2023年高考数学一轮复习学案第三章第一课时 不等式恒(能)成立问题(Word版含解析)

资源下载
  1. 二一教育资源

2023年高考数学一轮复习学案第三章第一课时 不等式恒(能)成立问题(Word版含解析)

资源简介

第一课时 不等式恒(能)成立问题
 题型一 分离参数法求参数范围
例1 (2020·全国Ⅰ卷)已知函数f(x)=ex+ax2-x.
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥x3+1,求a的取值范围.
解 (1)当a=1时,f(x)=ex+x2-x,x∈R,
f′(x)=ex+2x-1.
故当x∈(-∞,0)时,f′(x)<0;
当x∈(0,+∞)时,f′(x)>0.
所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.
(2)由f(x)≥x3+1得,
ex+ax2-x≥x3+1,其中x≥0,
①当x=0时,不等式为1≥1,显然成立,此时a∈R.
②当x>0时,分离参数a,
得a≥-,
记g(x)=-,
g′(x)=-.
令h(x)=ex-x2-x-1(x>0),
则h′(x)=ex-x-1,令H(x)=ex-x-1,
H′(x)=ex-1>0,
故h′(x)在(0,+∞)上是增函数,
因此h′(x)>h′(0)=0,故函数h(x)在(0,+∞)上递增,
∴h(x)>h(0)=0,即ex-x2-x-1>0恒成立,
故当x∈(0,2)时,g′(x)>0,g(x)单调递增;
当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.
因此,g(x)max=g(2)=,
综上可得,实数a的取值范围是
.
感悟提升 分离参数法解决恒(能)成立问题的策略
(1)分离变量.构造函数,直接把问题转化为函数的最值问题.
(2)a≥f(x)恒成立 a≥f(x)max;
a≤f(x)恒成立 a≤f(x)min;
a≥f(x)能成立 a≥f(x)min;
a≤f(x)能成立 a≤f(x)max.
训练1 已知函数f(x)=.
(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;
(2)如果当x≥1时,不等式f(x)-≥0恒成立,求实数k的取值范围.
解 (1)函数的定义域为(0,+∞),
f′(x)==-,
令f′(x)=0,得x=1.
当x∈(0,1)时,f′(x)>0,f(x)单调递增;
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以x=1为函数f(x)的极大值点,且是唯一极值点,
所以0<a<1<a+,
故<a<1,即实数a的取值范围为.
(2)原不等式可化为当x≥1时,k≤恒成立,
令g(x)=(x≥1),
则g′(x)=
=.
再令h(x)=x-ln x(x≥1),
则h′(x)=1-≥0,
所以h(x)≥h(1)=1,所以g′(x)>0,
所以g(x)为增函数,
所以g(x)≥g(1)=2,
故k≤2,即实数k的取值范围是(-∞,2].
 题型二 分类讨论法求参数范围
例2 已知函数f(x)=ex-1-ax+ln x(a∈R).
(1)若函数f(x)在x=1处的切线与直线3x-y=0平行,求a的值;
(2)若不等式f(x)≥ln x-a+1对一切x∈[1,+∞)恒成立,求实数a的取值范围.
解 (1)f′(x)=ex-1-a+,
∴f′(1)=2-a=3,
∴a=-1,
经检验a=-1满足题意,
∴a=-1,
(2)f(x)≥ln x-a+1可化为ex-1-ax+a-1≥0,
令φ(x)=ex-1-ax+a-1,
则当x∈[1,+∞)时,φ(x)min≥0,
∵φ′(x)=ex-1-a,
①当a≤0时,φ′(x)>0,
∴φ(x)在[1,+∞)上单调递增,
∴φ(x)min=φ(1)=1-a+a-1=0≥0恒成立,
∴a≤0符合题意.
②当a>0时,令φ′(x)=0,得x=ln a+1.
当x∈(-∞,ln a+1)时,φ′(x)<0,
当x∈(ln a+1,+∞)时,φ′(x)>0,
∴φ(x)在(-∞,ln a+1)上单调递减,
在(ln a+1,+∞)上单调递增.
