资源简介 2021中考数学真题知识点分类汇编-四边形解答题1一.平行四边形的性质(共3小题)1.(2021 宁夏)如图,BD是 ABCD的对角线,∠BAD的平分线交BD于点E,∠BCD的平分线交BD于点F.求证:AE∥CF.2.(2021 青岛)如图,在 ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.3.(2021 桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.二.平行四边形的判定(共2小题)4.(2021 内江)如图,点A、D、C、B在同一条直线上,AC=BD,AE=BF,AE∥BF.求证:(1)△ADE≌△BCF;(2)四边形DECF是平行四边形.5.(2021 郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.三.平行四边形的判定与性质(共1小题)6.(2021 丹东)如图,在平行四边形ABCD中,点O是AD的中点,连接CO并延长交BA的延长线于点E,连接AC、DE.(1)求证:四边形ACDE是平行四边形;(2)若AB=AC,判断四边形ACDE的形状,并说明理由.四.菱形的性质(共2小题)7.(2021 济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.8.(2021 沈阳)如图,在菱形ABCD中,点M,N分别是边BC,DC上的点,BM=BC,DN=DC.连接AM,AN,延长AN交线段BC延长线于点E.(1)求证:△ABM≌△ADN;(2)若AD=4,则ME的长是 .五.菱形的判定(共3小题)9.(2021 淮安)已知:如图,在 ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.10.(2021 镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.11.(2021 鞍山)如图,在 ABCD中,G为BC边上一点,DG=DC,延长DG交AB的延长线于点E,过点A作AF∥ED交CD的延长线于点F.求证:四边形AEDF是菱形.六.菱形的判定与性质(共4小题)12.(2021 滨州)如图,矩形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD.(1)求证:四边形AOBE是菱形;(2)若∠AOB=60°,AC=4,求菱形AOBE的面积.13.(2021 巴中)如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.(1)求证:四边形ABED为菱形;(2)连接BD,当CE=5时,求BD的长.14.(2021 玉林)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF,AF.(1)求证:四边形DEBF是菱形;(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.15.(2021 盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件 后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.七.矩形的性质(共4小题)16.(2021 益阳)如图,在矩形ABCD中,已知AB=6,∠DBC=30°,求AC的长.17.(2021 雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,四边形ABCD是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.(1)求证:△OAF≌△DAB;(2)求的值.18.(2021 呼和浩特)如图,四边形ABCD是平行四边形,BE∥DF且分别交对角线AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的形状.(无需说明理由)19.(2021 贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.八.矩形的判定与性质(共1小题)20.(2021 西宁)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,△BOC≌△CEB.(1)求证:四边形OBEC是矩形;(2)若∠ABC=120°,AB=6,求矩形OBEC的周长.九.正方形的性质(共6小题)21.(2021 德州)如图,点E,F分别在正方形ABCD的边AB,AD上,且AE=DF,点G,H分别在边AB,BC上,且FG⊥EH,垂足为P.(1)求证:FG=EH;(2)若正方形ABCD边长为5,AE=2,tan∠AGF=,求PF的长度.22.(2021 牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F做FG⊥BC于点G,连接AC.易证:AC=(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF的长为 .23.(2021 梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.24.(2021 哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.25.(2021 福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.26.(2021 荆门)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)连接DF,若AB=3,BE=x,用含x的代数式表示DF的长.一十.正方形的判定(共1小题)27.(2021 兴安盟)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,EF与AD相交于点H.(1)求证:AD⊥EF;(2)△ABC满足什么条件时,四边形AEDF是正方形?说明理由.一十一.四边形综合题(共33小题)28.(2021 日照)问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①= ;②直线AE与DF所夹锐角的度数为 .(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为 .29.(2021 攀枝花)如图,在直角梯形ABCD中,∠A=∠B=90°,AB=12,BC=14,AD=9,线段BC上的点P从点B运动到点C,∠ADP的角平分线DQ交以DP为直径的圆M于点Q,连接PQ.(1)当点P不与点B重合时,求证:PQ平分∠BPD;(2)当圆M与直角梯形ABCD的边相切时,请直接写出此时BP的长度;(3)动点P从点B出发,运动到点C停止,求点Q所经过的路程.30.(2021 阿坝州)如图1,正方形ABCD的对角线AC,BD相交于点O,E是边BC上一点,连接DE交AC于点F,连接BF.(1)求证:△CBF≌△CDF;(2)如图2,过点F作DE的垂线,交BC的延长线于点G,交OB于点N.①求证:FB=FG;②若tan∠BDE=,ON=1,求CG的长.31.(2021 兰州)已知正方形ABCD,E,F为平面内两点.【探究建模】(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;【类比应用】(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.①(1)中的结论AE=CF还成立吗?请说明理由;②猜想并证明线段AE,CE,DE之间的数量关系.32.(2021 兰州)已知正方形ABCD,E,F为平面内两点.【探究建模】(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;【类比应用】(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;【拓展迁移】(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.33.(2021 青岛)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列问题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式;(3)当PQ=PM时,求t的值;(4)若PM与AD相交于点W,分别连接QW和EW.在运动过程中,是否存在某一时刻t,使∠AWE=∠QWD?若存在,求出t的值;若不存在,请说明理由.34.(2021 济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.35.(2021 镇江)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABCDEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.【活动】小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)【思考】如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ (填“是”或“不是”)L图形ABCDEF的面积平分线.【应用】在L图形ABCDEF形中,已知AB=4,BC=6.(1)如图4,CD=AF=1.