第三章 §3.6 利用导数证明不等式 学案(Word版含解析)

资源下载
  1. 二一教育资源

第三章 §3.6 利用导数证明不等式 学案(Word版含解析)

资源简介

§3.6 利用导数证明不等式
题型一 将不等式转化为函数的最值问题
例1 已知函数g(x)=x3+ax2.
(1)若函数g(x)在[1,3]上为单调函数,求a的取值范围;
(2)已知a>-1,x>0,求证:g(x)>x2ln x.
(1)解 由题意知,函数g(x)=x3+ax2,
则g′(x)=3x2+2ax,
若g(x)在[1,3]上单调递增,
则g′(x)=3x2+2ax≥0在[1,3]上恒成立,
则a≥-;
若g(x)在[1,3]上单调递减,
则g′(x)=3x2+2ax≤0在[1,3]上恒成立,
则a≤-.所以a的取值范围是∪.
(2)证明 由题意得,要证g(x)>x2ln x,x>0,
即证x3+ax2>x2ln x,即证x+a>ln x,
令u(x)=x+a-ln x,x>0,
可得u′(x)=1-=,x>0,
当0当x>1时,u′(x)>0,函数u(x)单调递增.
所以u(x)≥u(1)=1+a,
因为a>-1,所以u(x)>0,
故当a>-1时,对于任意x>0,g(x)>x2ln x.
教师备选
已知函数f(x)=1-,g(x)=+-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
(1)求a,b的值;
(2)证明:当x≥1时,f(x)+g(x)≥.
(1)解 因为f(x)=1-,x>0,
所以f′(x)=,f′(1)=-1.
因为g(x)=+-bx,
所以g′(x)=---b.
因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
所以g(1)=1,且f′(1)·g′(1)=-1,
所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
解得a=-1,b=-1.
(2)证明 由(1)知,g(x)=-++x,
则f(x)+g(x)≥ 1---+x≥0.
令h(x)=1---+x(x≥1),
则h(1)=0,
h′(x)=+++1=++1.
因为x≥1,所以h′(x)=++1>0,
所以h(x)在[1,+∞)上单调递增,
所以当x≥1时,h(x)≥h(1)=0,
即1---+x≥0,
所以当x≥1时,f(x)+g(x)≥.
思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
跟踪训练1 已知函数f(x)=ln x+,a∈R.
(1)讨论函数f(x)的单调性;
(2)当a>0时,证明:f(x)≥.
(1)解 f′(x)=-=(x>0).
当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
若0(2)证明 由(1)知,当a>0时,
f(x)min=f(a)=ln a+1.
要证f(x)≥,只需证ln a+1≥,
即证ln a+-1≥0.
令函数g(a)=ln a+-1,
则g′(a)=-=(a>0),
当0当a>1时,g′(a)>0,
所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以g(a)min=g(1)=0.
所以ln a+-1≥0恒成立,
所以f(x)≥.
题型二 将不等式转化为两个函数的最值进行比较
例2 (2022·武汉模拟)已知函数f(x)=aln x+x.
(1)讨论f(x)的单调性;
(2)当a=1时,证明:xf(x)(1)解 f(x)的定义域为(0,+∞),
f′(x)=+1=.
当a≥0时,f′(x)>0,
所以f(x)在(0,+∞)上单调递增.
当a<0时,若x∈(-a,+∞),则f′(x)>0;
若x∈(0,-a),则f′(x)<0.
所以f(x)在(-a,+∞)上单调递增,
在(0,-a)上单调递减.
综上所述,当a≥0时,f(x)在(0,+∞)上单调递增;
当a<0时,f(x)在(-a,+∞)上单调递增,
在(0,-a)上单调递减.
(2)证明 当a=1时,要证xf(x)即证x2+xln x即证1+<.
令函数g(x)=1+,
则g′(x)=.
令g′(x)>0,得x∈(0,e);
令g′(x)<0,得x∈(e,+∞).
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
所以g(x)max=g(e)=1+,
令函数h(x)=,
则h′(x)=.
当x∈(0,2)时,h′(x)<0;
当x∈(2,+∞)时,h′(x)>0.
所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
所以h(x)min=h(2)=.
因为->0,
所以h(x)min>g(x)max,
即1+<,从而xf(x)教师备选
(2022·长沙模拟)已知函数f(x)=ex2-xln x.求证:当x>0时,f(x)证明 要证f(x)只需证ex-ln x即ex-ex令h(x)=ln x+(x>0),
则h′(x)=,
易知h(x)在上单调递减,
在上单调递增,
则h(x)min=h=0,
所以ln x+≥0.
再令φ(x)=ex-ex,
则φ′(x)=e-ex,
