 平行解析 在b上任取一点O,则直线a与点O确定一个平面γ,设γ∩β=l,则l β,∵a∥β,∴a与l无公共点,∴a∥l,∴l∥α.又b∥α,根据面面平行的判定定理可得α∥β.三、解答题11.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.证明 连接B1D1,B1C.∵P,N分别是D1C1,B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN 平面A1BD,BD 平面A1BD,∴PN∥平面A1BD.同理,MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.12.已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.证明 ∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP,而BP 平面PBC,NQ 平面PBC,∴NQ∥平面PBC.又∵四边形ABCD为平行四边形,∴BC∥AD,∴MQ∥BC,而BC 平面PBC,MQ 平面PBC,∴MQ∥平面PBC.易知MQ∩NQ=Q,根据平面与平面平行的判定定理,可知平面MNQ∥平面PBC.13.如图,在四棱锥C-ABED中,四边形ABED是正方形,G,F分别是线段EC,BD的中点.(1)求证:GF∥平面ABC;(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.(1)证明 如图,连接AE,由F是线段BD的中点得F为AE的中点,∴GF为△AEC的中位线,∴GF∥AC.又∵AC 平面ABC,GF 平面ABC,∴GF∥平面ABC.(2)解 平面GFP∥平面ABC,证明如下:在CD上取中点P,连接FP,GP.∵F,P分别为BD,CD的中点,∴FP为△BCD的中位线,∴FP∥BC.又∵BC 平面ABC,FP 平面ABC,∴FP∥平面ABC,又GF∥平面ABC,FP∩GF=F,FP 平面GFP,GF 平面GFP,∴平面GFP∥平面ABC.B组 能力提升一、选择题1.(多选题)如图是正方体的平面展开图,在这个正方体中,下列命题中,正确的有( )A.BM∥平面DE B.CN∥平面AFC.平面BDM∥平面AFN D.平面BDE∥平面NCF【答案】ABCD [展开图可以折成如图①所示的正方体.图① 图②在正方体中,连接AN,如图②所示.∵AB∥MN,且AB=MN,∴四边形ABMN是平行四边形.∴BM∥AN.∴BM∥平面DE.同理可证CN∥平面AF,∴AB正确;图③如图③所示,连接NF,BE,BD,DM,CF,可以证明BM∥平面AFN,BD∥平面AFN,则平面BDM∥平面AFN,同理可证平面BDE∥平面NCF,所以CD正确.]二、填空题2.已知l,m是两条不同的直线,α,β是两个不同的平面,有下面四个命题:①若l α,m α,l∥β,m∥β,则α∥β;②若l α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l∥α,m∥l,则m∥α.其中所有真命题的序号是________.【答案】 ②解析 当l∥m时,平面α与平面β不一定平行,故①错误;②正确;若α∥β,l∥α,则l β或l∥β,故③错误;④中直线m有可能在平面α内,故④错误.3.如图,四棱锥P ABCD的底面是平行四边形,PA=PB=AB=2,E、F分别是AB、CD的中点,平面AGF∥平面PEC,PD∩平面AGF=G,ED与AF相交于点H,则GH=________.【答案】 [因为ABCD是平行四边形,所以AB∥CD,AB=CD,因为E、F分别是AB、CD的中点,所以AE=FD,又∠EAH=∠DFH,∠AEH=∠FDH,所以△AEH≌△FDH,所以EH=DH.因为平面AGF∥平面PEC,平面PED∩平面AGF=GH,平面PED∩平面PEC=PE,所以GH∥PE,所以G是PD的中点,因为PA=PB=AB=2,所以PE=2×sin 60°=.所以GH=PE=.]三、解答题4.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.解 当F为AB的中点时,平面C1CF∥ADD1A1.理由如下:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,F为AB的中点,∴CD綊AF綊C1D1,∴AFCD是平行四边形,且AFC1D1是平行四边形,∴CF∥AD,C1F∥AD1.又CF∩C1F=F,CF,C1F都在平面C1CF内,∴平面C1CF∥平面ADD1A1.5.如图,四边形ABCD为矩形,A,E,B,F四点共面,且△ABE和△ABF均为等腰直角三角形,∠BAE=∠AFB=90°.求证:平面BCE∥平面ADF.[证明] ∵四边形ABCD为矩形,∴BC∥AD,又BC 平面ADF,AD 平面ADF,∴BC∥平面ADF.∵△ABE和△ABF均为等腰直角三角形,且∠BAE=∠AFB=90°,∴∠BAF=∠ABE=45°,∴AF∥BE,又BE 平面ADF,AF 平面ADF,∴BE∥平面ADF.又BC 平面BCE,BE 平面BCE,BC∩BE=B,∴平面BCE∥平面ADF.6.如图①,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,得到四棱锥P ABCD,如图②.图① 图②求证:在四棱锥P ABCD中,AP∥平面EFG.[证明] 在四棱锥P ABCD中,E,F分别为PC,PD的中点,∴EF∥CD.∵AB∥CD,∴EF∥AB.∵EF 平面PAB,AB 平面PAB,∴EF∥平面PAB.同理EG∥平面PAB.又EF∩EG=E,EF 平面EFG,EG 平面EFG,∴平面EFG∥平面PAB.∵AP 平面PAB,∴AP∥平面EFG. 展开更多...... 收起↑ 资源列表 8.5.3 平面与平面平行的判定1课时(原卷版).docx 8.5.3 平面与平面平行的判定1课时(解析版).docx