①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 .(2)设=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 .36.(2021 盘锦)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连接NA,以NA,NF为邻边作 ANFG,连接DG,DN,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与DN的关系为 .(2)如图2,当0°<α<45°时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)在Rt△ECF的旋转过程中,当 ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=5时,连接GN,请直接写出GN的长.37.(2021 阜新)在图1中似乎包含了一些曲线,其实它们是由多条线段构成的.它不但漂亮,还蕴含着很多美妙的数学结论.如图,在正方形ABCD中,E,F分别是直线AB,BC上的点(E,F在直线AC的两侧),且AE=CF.(1)如图2,求证:DE=DF;(2)若直线AC与EF相交于点G,①如图3,求证:DG⊥EF;②设正方形ABCD的中心为O,∠CFE=α,用含α的式子表示∠DGO的度数(不必证明).38.(2021 南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.(1)求∠BCF的大小(用含α的式子表示);(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.39.(2021 广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.40.(2021 丹东)已知,在正方形ABCD中,点M、N为对角线AC上的两个动点,且∠MBN=45°,过点M、N分别作AB、BC的垂线相交于点E,垂足分别为F、G,设△AFM的面积为S1,△NGC的面积为S2,△MEN的面积为S3.(1)如图(1),当四边形EFBG为正方形时,①求证:△AFM≌△CGN;②求证:S3=S1+S2.(2)如图(2),当四边形EFBG为矩形时,写出S1,S2,S3三者之间的数量关系,并说明理由;(3)在(2)的条件下,若BG:GC=m:n(m>n),请直接写出AF:FB的值.41.(2021 淄博)已知:在正方形ABCD的边BC上任取一点F,连接AF,一条与AF垂直的直线l(垂足为点P)沿AF方向,从点A开始向下平移,交边AB于点E.(1)当直线l经过正方形ABCD的顶点D时,如图1所示.求证:AE=BF;(2)当直线l经过AF的中点时,与对角线BD交于点Q,连接FQ,如图2所示.求∠AFQ的度数;(3)直线l继续向下平移,当点P恰好落在对角线BD上时,交边CD于点G,如图3所示.设AB=2,BF=x,DG=y,求y与x之间的关系式.42.(2021 徐州)如图1,正方形ABCD的边长为4,点P在边AD上(P不与 A、D重合),连接PB、PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF,连接EF、EA、FD.(1)求证:①△PDF的面积S=PD2;②EA=FD;(2)如图2,EA、FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.43.(2021 鄂尔多斯)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM= cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.44.(2021 黔东南州)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图①,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC;【拓展迁移】(2)如图②,若∠BAD=120°,∠ABC+∠ADC=180°.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.45.(2021 烟台)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是 ,位置关系是 ;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.46.(2021 本溪)在 ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点F,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.47.(2021 枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.48.(2021 吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.49.(2021 吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.50.(2021 长春)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF= 度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF= 度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为 .51.(2021 绥化)如图所示,四边形ABCD为正方形,在△ECH中,∠ECH=90°,CE=CH,HE的延长线与CD的延长线交于点F,点D、B、H在同一条直线上.(1)求证:△CDE≌△CBH;(2)当时,求的值;(3)当HB=3,HG=4时,求sin∠CFE的值.52.(2021 贵阳)(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).53.(2021 齐齐哈尔)综合与实践数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF= °,写出图中两个等腰三角形: (不需要添加字母);转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为 ;(3)连接正方形对角线BD,若图2中的∠PAQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则= ;剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.(4)求证:BM2+DN2=MN2.54.(2021 广西)如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.55.(2021 海南)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF于点G,连接HB,HC.①求证:HD=HB;②若DK HC=,求HE的长.56.(2021 无锡)已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF,①当m=时,求线段CF的长;②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.57.(2021 广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.58.(2021 广西)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC AE,S△DBC=BC DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.59.(2021 黑龙江)如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;(3)当点F落在线段OB上时,坐标平面内是否存在一点P,使以M、A、O、P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.60.(2021 衢州)【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).参考答案与试题解析一.平行四边形的性质(共3小题)1.(2021 宁夏)如图,BD是 ABCD的对角线,∠BAD的平分线交BD于点E,∠BCD的平分线交BD于点F.求证:AE∥CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAD=∠BCD.∴∠ADB=∠CBD.∵∠BAD、∠BCD的平分线分别交对角线BD于点E、F,∴∠EAD=∠BAD,∠FCB=∠BCD,∴∠EAD=∠FCB.在△AED和△CFB中,,∴△AED≌△CFB(ASA),∴∠AED=∠CFB,∴AE∥CF.2.(2021 青岛)如图,在 ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE=∠CBE,∵E为CD边的中点,∴DE=CE,在△BCE和△FDE中,,∴△BCE≌△FDE(AAS);(2)解:四边形AEFG是矩形,理由如下:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AFB=∠FBC,由(1)得:△BCE≌△FDE,∴BC=FD,BE=FE,∴FD=AD,∵GD=DE,∴四边形AEFG是平行四边形,∵BF平分∠ABC,∴∠FBC=∠ABF,∴∠AFB=∠ABF,∴AF=AB,∵BE=FE,∴AE⊥FE,∴∠AEF=90°,∴平行四边形AEFG是矩形.3.