当ln a+1≤1,即0<a≤1时,φ(x)在[1,+∞)上单调递增,φ(x)min=φ(1)=0≥0恒成立,
∴0<a≤1符合题意.
当ln a+1>1,即a>1时,φ(x)在[1,ln a+1)上单调递减,在(ln a+1,+∞)上单调递增,
∴φ(x)min=φ(ln a+1)<φ(1)=0与φ(x)≥0矛盾.
故a>1不符合题意.
综上,实数a的取值范围为{a|a≤1}.
感悟提升 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,此类问题关键是对参数分类讨论,在参数的每一段上求函数的最值,并判断是否满足题意,若不满足题意,只需找一个值或一段内的函数值不满足题意即可.
训练2 已知函数f(x)=ln x-a(x-1),a∈R,x∈[1,+∞),且f(x)≤恒成立,求a的取值范围.
解 f(x)-=,
构造函数g(x)=xln x-a(x2-1)(x≥1),g′(x)=ln x+1-2ax,
令F(x)=g′(x)=ln x+1-2ax,
F′(x)=.
令1-2ax=0,得x=.
①若a≤0,则F′(x)>0,g′(x)在[1,+∞)上单调递增,g′(x)≥g′(1)=1-2a>0,
∴g(x)在[1,+∞)上单调递增,g(x)≥g(1)=0,
从而f(x)-≥0,不符合题意.
②若0<a<,当x∈时,F′(x)>0,
∴g′(x)在上单调递增,
从而g′(x)>g′(1)=1-2a>0,
∴g(x)在上单调递增,g(x)≥g(1)=0,
从而f(x)-≥0,不符合题意.
③若a≥,则F′(x)≤0在[1,+∞)上恒成立,
∴g′(x)在[1,+∞)上单调递减,g′(x)≤g′(1)=1-2a≤0.
∴g(x)在[1,+∞)上单调递减,
从而g(x)≤g(1)=0,f(x)-≤0,
综上所述,a的取值范围是.
 题型三 双变量的恒(能)成立问题
例3 设f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.
解 (1)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,等价于[g(x1)-g(x2)]max≥M成立.
g′(x)=3x2-2x=x(3x-2),
令g′(x)=0,得x=0或x=,
∵g=-,
又g(0)=-3,g(2)=1,
∴当x∈[0,2]时,g(x)max=g(2)=1,
g(x)min=g=-,
∴M≤1-=,
∴满足条件的最大整数M为4.
(2)对任意的s,t∈有f(s)≥g(t),
则f(x)min≥g(x)max.
由(1)知当x∈时,g(x)max=g(2)=1,
∴当x∈时,f(x)=+xln x≥1恒成立,
即a≥x-x2ln x恒成立.
令h(x)=x-x2ln x,x∈,
∴h′(x)=1-2xln x-x,
令φ(x)=1-2xln x-x,
∴φ′(x)=-3-2ln x<0,
h′(x)在上单调递减,
又h′(1)=0,
∴当x∈时,h′(x)≥0,当x∈[1,2]时,h′(x)≤0,
∴h(x)在上单调递增,在[1,2]上单调递减,
∴h(x)max=h(1)=1,故a≥1.
∴实数a的取值范围是[1,+∞).
感悟提升 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有:
(1) x1∈M, x2∈N,f(x1)>g(x2) f(x)min>g(x)min.
(2) x1∈M, x2∈N,f(x1)>g(x2) f(x)min>g(x)max.
(3) x1∈M, x2∈N,f(x1)>g(x2) f(x)max>g(x)min.
(4) x1∈M, x2∈N,f(x1)>g(x2) f(x)max>g(x)max.
训练3 已知函数f(x)=x3+x2+ax.
(1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的最小值;
(2)若函数g(x)=,对 x1∈, x2∈,使f′(x1)≤g(x2)成立,求实数a的取值范围.
解 (1)由题设知f′(x)=x2+2x+a≥0在[1,+∞)上恒成立,
即a≥-(x+1)2+1在[1,+∞)上恒成立,