易知φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
则φ(x)max=φ(1)=0,
所以ex-ex≤0.因为h(x)与φ(x)不同时为0,
所以ex-ex思维升华 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x与ex,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.
跟踪训练2 (2022·百校大联考)已知函数f(x)=eln x-ax(a∈R).
(1)讨论函数f(x)的单调性;
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
(1)解 f′(x)=-a(x>0),
①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
②若a>0,则当00;
当x>时,f′(x)<0.
故f(x)在上单调递增,在上单调递减.
(2)证明 因为x>0,所以只需证f(x)≤-2e,
当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以f(x)max=f(1)=-e.
设g(x)=-2e(x>0),则g′(x)=,
所以当0当x>1时,g′(x)>0,g(x)单调递增,
所以g(x)min=g(1)=-e.
综上,当x>0时,f(x)≤g(x),
即f(x)≤-2e.
故不等式xf(x)-ex+2ex≤0得证.
题型三 适当放缩证明不等式
例3 已知函数f(x)=ex.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当x>-2时,求证:f(x)>ln(x+2).
(1)解 由f(x)=ex,得f(0)=1,f′(x)=ex,
则f′(0)=1,即曲线y=f(x)在点(0,f(0))处的切线方程为y-1=x-0,
所以所求切线方程为x-y+1=0.
(2)证明 设g(x)=f(x)-(x+1)=ex-x-1(x>-2),
则g′(x)=ex-1,
当-2当x>0时,g′(x)>0,
即g(x)在(-2,0)上单调递减,在(0,+∞)上单调递增,
于是当x=0时,g(x)min=g(0)=0,
因此f(x)≥x+1(当且仅当x=0时取等号),
令h(x)=x+1-ln(x+2)(x>-2),
则h′(x)=1-=,
则当-2当x>-1时,h′(x)>0,
即有h(x)在(-2,-1)上单调递减,
在(-1,+∞)上单调递增,
于是当x=-1时,h(x)min=h(-1)=0,
因此x+1≥ln(x+2)(当且仅当x=-1时取等号),所以当x>-2时,f(x)>ln(x+2).
教师备选
已知函数f(x)=,g(x)=,且曲线y=f(x)在x=1处的切线方程为x-2y+n=0.
(1)求m,n的值;
(2)证明:f(x)>2g(x)-1.
(1)解 由已知得,f(1)=0,∴1-0+n=0,
解得n=-1.
∵f′(x)=,
∴f′(1)==,
解得m=1.
(2)证明 设h(x)=ex-x-1(x>0),
则h′(x)=ex-1>0,
∴h(x)在(0,+∞)上单调递增,
∴h(x)>h(0)=0,即ex>x+1>1,
∴<.
要证f(x)>2g(x)-1,即证>-1,
只需证≥-1,
即证xln x≥x-1,
令m(x)=xln x-x+1,则m′(x)=ln x,
∴当x∈(0,1)时,m′(x)<0;
当x∈(1,+∞)时,m′(x)>0,
∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴m(x)min=m(1)=0,
即m(x)≥0,
∴xln x≥x-1,则f(x)>2g(x)-1得证.
思维升华 导数方法证明不等式中,最常见的是ex和ln x与其他代数式结合的问题,对于这类问题,可以考虑先对ex和ln x进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)ex≥1+x,当且仅当x=0时取等号.(2)ln x≤x-1,当且仅当x=1时取等号.
跟踪训练3 已知函数f(x)=aex-1-ln x-1.
(1)若a=1,求f(x)在(1,f(1))处的切线方程;
(2)证明:当a≥1时,f(x)≥0.
(1)解 当a=1时,
f(x)=ex-1-ln x-1(x>0),
f′(x)=ex-1-,
k=f′(1)=0,
又f(1)=0,
∴切点为(1,0).
∴切线方程为y-0=0(x-1),即y=0.
(2)证明 ∵a≥1,
∴aex-1≥ex-1,
∴f(x)≥ex-1-ln x-1.
方法一 令φ(x)=ex-1-ln x-1(x>0),
∴φ′(x)=ex-1-,
令h(x)=ex-1-,
∴h′(x)=ex-1+>0,
∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,
∴当x∈(0,1)时,φ′(x)<0;当x∈(1,+∞)时,φ′(x)>0,
∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴φ(x)min=φ(1)=0,
∴φ(x)≥0,
∴f(x)≥φ(x)≥0,