(2021 桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2;(2)∵点O是BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS).二.平行四边形的判定(共2小题)4.(2021 内江)如图,点A、D、C、B在同一条直线上,AC=BD,AE=BF,AE∥BF.求证:(1)△ADE≌△BCF;(2)四边形DECF是平行四边形.【解答】证明:(1)∵AC=BD,∴AC﹣CD=BD﹣CD,即AD=BC,∵AE∥BF,∴∠A=∠B,在△ADE与△BCF中,,∴△ADE≌△BCF(SAS);(2)由(1)得:△ADE≌△BCF,∴DE=CF,∠ADE=∠BCF,∴∠EDC=∠FCD,∴DE∥CF,∴四边形DECF是平行四边形.5.(2021 郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.【解答】证明:在△BEA和△DFC中,∴△BEA≌△DFC(SSS),∴∠EAB=∠FCD,∴∠BAC=∠DCA,∴AB∥DC,∵AB=DC,∴四边形ABCD是平行四边形.三.平行四边形的判定与性质(共1小题)6.(2021 丹东)如图,在平行四边形ABCD中,点O是AD的中点,连接CO并延长交BA的延长线于点E,连接AC、DE.(1)求证:四边形ACDE是平行四边形;(2)若AB=AC,判断四边形ACDE的形状,并说明理由.【解答】(1)证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BEC=∠DCE,∵点O是边AD的中点,∴AO=DO,在△AEO和△DCO中,,∴△AEO≌△DCO(AAS),∴AE=CD,∵AE∥DC,∴四边形ACDE是平行四边形;(2)解:四边形ACDE是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,∵AB=AC,∴CD=AC,∴四边形ACDE是菱形.四.菱形的性质(共2小题)7.(2021 济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,又∵∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.8.(2021 沈阳)如图,在菱形ABCD中,点M,N分别是边BC,DC上的点,BM=BC,DN=DC.连接AM,AN,延长AN交线段BC延长线于点E.(1)求证:△ABM≌△ADN;(2)若AD=4,则ME的长是 .【解答】解:(1)证明:∵四边形ABCD为菱形,∴AB=AD=BC=CD,∠B=∠D,∵BM=BC,DN=DC,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN(SAS),(2)∵四边形ABCD为菱形,∴AD∥CE,∴∠DAN=∠CEN,∵∠AND=∠CNE,∴△AND∽△ENC,∴=,∵DN=DC,∴==,∴=,∴CE=,∵BM=BC,∴MC=BC=1,∴ME=MC+CE=,故答案为:.五.菱形的判定(共3小题)9.(2021 淮安)已知:如图,在 ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.10.(2021 镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,∠1=30°,∠2=20°,当∠ABE= 10 °时,四边形BFDE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,∴∠1=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠ABE=10°时,四边形BFDE是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,AE=CF,∴BF=DE,∴四边形BFDE是平行四边形,∵∠1=30°,∠2=20°,∴∠ABD=∠1﹣∠2=10°,∵∠ABE=10°,∴∠DBE=20°,∴∠DBE=∠2=20°,∴BE=DE,∴平行四边形BFDE是菱形,故答案为10.11.(2021 鞍山)如图,在 ABCD中,G为BC边上一点,DG=DC,延长DG交AB的延长线于点E,过点A作AF∥ED交CD的延长线于点F.求证:四边形AEDF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴∠BAD=∠C,AD∥BC,AB∥CD,∵AF∥ED,∴四边形AEDF是平行四边形,∵AD∥BC,∴∠DGC=∠ADE,∵DG=DC,∴∠DGC=∠C,∴∠BAD=∠ADE,∴AE=DE,∴平行四边形AEDF是菱形.六.菱形的判定与性质(共4小题)12.(2021 滨州)如图,矩形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD.(1)求证:四边形AOBE是菱形;(2)若∠AOB=60°,AC=4,求菱形AOBE的面积.【解答】(1)证明:∵BE∥AC,AE∥BD,∴四边形AOBE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB,∴四边形AOBE是菱形;(2)解:作BF⊥OA于点F,∵四边形ABCD是矩形,AC=4,∴AC=BD=4,OA=OC=AC,OB=OD=BD,∴OA=OB=2,∵∠AOB=60°,∴BF=OB sin∠AOB=2×=,∴菱形AOBE的面积是:OA BF=2×=2.13.(2021 巴中)如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.(1)求证:四边形ABED为菱形;(2)连接BD,当CE=5时,求BD的长.【解答】证明:(1)连接BD,根据题意得出AM为BD的线段垂直平分线,即BD⊥AE,∵AD∥BC,AB=AD=CD=BC,∴∠ADB=∠DBE,∠ABD=∠ADB,∴∠ABD=∠DBE,∵BD⊥AE,∴AB=BE,∴AD=AB=BE=DE,∴四边形ABED为菱形;方法二:设AE与BD的交点为O,∴AM为BD的线段垂直平分线,∴BO=DO,由平行可得∠DAO=∠BEO,∵∠AOD=∠EOB,∴△AOD≌△EOB(AAS),∴AO=EO,∴四边形ABED是平行四边形,∵AE⊥BD,∴平行四边形ABED是菱形;(2)∵AB=AD=CD=BC,BE=AD,∴E是BC的中点,∵DE=BE=CE=CD=5,∴△BDC是直角三角形,∵2DC=BC,∴△BDC是含30°的直角三角形,∴BD=CD=5.14.(2021 玉林)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF,AF.(1)求证:四边形DEBF是菱形;(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠CDB,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵EF⊥BD,∴四边形DEBF是菱形;(2)过点F作FG⊥AB于点G,如图,∵AD∥EF,EF⊥BD,∴∠ADB=90°,∴在Rt△ABD中,AD2+BD2=AB2,∵AD+AB=12,BD=4,∴AD2+(4)2=(12﹣AD)2,解得AD=4,AB=8,∴sin∠ABD=,∴∠ABD=30°,∵四边形DEBF是菱形,∴∠EBF=2∠ABD=60°,∴△BEF是等边三角形,∵OB=OD,EF∥AD,∴AE=BE=4,∵FG⊥BE,∴EG=BG=2,在Rt△BGF中,BF=4,BG=2,根据勾股定理得,FG=,在Rt△AGF中,AG=6,根据勾股定理得,AF===4.15.(2021 盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件 ② 后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.【解答】解:(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,根据三角形中位线定理,∴DE∥AC,且DE==AF.即DE∥AF,DE=AF,∴四边形ADEF为平行四边形.(2)证明:选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠FAE,又∵ADEF为平行四边形,∴EF∥DA,∴∠DAE=∠AEF,∴∠FAE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.选③AB=AC,∵EF∥AB且EF=,DE∥AC且DE=,又∵AB=AC,∴EF=DE,∴平行四边形ADEF为菱形.七.矩形的性质(共4小题)16.(2021 益阳)如图,在矩形ABCD中,已知AB=6,∠DBC=30°,求AC的长.【解答】解:∵四边形ABCD是矩形,∴CD=AB=6,AC=BD,∠BCD=90°,又∵∠DBC=30°,∴BD=2CD=2×6=12,∴AC=12.17.(2021 雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,四边形ABCD是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.