而函数y=-(x+1)2+1在[1,+∞)单调递减,
则ymax=-3,
所以a≥-3,所以a的最小值为-3.
(2)“对 x1∈, x2∈,
使f′(x1)≤g(x2)成立”等价于“当x∈时,f′(x)max≤g(x)max”.
因为f′(x)=x2+2x+a=(x+1)2+a-1在上单调递增,
所以f′(x)max=f′(2)=8+a.
而g′(x)=,
由g′(x)>0,得x<1,
由g′(x)<0,得x>1,
所以g(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.
所以当x∈时,g(x)max=g(1)=.
由8+a≤,得a≤-8,
所以实数a的取值范围为.
洛必达法则
在解决不等式恒(能)成立,求参数的取值范围这一类问题时,最常用的方法是分离参数法,转化成求函数的最值,但在求最值时如果出现“”型或“”型的代数式,就设法求其最值.“”型的代数式,是大学数学中的不定式问题,解决此类问题的有效方法就是利用洛必达法则.
洛必达法则
法则1 若函数f(x)和g(x)满足下列条件
(1) f(x)=0及g(x)=0;
(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;
(3) =A,那么==A.
法则2 若函数f(x)和g(x)满足下列条件
(1)f(x)=∞及g(x)=∞;
(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;
(3) =A,那么==A.
例 已知函数f(x)=x(ex-1)-ax2(a∈R).
(1)若f(x)在x=-1处有极值,求a的值;
(2)当x>0时,f(x)≥0,求实数a的取值范围.
解 (1)f′(x)=ex-1+xex-2ax=(x+1)ex-2ax-1,
依题意知f′(-1)=2a-1=0,∴a=.
(2)法一 当x>0时,f(x)≥0,
即x(ex-1)-ax2≥0,
即ex-1-ax≥0,
令φ(x)=ex-1-ax(x>0),
则φ(x)min≥0,
φ′(x)=ex-a.
①当a≤1时,φ′(x)=ex-a>0,
∴φ(x)在(0,+∞)上单调递增,
∴φ(x)>φ(0)=0,
∴a≤1满足条件.
②当a>1时,若0<x<ln a,则φ′(x)<0,
若x>ln a,则φ′(x)>0.
∴φ(x)在(0,ln a)上单调递减,在(ln a,+∞)上单调递增,
∴φ(x)min=φ(ln a)=a-1-aln a≥0.
令g(a)=a-1-aln a(a>1),
∴g′(a)=1-(1+ln a)=-ln a<0,
∴g(a)在(1,+∞)上单调递减.
∴g(a)<g(1)=0与g(a)≥0矛盾,
故a>1不满足条件,
综上,实数a的取值范围是(-∞,1].
法二 当x>0时,f(x)≥0,
即x(ex-1)-ax2≥0,
即ex-1-ax≥0,
即ax≤ex-1,
即a≤恒成立,
令h(x)=(x>0),
∴h′(x)=,
令k(x)=ex(x-1)+1(x>0),
∴k′(x)=ex·x>0,
∴k(x)在(0,+∞)上单调递增,
∴k(x)>k(0)=0,
∴h′(x)>0,
∴h(x)在(0,+∞)上单调递增.
由洛必达法则知,
h(x)==ex=1,
∴a≤1.
故实数a的取值范围是(-∞,1].
1.已知函数f(x)=(x+1)ln(x+1).若对任意x>0都有f(x)>ax成立,求实数a的取值范围.
解 法一 令φ(x)=f(x)-ax
=(x+1)ln(x+1)-ax(x>0),
则φ′(x)=ln(x+1)+1-a,
∵x>0,∴ln(x+1)>0.
(1)当1-a≥0,即a≤1时,φ′(x)>0,
∴φ(x)在(0,+∞)上单调递增,
又φ(0)=0,
∴φ(x)>0恒成立,故a≤1满足题意.
(2)当1-a<0,即a>1时,
令φ′(x)=0,得x=ea-1-1,
∴x∈(0,ea-1-1)时,φ′(x)<0;
x∈(ea-1-1,+∞)时,φ′(x)>0,
∴φ(x)在(0,ea-1-1)上单调递减,在(ea-1-1,+∞)上单调递增,
∴φ(x)min=φ(ea-1-1)<φ(0)=0与φ(x)>0恒成立矛盾,故a>1不满足题意.
