资源简介 事件的相互独立性【学习重难点】 【学习目标】 【核心素养】相互独立事件的概念 理解相互独立事件的概念及意义 数学抽象相互独立事件同时发生的概念 能记住相互独立事件概率的乘法公式; 能综合运用互斥事件的概率加法公式 及独立事件的乘法公式解题 数学运算、数学建模【学习过程】一、问题导学预习教材内容,思考以下问题:1.事件的相互独立性的定义是什么?2.相互独立事件有哪些性质?3.相互独立事件与互斥事件有什么区别?二、合作探究1.相互独立事件的判断一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩.【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率都为.这时A={(男,女),(女,男)},B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P(A)=,P(B)=,P(AB)=.由此可知P(AB)≠P(A)P(B),所以事件A,B不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.由等可能性知这8个基本事件的概率均为,这时A中含有6个基本事件,B中含有4个基本事件,AB中含有3个基本事件.于是P(A)==,P(B)==,P(AB)=,显然有P(AB)==P(A)P(B)成立.从而事件A与B是相互独立的.王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.【解】用A,B,C分别表示这三列火车正点到达的事件.则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P()=0.2,P()=0.3,P()=0.1.(1)由题意得A,B,C之间互相独立,所以恰好有两列正点到达的概率为P1=P(BC)+P(AC)+P(AB)=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P()=1-P()P()P()=1-0.2×0.3×0.1=0.994.(1)[变问法]在本例条件下,求恰有一列火车正点到达的概率.解:恰有一列火车正点到达的概率为P3=P(A)+P(B)+P(C)=P(A)P()P()+P()P(B)P()+P()P()P(C)=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(2)[变条件]若一列火车正点到达记10分,用ξ表示三列火车的总得分,求P(ξ≤20).解:事件“ξ≤20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以P(ξ≤20)=1-P(ABC)=1-P(A)P(B)P(C)=1-0.8×0.7×0.9=0.496.3.相互独立事件的综合应用本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租用时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,,超过两小时但不超过三小时还车的概率分别为,,两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设ξ为甲、乙两人所付的租车费用之和,求P(ξ=4)和P(ξ=6)的值.【解】(1)由题意可得甲、乙两人超过三小时但不超过四小时还车的概率分别为,.记甲、乙两人所付的租车费用相同为事件A,则P(A)=×+×+×=.所以甲、乙两人所付租车费用相同的概率为.(2)P(ξ=4)=×+×+×=,P(ξ=6)=×+×=.【学习小结】1.相互独立的概念设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.2.相互独立的性质若事件A与B相互独立,那么A与,与B,与也都相互独立.【精炼反馈】1.如图,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A. B.C. D.解析:选A.左边圆盘指针落在奇数区域的概率为=,右边圆盘指针落在奇数区域的概率也为,所以两个指针同时落在奇数区域的概率为×=.2.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A)=________;P( )=________.解析:因为P(A)=,P(B)=.所以P()=,P()=.所以P(A )=P(A)P()=×=,P( )=P()P()=×=.答案:3.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.解:设Ai={第i次拨号接通电话},i=1,2,3.(1)第3次才接通电话可表示为 A3,于是所求概率为P(A3)=××=.(2)拨号不超过3次而接通电话可表示为A1+ A2+A3,于是所求概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=+×+××=.2 / 5 展开更多...... 收起↑ 资源预览