(1)求证:△OAF≌△DAB;(2)求的值.【解答】解:(1)证明:∵四边形ABCD是矩形,∴BE=DE,∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠OEB=90°,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵△OAD为等腰直角三角形,∴AO=AD,∠OAD=90°,∴∠OAD=∠BAD,在△AOF和△ABD中,,∴△OAF≌△DAB(ASA),(2)由(1)得,△OAF≌△DAB,∴AF=AB,连接BF,如图,∴BF=AF,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=AF,∴=.18.(2021 呼和浩特)如图,四边形ABCD是平行四边形,BE∥DF且分别交对角线AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的形状.(无需说明理由)【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEC=∠DFA,∴180°﹣∠BEC=180°﹣∠DFA,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),(2)连接ED,BF,BD,由(1)知△ABE≌△CDF,∴BE=DF,∵BE∥DF,∴四边形BEDF是平行四边形,1°当四边形ABCD是矩形时,四边形BEDF是平行四边形,2°当四边形ABCD是菱形时,∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥BD,∴四边形BEDF是菱形.19.(2021 贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.八.矩形的判定与性质(共1小题)20.(2021 西宁)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,△BOC≌△CEB.(1)求证:四边形OBEC是矩形;(2)若∠ABC=120°,AB=6,求矩形OBEC的周长.【解答】(1)证明:∵△BOC≌△CEB,∴OB=EC,OC=EB,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形;(2)解:∵四边形ABCD是菱形,AB=6,∠ABC=120°,∴AC⊥BD,BC=AB=6,∠DBC=∠ABC=60°,∴∠BOC=90°,∴∠OCB=30°,∴OB=BC=3,∴OC===3,∴矩形OBEC的周长=2(3+3)=6+6.九.正方形的性质(共6小题)21.(2021 德州)如图,点E,F分别在正方形ABCD的边AB,AD上,且AE=DF,点G,H分别在边AB,BC上,且FG⊥EH,垂足为P.(1)求证:FG=EH;(2)若正方形ABCD边长为5,AE=2,tan∠AGF=,求PF的长度.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠A=∠B=90°,∴∠AGF+∠AFG=90°,∵FG⊥EH,∴∠AGF+∠GEP=90°,∴∠AFG=∠GEP=∠BEH,∵AE=DF,∴AD﹣DF=AB﹣AE,即AF=BE,在△AFG和△BEH中,,∴△AFG≌△BEH(ASA),∴FG=EH;(2)解:∵AD=5,AE=DF=2,∴AF=5﹣2=3,在Rt△AFG中,tan∠AGF=,即=,∴AG=4,∴EG=2,在Rt△AFG中,FG===5,∵∠A=∠EPG=90°,∠AGF=∠PGE,∴△AFG∽△PEG,∴=,即=,∴PG=,∴PF=FG﹣PG=5﹣=.22.(2021 牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F做FG⊥BC于点G,连接AC.易证:AC=(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF的长为 6或6 .【解答】解:(1)如图2中,结论:AC=(FG+EC).理由:在AB上截取BM=BE,连接EM,∵四边形ABCD是正方形,∴∠B=∠BCD=90°,AB=BC,∴∠DCG=90°,∠EAM+∠AEB=90°,∵BM=BE,∴AB﹣BM=BC﹣BE,∠BME=∠BEM=45°,∴AM=EC,∠AME=135°,∵CF平分∠DCG,∴∠FCG=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEF=90°,∴∠FEC+∠AEB=90°,∴∠EAM=∠FEC,∴在△AEM和△EFC中,,∴△AEM≌△EFC(ASA),∴EM=CF,∵EM=BE,CF=FG,∴BE=FG,∵AC=BC=(BE+EC),∴AC=(FG+EC).如图3中,结论:AC=(FG﹣EC).(2)如图1中,当∠BAE=30°时,∵正方形的面积为27,∴AB=3,∠B=90°,∴BE=AB tan30°=3×=3,∴AE=2BE=6,∵△AEM≌△EFC∴AE=EF=6,∴AF=6,如图3中,当∠AEB=30°时,同法可得AE=EF=2AB=6,∴AF=AE=6,综上所述,AF的长为6或6.23.(2021 梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.【解答】(1)证明:∵AE⊥BF,∠ABE=90°,∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,∴∠EAB=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF;(2)∵∠EAB=∠CBF,∴∠GAE=∠PBH,∵PH⊥GP,∴∠GPH=90°,∵∠APB=90°,∴∠GPA+∠APH=∠APH+∠HPB,∴∠GPA=∠HPB,∴△GPA∽△HPB,∴,∵tan∠EAB=,∵BE=BC,∴=3,∵G为AD的中点,∴AG=3,∴HB=1,∴AH=5,∴GH==.24.(2021 哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.【解答】证明:(1)∵四边形ABCD是正方形,∴BC=CD=AD=AB,∠BCD=∠ADC=90°,∵BM⊥CE,∴∠HMC=∠ADC=90°,∴∠H+∠HCM=90°=∠E+∠ECD,∴∠H=∠E,在△EDC和△HCB中,,∴△EDC≌△HCB(AAS),∴CE=BH;(2)△BCG,△DCF,△DHF,△ABF,理由如下:∵AE=AB,∴AE=BC=AD=CD,∵△EDC≌△HCB,∴ED=HC,∵AD=CD,∴AE=HD=BC=AB,在△AEG和△BCG中,,∴△AEG≌△BCG(AAS),∴AG=BG=AB,同理可证△AFB≌△DFH,∴AF=DF=AD,∴AG=AF=DF,在△AEG和△ABF中,,∴△AEG≌△ABF(SAS),同理可证△AEG≌△DHF,△AEG≌△DCF.25.(2021 福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.【解答】证明:(1)如图,设AG与DE的交点为O,连接GF,∵点A关于DE的对称点为A′,∴AO=A'O,AA'⊥DE,∵E,F为边AB上的两个三等分点,∴AE=EF=BF,∴OE是△AA'F的中位线,∴DE∥A'F;(2)∵AA'⊥DE,∴∠AOE=90°=∠DAE=∠ABG,∴∠ADE+∠DEA=90°=∠DEA+∠EAO,∴∠ADE=∠EAO,在△ADE和△BAG中,,∴△ADE≌△BAG(ASA),∴AE=BG,∴BF=BG,∴∠GFB=∠FGB=45°,∵∠FA'G=∠FBG=90°,∴点F,点B,点G,点A'四点共圆,∴∠GA'B=∠GFB=45°;(3)设AE=EF=BF=BG=a,∴AD=BC=3a,FG=a,∴CG=2a,在Rt△ADE中,DE===a=AG,∵sin∠EAO=sin∠ADE,∴,∴,∴OE=a,∴AO===a=A'O,∴A'G=a,∵AO=A'O,AE=EF,∴A'F=a=a,∵∠FA'G=∠FBG=90°,∴∠A'FB+∠A'GB=180°,∵∠A'GC+∠A'GB=180°,∴∠A'FB=∠A'GC,又∵==,∴△A'FB∽△A'GC,∴,∴A′C=2A′B.26.(2021 荆门)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)连接DF,若AB=3,BE=x,用含x的代数式表示DF的长.【解答】(1)证明:∵正方形ABCD,∴∠B=90°,AB=BC,∵FH⊥BH,∴∠H=90°=∠B,∠EFH=90°﹣∠FEH,∵∠AEF=90°,∴∠AEB=90°﹣∠FEH,∴∠AEB=∠F,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS),∴EH=AB=BC,BE=FH,∴EH﹣EC=BC﹣EC,即CH=BE;(2)过F作FP⊥CD于P,如图,∵∠H=∠DCH=∠FPC=90°,∴四边形PCHF是矩形,由(1)知:BE=FH=CH,∴四边形PCHF是正方形,∴PF=CP=CH=BE=x,∵DC=AB=3,∴DP=DC﹣CP=3﹣x,Rt△DPF中,DF=,∴DF==.一十.正方形的判定(共1小题)27.(2021 兴安盟)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,EF与AD相交于点H.(1)求证:AD⊥EF;(2)△ABC满足什么条件时,四边形AEDF是正方形?