资源简介 新课标立体几何证明题解析1、已知四边形是空间四边形,分别是边的中点求证:EFGH是平行四边形若BD=,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。证明:在中,∵分别是的中点∴同理,∴∴四边形是平行四边形。(2) 90° 30 °考点:证平行(利用三角形中位线),异面直线所成的角2、如图,已知空间四边形中,,是的中点。求证:(1)平面CDE;(2)平面平面。 证明:(1)同理,又∵ ∴平面(2)由(1)有平面又∵平面, ∴平面平面考点:线面垂直,面面垂直的判定3、如图,在正方体中,是的中点,求证: 平面。证明:连接交于,连接,∵为的中点,为的中点∴为三角形的中位线 ∴又在平面内,在平面外∴平面。 考点:线面平行的判定4、已知中,面,,求证:面.证明:° 又面 面 又面 考点:线面垂直的判定5、已知正方体,是底对角线的交点.求证:(1) C1O∥面;(2)面. 证明:(1)连结,设,连结∵ 是正方体 是平行四边形∴A1C1∥AC且 又分别是的中点,∴O1C1∥AO且是平行四边形 面,面 ∴C1O∥面 (2)面 又, 同理可证, 又面 考点:线面平行的判定(利用平行四边形),线面垂直的判定6、正方体中,求证:(1);(2).考点:线面垂直的判定7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C; (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD, 又BD (平面B1D1C,B1D1平面B1D1C, ∴BD∥平面B1D1C. 同理A1D∥平面B1D1C. 而A1D∩BD=D,∴平面A1BD∥平面B1CD. (2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G. 从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.考点:线面平行的判定(利用平行四边形)8、四面体中,分别为的中点,且,,求证:平面 证明:取的中点,连结,∵分别为的中点,∴,又∴,∴在中, ∴,∴,又,即, ∴平面 考点:线面垂直的判定,三角形中位线,构造直角三角形9、如图是所在平面外一点,平面,是的中点,是上的点,(1)求证:;(2)当,时,求的长。证明:(1)取的中点,连结,∵是的中点,∴,∵ 平面 ,∴ 平面 ∴是在平面内的射影 ,取 的中点,连结 ,∵∴,又,∴ ∴,∴,由三垂线定理得 (2)∵,∴,∴,∵平面.∴,且,∴考点:三垂线定理10、如图,在正方体中,、、分别是、、的中点.求证:平面∥平面.证明:∵、分别是、的中点,∥又平面,平面∥平面∵四边形为平行四边形,∥又平面,平面∥平面,平面∥平面考点:线面平行的判定(利用三角形中位线)11、如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.证明:(1)设,∵、分别是、的中点,∥又平面,平面,∥平面(2)∵平面,平面,又,,平面,平面,平面平面考点:线面平行的判定(利用三角形中位线),面面垂直的判定12、已知是矩形,平面,,,为的中点.(1)求证:平面;(2)求直线与平面所成的角.证明:在中,,∵平面,平面,又,平面(2)为与平面所成的角在,,在中,在中,,考点:线面垂直的判定,构造直角三角形13、如图,在四棱锥中,底面是且边长为的菱形,侧面是等边三角形,且平面垂直于底面.(1)若为的中点,求证:平面;(2)求证:;(3)求二面角的大小.证明:(1)为等边三角形且为的中点,又平面平面,平面(2)是等边三角形且为的中点,且,,平面,平面,(3)由,∥,又,∥,为二面角的平面角在中,,考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)14、如图1,在正方体中,为 的中点,AC交BD于点O,求证:平面MBD.证明:连结MO,,∵DB⊥,DB⊥AC,, ∴DB⊥平面,而平面 ∴DB⊥. 设正方体棱长为,则,.在Rt△中,.∵,∴. ∵OM∩DB=O,∴ ⊥平面MBD.考点:线面垂直的判定,运用勾股定理寻求线线垂直15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD. 证明:取AB的中点F,连结CF,DF. ∵,∴. ∵,∴. 又,∴平面CDF. ∵平面CDF,∴. 又,, ∴平面ABE,. ∵,,,∴ 平面BCD.考点:线面垂直的判定16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D 证明:连结AC ∴ AC为A1C在平面AC上的射影考点:线面垂直的判定,三垂线定理17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.证明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中点O,连AO、SO,则AO⊥BC,SO⊥BC,∴∠AOS为二面角的平面角,设SA=SB=SC=a,又∠BSC=90°,∴BC=a,SO=a,AO2=AC2-OC2=a2-a2=a2,∴SA2=AO2+OS2,∴∠AOS=90°,从而平面ABC⊥平面BSC.考点:面面垂直的判定(证二面角是直二面角) 展开更多...... 收起↑ 资源预览