即f(x)≥0.
方法二 令g(x)=ex-x-1,
∴g′(x)=ex-1.
当x∈(-∞,0)时,g′(x)<0;
当x∈(0,+∞)时,g′(x)>0,
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴g(x)min=g(0)=0,
故ex≥x+1,当且仅当x=0时取“=”.
同理可证ln x≤x-1,
当且仅当x=1时取“=”.
由ex≥x+1 ex-1≥x(当且仅当x=1时取“=”),
由x-1≥ln x x≥ln x+1(当且仅当x=1时取“=”),
∴ex-1≥x≥ln x+1,
即ex-1≥ln x+1,
即ex-1-ln x-1≥0(当且仅当x=1时取“=”),即f(x)≥0.
课时精练
1.已知函数f(x)=(a∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=.
(1)求实数a的值,并求f(x)的单调区间;
(2)求证:当x>0时,f(x)≤x-1.
(1)解 ∵f(x)=,
∴f′(x)=,∴f′(e)=,
又曲线y=f(x)在点(e,f(e))处的切线方程为y=,
则f′(e)=0,即a=0,
∴f′(x)=,
令f′(x)>0,得1-ln x>0,即0令f′(x)<0,得1-ln x<0,即x>e,
∴f(x)的单调递增区间是(0,e),单调递减区间是(e,+∞).
(2)证明 当x>0时,要证f(x)≤x-1,
即证ln x-x2+x≤0,
令g(x)=ln x-x2+x(x>0),
则g′(x)=-2x+1=
=-,
当00,g(x)单调递增;
当x>1时,g′(x)<0,g(x)单调递减,
∴g(x)≤g(1)=0,即当x>0时,f(x)≤x-1.
2.已知f(x)=xln x.
(1)求函数f(x)的极值;
(2)证明:对一切x∈(0,+∞),都有ln x>-成立.
(1)解 由f(x)=xln x,x>0,
得f′(x)=ln x+1,令f′(x)=0,得x=.
当x∈时,f′(x)<0,f(x)单调递减;
当x∈时,f′(x)>0,f(x)单调递增.
所以当x=时,f(x)取得极小值,
f(x)极小值=f =-,无极大值.
(2)证明 问题等价于证明
xln x>-(x∈(0,+∞)).
由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-,当且仅当x=时取到.
设m(x)=-(x∈(0,+∞)),
则m′(x)=,由m′(x)<0,得x>1时,m(x)单调递减;由m′(x)>0得0-成立.
3.已知函数f(x)=ln x-ax(a∈R).
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)证明:ex-e2ln x>0恒成立.
(1)解 f(x)的定义域为(0,+∞),
f′(x)=-a=,
当a≤0时,f′(x)>0,
∴f(x)在(0,+∞)上单调递增,
当a>0时,令f′(x)=0,得x=,
∴x∈时,f′(x)>0;
x∈时,f′(x)<0,
∴f(x)在上单调递增,在上单调递减.
(2)证明 要证ex-e2ln x>0,即证ex-2>ln x,
令φ(x)=ex-x-1,∴φ′(x)=ex-1.
令φ′(x)=0,得x=0,
∴当x∈(-∞,0)时,φ′(x)<0;
当x∈(0,+∞)时,φ′(x)>0,
∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴φ(x)min=φ(0)=0,
即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.
同理可证ln x≤x-1,
当且仅当x=1时取“=”.
由ex≥x+1(当且仅当x=0时取“=”),
可得ex-2≥x-1(当且仅当x=2时取“=”),
又x-1≥ln x,当且仅当x=1时取“=”,
∴ex-2≥x-1≥ln x且两等号不能同时成立,
故ex-2>ln x.即证原不等式成立.
4.(2022·常德模拟)已知函数f(x)=xex-x.
(1)讨论f(x)的单调性;
(2)证明:当x>0时,f(x)-ln x≥1.
(1)解 由题意得f′(x)=(x+1)ex-1,
设g(x)=(x+1)ex,则g′(x)=(x+2)ex,
当x≤-1时,g(x)≤0,f′(x)<0,
f(x)在(-∞,-1]上单调递减;
当x>-1时,g′(x)>0,g(x)单调递增,
又因为g(0)=1,
所以当x<0时,g(x)<1,即f′(x)<0,
当x>0时,g(x)>1,即f′(x)>0,
综上可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)证明 要证f(x)-ln x≥1,
即证xex-x-ln x≥1,
即证ex+ln x-(x+ln x)≥1,
令t=x+ln x,易知t∈R,待证不等式转化为
et-t≥1.
设u(t)=et-t,则u′(t)=et-1,
当t<0时,u′(t)<0,当t>0时,u′(t)>0,
故u(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
所以u(t)≥u(0)=1,原命题得证.

展开更多......

收起↑

资源预览