说明理由.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△AED与△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∴AD⊥EF;(2)解:△ABC满足∠BAC=90°时,四边形AEDF是正方形,理由:∵∠AED=∠AFD=∠BAC=90°,∴四边形AEDF是矩形,∵EF⊥AD,∴矩形AEDF是正方形.一十一.四边形综合题(共33小题)28.(2021 日照)问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①= ;②直线AE与DF所夹锐角的度数为 30° .(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为 或 .【解答】解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD==,如图2,设AB与DF交于点O,AE与DF交于点H,∵△BEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴△FBD∽△EBA,∴=,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,故答案为:,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将△BEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵=,∴△ABE∽△DBF,∴=,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE=,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE===,∵∠DEA=30°,∴DG=DE=,由(2)可得:=,∴,∴AE=,∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.29.(2021 攀枝花)如图,在直角梯形ABCD中,∠A=∠B=90°,AB=12,BC=14,AD=9,线段BC上的点P从点B运动到点C,∠ADP的角平分线DQ交以DP为直径的圆M于点Q,连接PQ.(1)当点P不与点B重合时,求证:PQ平分∠BPD;(2)当圆M与直角梯形ABCD的边相切时,请直接写出此时BP的长度;(3)动点P从点B出发,运动到点C停止,求点Q所经过的路程.【解答】(1)证明:如图1中,∵PD是直径,∴∠PQD=90°,∴∠QDP+∠QPD=90°,∵AD∥BC,∴∠ADP+∠DPB=180°,∴∠ADQ+∠BPQ=90°,∵QD平分∠ADP,∴∠ADQ=∠QDP,∴∠QPD=∠BPQ,∴PQ平分∠BPD.(2)解:如图2﹣1中,当⊙M与AB相切时,连接QM.∵MQ=MP,∴∠MQP=∠MPQ,∵∠QPM=∠QPB,∴∠MQP=∠QPB,∴MQ∥PB,∵DM=PM,∴AQ=QB=6,∵∠A=∠B=∠DQP=90°,∴∠AQD+∠BQP=90°,∠BQP+∠QPB=90°,∴∠AQD=∠BPQ,∴△DAQ∽△QBP,∴=,∴=,∴BP=4.如图2﹣2中,当⊙M与BC(AD)相切时,四边形ABPD是矩形,∴BP=AD=9,AB=PD=12,CD===13,综上所述,满足条件的BP的值为4或9.(3)解:如图3中,由(2)可知点Q在梯形ABCD的中位线TK所在的直线上,当点P与B重合时,BD===15,∵DM=MB,∴MQ′=BD=,∵DK=KC,MD=MB,∴MK=BC=7,∴KQ′=MQ′+MK=+7=,当点P与C重合时,KQ=CD=,∴QQ′=Q′K﹣KQ=﹣=8.30.(2021 阿坝州)如图1,正方形ABCD的对角线AC,BD相交于点O,E是边BC上一点,连接DE交AC于点F,连接BF.(1)求证:△CBF≌△CDF;(2)如图2,过点F作DE的垂线,交BC的延长线于点G,交OB于点N.①求证:FB=FG;②若tan∠BDE=,ON=1,求CG的长.【解答】证明:(1)∵四边形ABCD是正方形,∴CB=CD,∠BCF=∠DCF=45°,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS);(2)①∵FG⊥DE,∴∠DFG=90°,∴∠G+∠FEG=90°,∵∠CDE+∠CED=90°,∴∠CDE=∠G,由(1)知△CBF≌△CDF,∴∠CBF=∠CDF,∴∠CBF=∠G,∴FB=FG;②∵∠FDN+∠FND=90°,∠OFN+∠FND=90°,∴∠FDN=∠OFN,∴tan∠OFN=tan∠BDE=,∴OF=2ON=2,OC=OD=2OF=4,∴CF=OC﹣OF=2,作FH⊥BG于H,则CH=,∵OC=4,∴BC=OC=4,∴BH=BC﹣CH=3,由①知BF=FG,且FH⊥BC,∴GH=BH=3,∴CG=GH﹣CH=3﹣=2.31.(2021 兰州)已知正方形ABCD,E,F为平面内两点.【探究建模】(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;【类比应用】(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.①(1)中的结论AE=CF还成立吗?请说明理由;②猜想并证明线段AE,CE,DE之间的数量关系.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴DA=DC,∠A=∠ADC=∠DCB=90°,∵DE⊥DF,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.(2)①(1)中的结论AE=CF还成立.证明:如图2中,∵四边形ABCD是正方形,∴DA=DC,∠DAB=∠ADC=∠DCB=∠DCF=90°,∵DE⊥DF,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,∵AE⊥EF,∴∠AEF=90°,∴∠DAE+∠DCE=180°,∵∠DCF+∠DCE=180°,∴∠DAE=∠DCF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.②解:结论:EA+EC=DE.理由:如图2中,连接AC交DE于点O,过点D作DK⊥EC于点K,DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形,△DEF是等腰直角三角形,∴∠DAO=∠OEC=45°,∵∠AOD=∠EOC,∴△AOD∽△EOC,∴,∴.∵∠AOE=∠DOC,∴△AOE∽△DOC,∴∠AEO=∠DCO=45°,∴∠DEJ=∠DEK,∵∠J=∠DKE=90°,ED=ED,∴△EDJ≌△EDK(AAS),∴EJ=EK,DJ=DK,∵∠J=∠DKC=90°,DJ=DK,DA=DC,∴Rt△DJA≌Rt△DKC(HL),∴AJ=CK,∴EA+EC=EJ﹣AJ+EK+CK=2EJ,∵DE=EJ,∴EA+EC=DE.32.(2021 兰州)已知正方形ABCD,E,F为平面内两点.【探究建模】(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;【类比应用】(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;【拓展迁移】(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴DA=DC,∠A=∠ADC=∠DCB=∠DCF=90°,∵DE⊥DF,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.(2)解:猜想:EA+EC=DE.理由:如图2中,∵四边形ABCD是正方形,∴DA=DC,∠ADC=90°,∵DE⊥DF,AE⊥EF,∴∠AEF=∠EDF=90°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,∵∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠DCF+∠DCE=180°,∴∠DAE=∠DCF,∴△DAE≌△DCF(AAS),∴AE=CF,DE=DF,∴EF=DE,∵AE+EC=EC+CF=EF,∴EA+EC=DE.(3)解:如图3中,连接AC,取AC的中点O,连接OE,OD.∵四边形ABCD是正方形,AE⊥EC,∴∠AEC=∠ADC=90°,∵OA=OC,∴OD=OA=OC=OE,∴A,E,C,D四点共圆,∴∠AED=∠ACD=45°,∴∠AED=∠DEC=45°,由(2)可知,AE+EC=DE,∵AE⊥AF,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴AE=AF=,∴EF=AE=2,∵DF=3,∴DE=5,∴+EC=5,∴EC=4.33.(2021 青岛)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列问题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式;(3)当PQ=PM时,求t的值;(4)若PM与AD相交于点W,分别连接QW和EW.在运动过程中,是否存在某一时刻t,使∠AWE=∠QWD?