综上有a≤1,
故实数a的取值范围是(-∞,1].
法二 x∈(0,+∞)时,(x+1)ln(x+1)>ax恒成立,
即a<恒成立.
令g(x)=(x>0),
∴g′(x)=.
令k(x)=x-ln(x+1)(x>0),
∴k′(x)=1-=>0,
∴k(x)在(0,+∞)上单调递增.
∴k(x)>k(0)=0,
∴x-ln(x+1)>0恒成立,
∴g′(x)>0,故g(x)在(0,+∞)上单调递增.
由洛必达法则知
g(x)=
=[ln(x+1)+1]=1,
∴a≤1,故实数a的取值范围是(-∞,1].
2.设函数f(x)=ax2-xln x-(2a-1)x+a-1(a∈R).若对任意的x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.
解 f′(x)=2ax-1-ln x-(2a-1)
=2a(x-1)-ln x,
令g(x)=f′(x)=2a(x-1)-ln x,
则g′(x)=2a-=,
令g′(x)=0,得x=,
①若a≤0,则g′(x)<0,
则f′(x)在[1,+∞)上单调递减,
∴f′(x)≤f′(1)=0.
∴f(x)在[1,+∞)上单调递减,
∴f(x)≤f(1)=0,不满足题意.
②若a≥,则≤1,
当x∈时,g′(x)<0,
当x∈时,g′(x)>0,
∴f′(x)在[1,+∞)上单调递增,
∴f′(x)≥f′(1)=0,∴f(x)在[1,+∞)上单调递增,
∴f(x)≥f(1)=0,满足题意.
③若0<a<,则>1,当x∈时,g′(x)<0,
当x∈时,g′(x)>0,
∴f′(x)在上单调递减,
在上单调递增,
又f′(1)=0,∴当x∈时,f′(x)<0,
∴f(x)单调递减,∴f(x)<f(1)=0.不满足题意.
综上,a的取值范围为.
3.已知a∈R,f(x)=aln x+x2-4x,g(x)=(a-2)x,若存在x0∈,使得f(x0)≤g(x0)成立,求实数a的取值范围.
解 由f(x0)≤g(x0),
得(x0-ln x0)a≥x-2x0,
记F(x)=x-ln x(x>0),
则F′(x)=(x>0),
∴当0<x<1时,F′(x)<0,F(x)单调递减;
当x>1时,F′(x)>0,F(x)单调递增.
∴F(x)>F(1)=1>0,
∴a≥eq \f(x-2x0,x0-ln x0).
记G(x)=,x∈,
则G′(x)=
=.
∵x∈,
∴2-2ln x=2(1-ln x)≥0,
∴x-2ln x+2>0,
∴当x∈时,G′(x)<0,G(x)单调递减;当x∈(1,e)时,G′(x)>0,G(x)单调递增.
∴G(x)min=G(1)=-1,
∴a≥G(x)min=-1,
故实数a的取值范围为[-1,+∞).
4.已知x=为函数f(x)=xaln x的极值点.
(1)求a的值;
(2)设函数g(x)=,若对 x1∈(0,+∞), x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.
解 (1)f′(x)=axa-1ln x+xa·
=xa-1(aln x+1),
f′==0,解得a=2,
当a=2时,f′(x)=x(2ln x+1),函数f(x)在上单调递减,在上单调递增,
所以x=为函数f(x)=xaln x的极小值点,因此a=2.
(2)由(1)知f(x)min=f=-,函数g(x)的导函数g′(x)=k(1-x)e-x.
①当k>0时,
当x<1时,g′(x)>0,g(x)在(-∞,1)上单调递增;
当x>1时,g′(x)<0,g(x)在(1,+∞)上单调递减,
对 x1∈(0,+∞), x2=-,使得g(x2)=g=-e<-1<-≤f(x1),符合题意.
②当k=0时,g(x)=0,取x1=,对 x2∈R有f(x1)-g(x2)<0,不符合题意.
③当k<0时,
当x<1时,g′(x)<0,g(x)在(-∞,1)上单调递减;
当x>1时,g′(x)>0,g(x)在(1,+∞)上单调递增,
g(x)min=g(1)=,
若对 x1∈(0,+∞), x2∈R,使得f(x1)-g(x2)≥0,只需g(x)min≤f(x)min,
即≤-,
解得k≤-.
综上所述,k∈∪(0,+∞).

展开更多......

收起↑

资源预览