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)如图1中,由题意,BP=DQ=t(cm),在矩形ABCD中,AB=8cm,BC=AD=6cm,∠BAD=90°,∴BD===10(cm),∵PQ⊥BD,∴∠PQB=90°,∴cos∠PBQ==,∴=,∴t=,答:当PQ⊥BD时,t的值为.(2)如图2中,过点P作PO⊥QM于点O.在等腰Rt△ADE中,AD=AE=6,∠EAD=90°,∴BE=AB+AE=8+6=14(cm),∵QM∥BE,∴∠POH=∠PAH=∠OHA=90°,∴四边形OPAH是矩形,∴PO=AH,∵QM∥EB,∴∠DQM=∠DBE,∵∠QDM=∠QDM,∴△DQM∽△DBE,∴=,∴=,∴QM=t(cm),∵QN∥BC,∴∠DNQ=∠C=90°,∵∠CDB=∠CDB,∴△NDQ∽△CDB,∴=,∴==,∴DN=t(cm),QN=t(cm).∴S=S四边形DQPM+S△DNQ=(PQ+DH) QM+QN ND=(HA+DH) QM+QN ND= AD QM+QN ND=×6×t+×t×t=t2+t.∴S与t之间的函数关系式为:S=t2+t(0<t<8).(3)如图3中,延长NQ交BE于点G.由(1)(2)可知DC∥AB,∠DNQ=90°,PO⊥QM,∵∠DNQ=∠NGA=∠BAD=90°,∴四边形NGAD是矩形,∴BG=CN=(8﹣t)(cm),同理可证,四边形PGQO是矩形,∴QO=PG=BP﹣CN=t﹣(8﹣t)=(t﹣8)(cm),∴×t=t﹣8,∴t=,答:当PQ=PM时,t的值为.(4)存在.理由:如图4中,由(2)得DN=t,QM=t,∵QN∥BC,QM∥BE,∴∠DNQ=∠NQH=∠NDH=90°,∴四边形NQHD是矩形,∴QH=DN=t,且∠QHD=90°,∴∠QHA=∠DAE=90°,∵∠AWE=∠QWD,∴△HQW∽△AEW,同理可证△MHW∽△PAW,∴=,=,∴=,∴=,∴t=,经检验,t=是分式方程的解,答:在运动过程中,t的值为时,∠AWE=∠QWD.34.(2021 济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CFE=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴= =×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.35.(2021 镇江)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABCDEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.【活动】小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)【思考】如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ 是 (填“是”或“不是”)L图形ABCDEF的面积平分线.【应用】在L图形ABCDEF形中,已知AB=4,BC=6.(1)如图4,CD=AF=1.①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 .(2)设=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 t> .【解答】解:【活动】如图1,直线O1O2是该L图形的面积平分线;【思考】如图2,∵∠A=∠B=90°,∴AF∥BC,∴∠NQO=∠MPO,∵点O是MN的中点,∴ON=OM,在△OQN和△OPM中,,∴△OQN≌△OPM(AAS),∴S△OQN=S△OPM,∵S梯形ABMN=SMNFEDC,∴S梯形ABMN﹣S△OPM=SMNFEDC﹣S△OQN,即SABPON=SCDEFQOM,∴SABPON+S△OQN=SCDEFQOM+S△OPM,即S梯形ABPQ=SCDEFQP,∴直线PQ是L图形ABCDEF的面积平分线.故答案为:是;【应用】(1)①如图3,当P与B重合时,PQ最大,过点Q作QH⊥BC于H,L图形ABCDEF的面积=4×6﹣(4﹣1)×(6﹣1)=9,∵PQ是L图形ABCDEF的面积平分线,∴梯形CDQP的面积=×(DQ+BC)×CD=,即×(DQ+6)×1=,∴DQ=CH=3,∴PH=6﹣3=3,∵QH=CD=1,由勾股定理得:PQ==;即PQ长的最大值是;②如图4,当GH⊥AB时GH最短,过点E作EM⊥AB于M,设BG=x,则MG=1﹣x,根据上下两部分面积相等可知,6x=(4﹣1)×1+(1﹣x)×6,解得x=,即BG=;故答案为:;(2)∵=t(t>0),∴CD=tAF,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,如图5,直线DE将图形分成上下两个矩形,当上矩形面积小于下矩形面积时,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,延长DE交AB于G,延长FE交BC于H,只需要满足S矩形AGEF<S矩形EHCD,即S矩形ABHF<S矩形CDGB,∴6CD>4AF,∴>,∴t>.故答案为:t>.36.(2021 盘锦)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,N为EF的中点,连接NA,以NA,NF为邻边作 ANFG,连接DG,DN,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与DN的关系为 DG⊥DN,DG=DN .(2)如图2,当0°<α<45°时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)在Rt△ECF的旋转过程中,当 ANFG的顶点G落在正方形ABCD的边上,且AB=12,EC=5时,连接GN,请直接写出GN的长.【解答】解:(1)如图1中,连接AE,AF,CN.∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠B=∠ADF=90°,∵CE=CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∵EN=NF,∴AN⊥EF,CN=NF=EN,∵CE=CF,EN=NF,∴CN⊥EF,∴A,N,C共线,∵四边形ANFG是平行四边形,∠ANF=90°,∴四边形ANFG是矩形,∴AG=FN=CN,∠GAN=90°,∵∠DCA=∠DAC=45°,∴∠GAD=∠NCD=45°,∴△GAD≌△NCD(SAS),∴DG=DN,∠ADG=∠CDN,∴∠GDN=∠ADC=90°,∴DG⊥DN,DG=DN.故答案为:DG⊥DN,DG=DN;(2)结论成立.理由:如图2中,作直线EF交AD于J,交BC于K,连接CN.∵四边形ANFG是平行四边形,∴AG∥KJ,AG=NF,∴∠DAG=∠J,∵AJ∥BC,∴∠J=∠CKE,∵CE=CF,EN=NF,∴CN=NE=NF=AG,CN⊥EF,∴∠ECN=∠CEN=45°,∴∠EKC+∠ECK=∠ECK+∠DCN,∴∠DCN=∠CKE,∴∠GAD=∠DCN,∵GA=CN,AD=CD,∴△GAD≌△NCD(SAS),∴DG=DN,∠ADG=∠CDN,∴∠GDN=∠ADC=90°,∴DG⊥DN,DG=DN;解法二:连接CN并延长与直线AG 交于点M,与AD交于点P,∵△AMP与△CDP都是直角三角形,∴∠AMP=∠DCP=90°,∵∠APM=∠DPC,∴∠GAD=∠DCP,∵GA=CN,AD=CD,∴△GAD≌△NCD(SAS),∴DG=DN,∠ADG=∠CDN,∴∠GDN=∠ADC=90°,∴DG⊥DN,DG=DN;(3)如图3﹣1中,当点G落在AD上时,∵△ECN是等腰直角三角形,EC=5,∴EN=CN=NF=5,∵四边形ANFG是平行四边形,∴AG=NF=5,∵AD=CD=12,∴DG=DN=7,∴GN=7.如图3﹣2中,当点G落在AB上时,同法可证,CN=5,∵△DAG≌△DCN,∴AG=CN=5,∴BG=AB﹣AG=7,BN=BC+CN=17,∴GN===13.综上所述,满足条件的GN的值为7或13.37.(2021 阜新)在图1中似乎包含了一些曲线,其实它们是由多条线段构成的.它不但漂亮,还蕴含着很多美妙的数学结论.如图,在正方形ABCD中,E,F分别是直线AB,BC上的点(E,F在直线AC的两侧),且AE=CF.(1)如图2,求证:DE=DF;(2)若直线AC与EF相交于点G,①如图3,求证:DG⊥EF;②设正方形ABCD的中心为O,∠CFE=α,用含α的式子表示∠DGO的度数(不必证明).【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠DAB=90°.∴∠DAE=∠C=90°,又∵AE=CF,∴△DAE≌△DCF(SAS),∴DE=DF;(2)①证明:作EH∥BC交AC于点H,如图3.∴∠EHG=∠FCG.∵四边形ABCD是正方形,∴AB=BC,∠B=90°.∴∠BAC=∠BCA=45°∵EH∥BC,∴∠AHE=∠ACB=45°.∴∠BAH=∠AHE.∴AE=EH,∵AE=CF,∴EH=CF.又∵∠EGH=∠FGC,∴△EHG≌△FCG(AAS),∴EG=GF.由(1)同理可得 DE=DF,∴DG⊥EF;②解:Ⅰ当点E在线段AB上时,∵四边形ABCD是正方形,∴∠BCD=90°,∠ACD=45°,∵DE=DF,DG⊥EF,∴∠GDF=∠2=45°,∴∠1=45°﹣∠3,∵∠BCD=90°,∴∠3+∠2+∠CFE=90°,∴∠3=90°﹣45°﹣α=45°﹣α,∴∠1=45°﹣∠3=α,∵∠DGO=∠ACD+∠1,∴∠DGO=α+45°;Ⅱ当点E在线段BA的延长线上时,∵四边形ABCD是正方形,∴∠BCD=90°,∠BDC=45°,∵DE=DF,DG⊥EF,∴∠GDF=∠GFD=∠BDC=45°,∴∠1=∠2,∵∠BCD=90°,∴∠3+∠2=90°,∵∠3=∠CFE﹣∠GFD=α﹣45°,∴∠2=90°﹣α+45°=135°﹣α,∴∠1=∠2=135°﹣α,∴∠DGO=90°﹣∠1=α﹣45°;Ⅲ当点E在线段AB的延长线上时,∵四边形ABCD是正方形,∴AB∥CD,∠ACD=45°,∠ABC=90°,∴∠2=∠3,∵DE=DF,DG⊥EF,∴∠GDE=∠DEG=45°,∴∠1+∠3=45°,∵∠ABC=90°,∴∠CFE+∠2+∠DEG=90°,∴∠CFE+∠2=45°,∴∠CFE=∠1=α,∴∠DGO+∠1=∠ACD=45°,∴∠DGO=45°﹣α.综上:∠DGO=α+45°或∠DGO=α﹣45°或∠DGO=45°﹣α.38.(2021 南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.(1)求∠BCF的大小(用含α的式子表示);(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.【解答】解:(1)如图1,连接BF,∵点A关于直线BE的对称点为点F,∴AB=BF,BE⊥AF,∴∠ABE=∠EBF=α,∴∠CBF=90°﹣2α,∵四边形ABCD是正方形,∴AB=BC,∴BF=BC,∴∠BCF==45°+α;(2)DG∥CF,理由如下:如图2,连接AC,∵四边形ABCD是正方形,∴∠ACD=45°,∠ADC=90°,∵CG⊥AF,∴∠CGA=∠ADC=90°,∴点A,点D,点G,点C四点共圆,∴∠AGD=∠ACD=45°,∵AB=BF,∠ABF=2α,∴∠AFB==90°﹣α,∴∠AFC=135°,∴∠CFG=45°=∠DGA,∴DG∥CF;(3)∵BE>AB,∴BH>BF,∴BH≠BF;如图3,当BH=FH时,过点H作HN⊥BF于N,∵将△ABE绕点B顺时针旋转90°得到△CBH,∴△ABE≌△CBH,∠EBH=90°=∠ABC,∴AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,∴∠HBF=90°﹣α,∵BH=FH,HN⊥BF,∴BN=NF=BF=AB,∠BNH=90°=∠BAE,∴∠BHN=α,∴∠ABE=∠BHN,∴△ABE≌△NHB(ASA),∴BN=AE=AB,∴BE==AE,∴sinα==,当BF=FH时,∴∠FBH=∠FHB=90°﹣α,∴∠BFH=2α=∠ABF,∴AB∥FH,即点F与点C重合,则点E与点D重合,∵点E在边AD上(不与端点A,D重合),∴BF=FH不成立,综上所述:sinα的值为.39.(2021 广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥AB∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=FA=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF =CH +FH ,即(2+2m) =() +(3+m) ,整理得:3m +2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG =() +() =,∴AG=.∴G点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.40.(2021 丹东)已知,在正方形ABCD中,点M、N为对角线AC上的两个动点,且∠MBN=45°,过点M、N分别作AB、BC的垂线相交于点E,垂足分别为F、G,设△AFM的面积为S1,△NGC的面积为S2,△MEN的面积为S3.(1)如图(1),当四边形EFBG为正方形时,①求证:△AFM≌△CGN;②求证:S3=S1+S2.(2)如图(2),当四边形EFBG为矩形时,写出S1,S2,S3三者之间的数量关系,并说明理由;(3)在(2)的条件下,若BG:GC=m:n(m>n),请直接写出AF:FB的值.【解答】解:(1)①在正方形ABCD和正方形EFBG中,AB=CB,BF=BG,∠FAM=∠GCN=45°,∠AFM=∠CGN=90°,∴AB﹣BF=CB﹣BG,即AF=CG,∴△AFM≌△CGN(ASA)②证法1:如图1,连接BD,则BD过点E,且BD⊥AC,∠ABD=∠CBD=45°,由①知△AFM≌△CGN,∴AM=CN,∵∠BAM=∠BCN,AB=BC,∴△ABM≌△CBN(SAS),∴BM=BN,∠ABM=∠CBN,∵∠MBN=45°=∠ABD,∴∠FBM+∠MBO=∠MBO+∠OBN,∴∠FBM=∠OBN,∵∠BFM=∠BON=90°,∴△FBM≌△OBN(AAS),∴FM=ON,∵∠AFM=∠EON=90°,∠FAM=∠OEN=45°,∴△AFM≌△EON(AAS),同理△CGN≌△EOM(AAS),∴S△EOM=S△CGN,S△EON=S△AFM,∵S3=S△MEN=S△EOM+S△EON=S△CGN+S△AFM,∴S3=S1+S2.证法2:如图1′,将△BCN绕点B逆时针旋转90°得到△BAN′,连接N′F,则BN′=BN,AN′=CN,∠BAN′=∠BCN=45°,∠BFN′=∠BGN=90°,∵∠BFE=90°,∴∠BFN′+∠BFE=180°,即M、F、N′在同一条直线上,∵∠MBN=4°,∴∠CBN+∠ABM=45°,∴∠ABN′+∠ABM=45°=∠MBN,即∠MBN′=∠MBN,在△BMN′和△BMN中,,∴△BMN′≌△BMN(SAS),∴MN′=MN,∵∠MAN′=∠BAN′+∠BAC=45°+45°=90°,∴AM2+AN′2=MN′2,即AM2+CN2=MN2,∵△AMF和△CGN都是等腰直角三角形,∴∠AMF=∠CNG=45°,∴∠EMN=∠AMF=∠ENM=∠CNG=45°,∴△EMN是等腰直角三角形,∴S1=AM2,S2=CN2,S3=MN2,∴S1+S2=AM2+CN2=(AM2+CN2)=MN2,∴S3=S1+S2.(2)S3=S1+S2,理由如下:证法1:如图2,连接BD交AC于点O,∵四边形ABCD是正方形,四边形EFBG为矩形,∴BD⊥AC,∠BFM=∠BON=90°,∠ABD=∠CBD=45°,AC=BD=2OB,∵∠MBN=45°,∠FBM=∠OBN=45°﹣∠MBO,∴△FBM∽△OBN,∴,同理△BOM∽△BGN,∴,∴,∴OB2=BF BG,∵,S矩形EFBG=BF BG,′∴S矩形EFBG=S△ABC,∴S1+S2=S△ABC﹣S五边形MFBGN,S3=S矩形EFBG﹣S五边形MFBGN,∴S3=S1+S2.证法2:如图2′,将△BCN绕点B逆时针旋转90°得到△BAN′,连接N′M,则BN′=BN,AN′=CN,∠BAN′=∠BCN=45°,与(1)②同理可得:△BMN′≌△BMN(SAS),∴MN′=MN,∵∠MAN′=∠BAN′+∠BAC=45°+45°=90°,∴AM2+AN′2=MN′2,即AM2+CN2=MN2,∵△AMF和△CGN都是等腰直角三角形,∴∠AMF=∠CNG=45°,∴∠EMN=∠AMF=∠ENM=∠CNG=45°,∴△EMN是等腰直角三角形,∴S1=AM2,S2=CN2,S3=MN2,∴S1+S2=AM2+CN2=(AM2+CN2)=MN2,∴S3=S1+S2.证法3:如图2″,作△BMN的外接圆⊙O,则OM=ON=OB,∵∠MBN=45°,∴∠MON=90°,∵OM=ON,∴∠OMN=∠ONM=45°,延长MO交BC于H,设AF=b,CG=a,则BH=b,OH=a,∴a2+b2=OB2=ON2,∴S3=S1+S2.(3)解法1:根据题意可设BG=mx,GC=nx,AB=BC=(m+n)x,∴,即,∴BF===,∴,∴AF:BF=:=(m﹣n):(m+n).解法2:∵BG:GC=m:n(m>n),∴设BG=m,GC=n,∴AB=BC=m+n,设AF=x,则BF=m+n﹣x,∵△AMF、△CGN和△EMN都是等腰直角三角形,∴AM=AF=x,CN=n,MN=(m﹣x),∵AM2+CN2=MN2,∴(x)2+(n)2=[(m﹣x)]2,化简整理,得:x=,即AF=,∴BF=m+n﹣=,∴=:=×=.解法3:如图3,设BG=m,CG=n,AF=x,则OB=,ON=m﹣x,∴=m﹣x,∴x=,∴BF=m+n﹣x=,∴AF:BF=:=×=.41.(2021 淄博)已知:在正方形ABCD的边BC上任取一点F,连接AF,一条与AF垂直的直线l(垂足为点P)沿AF方向,从点A开始向下平移,交边AB于点E.(1)当直线l经过正方形ABCD的顶点D时,如图1所示.求证:AE=BF;(2)当直线l经过AF的中点时,与对角线BD交于点Q,连接FQ,如图2所示.求∠AFQ的度数;(3)直线l继续向下平移,当点P恰好落在对角线BD上时,交边CD于点G,如图3所示.设AB=2,BF=x,DG=y,求y与x之间的关系式.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AB=AD,∠B=∠BAD=90°,∵DE⊥AF,∴∠APD=90°,∴∠PAD+∠ADE=90°,∠PAD+∠BAF=90°,∴∠BAF=∠ADE,∴△ABF≌△DAE(ASA),∴BF=AE.(2)解:如图2中,连接AQ,CQ.∵四边形ABCD是正方形,∴BA=BC,∠ABQ=∠CBQ=45°,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),∴QA=QC,∠BAQ=∠QCB,∵EQ垂直平分线段AF,∴QA=QF,∴QC=QF,∴∠QFC=∠QCF,∴∠QFC=∠BAQ,∵∠QFC+∠BFQ=180°,∴∠BAQ+∠BFQ=180°,∴∠AQF+∠ABF=180°,∵∠ABF=90°,∴∠AQF=90°,∴∠AFQ=∠FAQ=45°.(3)解:过点E作ET⊥CD于T,则四边形BCTE是矩形.∴ET=BC,∠BET=∠AET=90°,∵四边形ABCD是正方形,∴AB=BC=ET,∠ABC=90°,∵AF⊥EG,∴∠APE=90°,∵∠AEP+∠BAF=90°,∠AEP+∠GET=90°,∴∠BAF=∠GET,∵∠ABF=∠ETG,AB=ET,∴△ABF≌△ETG(ASA),∴BF=GT=x,∵AD∥CB,DG∥BE,∴==,∴=,∴BE=TC=xy,∵GT=CG﹣CT,∴x=2﹣y﹣xy,∴y=(0≤x≤2).42.(2021 徐州)如图1,正方形ABCD的边长为4,点P在边AD上(P不与 A、D重合),连接PB、PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF,连接EF、EA、FD.(1)求证:①△PDF的面积S=PD2;②EA=FD;(2)如图2,EA、FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.【解答】(1)证明:如图1,作FG⊥AD,交AD的延长线于点G,作EH⊥AD,交DA的延长线于点H.①由旋转得,PF=CP,∠CPF=90°,∵四边形ABCD是正方形,∴∠PDC=90°,∵∠FPG+∠DPC=90°,∠PCD+∠DPC=90°,∴∠FPG=∠PCD,∵∠G=∠PDC=90°,∴△FPG≌△PCD(AAS),∴FG=PD,∴△PDF的面积S=PD FG=PD2.②由①得,△FPG≌△PCD,∴PD=FG,PG=CD=4,同理,△EPH≌△PBA,∴EH=AP,PH=BA=4,∵AH=4﹣AP=PD,∴AH=FG;∵AP=4﹣PD=DG,∴EH=DG;∵∠H=∠G=90°,∴△EAH≌△DFG(SAS),∴EA=FD.(2)如图2,在图1的基础上,作FL⊥EH于点L,则∠FLE=∠FLH=90°,∴四边形HLFG是矩形,∴LH=FG=AH,FL=GH=4+4=8;∵EH=PA,AH=PD,∴EH+AH=PA+PD=AD=4;设PD=m,EL=n,(m>0,n≥0),则LH=AH=m,∴n=4﹣2m;∵EF2=EL2+FL2=n2+82=n2+64,∴EF=,∴EF随n的增大而增大;由n=4﹣2m可知,n随m的增大而减小,当m=2时,n最小=0,此时,EF最小==8;若m=0,则n最大=4,此时,EF最大==4,∵点P不与点A、D重合,∴m>0,∴n<4,EF<4,∴EF的取值范围是8≤EF<,∴4≤EF<;∵∠ADM=∠GDF=∠HEA,∠DAM=∠HAE,∴∠ADM+∠DAM=∠HEA+∠HAE=90°,∴∠EMF=90°;∵N是EF的中点,∴MN=EF,∴MN的取值范围是4≤MN<.43.(2021 鄂尔多斯)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM= cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.【解答】解:(1)如图①,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由旋转得:CN=BM=1,∠ACN=∠B=45°,∠MAN=∠BAC=90°,AM=AN,∴∠MCN=∠ACB+∠ACN=45°+45°=90°,△AMN是等腰直角三角形,∵CM=2,∴MN==,∴AM=MN=(cm);故答案为:;(2)如图②,延长AB到E,使BE=DQ,连接CE,∵AB⊥BC,AD⊥CD,∴∠ADC=∠ABC=90°,∴∠CBE=∠CDQ=90°,在△CDQ和△CBE中,,∴△CDQ≌△CBE(SAS),∴∠DCQ=∠BCE,CQ=CE,∵∠PCB+∠QCD=∠PCQ,∴∠PCB+∠BCE=∠PCQ=∠PCE,在△QCP和△ECP中,,∴△QCP≌△ECP(SAS),∴PQ=PE,∴△APQ的周长=AQ+PQ+AP=AQ+PE+AP=AQ+BE+PB+AP=AQ+DQ+AB=2AB=2a;(3)如图③,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,连接BB′,延长BA,作B′E⊥BA于E,由旋转得:△BCD≌△B′AD,∴BD=B'D,∠BDB'=60°,∠CBD=∠AB'D,∴S四边形ABCD=S四边形BDB′A,△BDB'是等边三角形,∵∠ABC=75°,∠ADC=60°,∴∠BAB′=∠BDB'+∠AB'D+∠ABD=135°,∴∠B′AE=45°,∵B′A=BC=2,∴B′E=AE=,∴BE=AB+AE=2+=3,∴BB′==2,设等边三角形的高为h,则勾股定理得:h==,∴S四边形ABCD=S四边形BDB′A=S△BDB′﹣S△ABB′=×2×﹣××=5﹣2.44.(2021 黔东南州)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图①,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC;【拓展迁移】(2)如图②,若∠BAD=120°,∠ABC+∠ADC=180°.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.【解答】解:(1)证明:∵AC平分∠BAD,∠BAD=120°,∴∠DAC=∠BAC=60°∵∠ADC=∠ABC=90°∴∠ACD=∠ACB=30°,∴AD=,.∴AD+AB=AC,(2)①AD+AB=AC,理由:过点C分别作CE⊥AD于E,CF⊥AB于F.∵AC平分∠BAD,CE⊥AD于E,CF⊥AB,∴CF=CE∵∠ABC+∠ADC=180°,∠EDC+∠ADC=180°,∴∠FBC=∠EDC在△CED和△CFB中,,∴△CFB≌△CED(AAS),∴FB=DE,∴AD+AB=AD+FB+AF=AD+DE+AF=AE+AF,在四边形AFCE中,由(1)题知:AE+AF=AC,∴AD+AB=AC,②∵AC平分∠BAD,∠BAD=120°,∴∠DAC=∠BAC=60°,又∵AC=10∴CE=AC,∵CF=CE,AD+AB=AC,∴=.45.(2021 烟台)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是 DE=2AM ,位置关系是 DE⊥AM ;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE⊥AM.46.(2021 本溪)在 ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点F,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.【解答】解:(1)方法一:如图1,连接PB,PC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,由旋转知:EP=EB,∴△BPE是等边三角形,∴BP=EP,∠EBP=∠BPE=60°,∴∠CBP=∠ABC+∠EBP=120°,∵∠AEP=180°﹣∠BEP=120°,∴∠AEP=∠CBP,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴AE=BC,∴△APE≌△CPB(SAS),∴AP=CP,∠APE=∠CPB,∴∠APE+∠CPE=∠CPB+∠CPE,即∠APC=∠BPE=60°,∴△APC是等边三角形,∴AP=AC;方法二:如图1,延长PE交CD于点Q,连接AQ,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,∴PE∥BC∥AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在 ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AD=AE,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=α=∠BAD=×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°﹣∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=,∴AC====AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)方法一:由(1)知,BC=AD=AE=AB﹣BE,∵BE=AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=AD CK=a 2a sin60°=a2,====2,∴S△CDG=2S△ADG,∴S△CDG=S△ACD=a2,由(1)知PE∥BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE sin60°=a,∴S△APE=PE AH=a a=a2,∴==.②如图4,当点E在AB延长线上时,由①同理可得:S△CDG=S△ACD=××2a××3a=a2,S△APE=PH AE=×a×3a=a2,∴==,综上所述,△APE与△CDG面积的比值为或.方法二:如图3,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴△AEG∽△CDG,∴=()2,=,①当点E在AB上时,∵BE=AB,∴AE=BE=AB=CD,∴=()2=,又∵==,∴=,即=3,∴==3,当α=120°时,∠B=∠ADC= 展开更多...... 收起↑ 资源预览