2022年高考考前20天终极冲刺攻略(二)核心考点解读——椭圆

资源下载
  1. 二一教育资源

2022年高考考前20天终极冲刺攻略(二)核心考点解读——椭圆

资源简介

时间:5月 27 日 今日心情:
核心考点解读——椭圆
高考预测 从近五年的全国卷的考查情况来看,本节是高考的热点,其中标准方程和几何性质考查比较频繁.椭圆是圆锥曲线的重要内容,高考主要考查椭圆定义的运用、椭圆方程的求法以及椭圆的简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.
应试技巧 一.椭圆的标准方程和几何性质焦点的位置焦点在轴上焦点在轴上图形标准方程统一方程参数方程第一定义到两定点的距离之和等于常数2,即()范围且且顶点、、、、轴长长轴长 短轴长 长轴长 短轴长对称性关于轴、轴对称,关于原点中心对称焦点、、焦距离心率 点和椭圆的关系通径过焦点且垂直于长轴的弦叫通径:通径长=(最短的过焦点的弦)弦长公式设直线与椭圆的两个交点为,,,则弦长(其中是消后关于的一元二次方程的的系数,是判别式)二.焦半径公式:称到焦点的距离为椭圆的焦半径① 设椭圆上一点,则(可记为“左加右减”)② 焦半径的最值:由焦半径公式可得:焦半径的最大值为,最小值为焦点三角形面积:(其中)
1.(2021·全国·高考真题(理))设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
【答案】C
【解析】设,由,因为 ,,所以

因为,当,即 时,,即 ,符合题意,由可得,即 ;
当,即时, ,即,化简得, ,显然该不等式不成立.故选:C.
2.(2021·全国·高考真题(文))设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D.2
【答案】A
【解析】设点,因为,,所以

而,所以当时,的最大值为.
故选:A.
3.(2021·全国·高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13 B.12 C.9 D.6
【答案】C
【解析】
由题,,则,
所以(当且仅当时,等号成立).故选:C.
4.(2021·全国·高考真题(文))已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
【答案】
【解析】
因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.故答案为:.
5.(2021·浙江·高考真题)已知椭圆,焦点,,若过的直线和圆相切,与椭圆在第一象限交于点P,且轴,则该直线的斜率是___________,椭圆的离心率是___________.
【答案】
【解析】
如图所示:不妨假设,设切点为,

所以, 由,所以,,
于是,即,所以.故答案为:;.
6.(2021·湖南·高考真题)已知椭圆经过点,且离心率为.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,求的值.
【解析】(1)椭圆经过点,所以,
因为离心率为,所以,所以,
所以椭圆的方程为.
(2)由得,解得,
所以,或,
可得,,或者,,所以.
7.(2021·江苏·高考真题)已知椭圆的离心率为.
(1)证明:;
(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.
①求直线的方程;
②求椭圆的标准方程.
【解析】(1),,因此,;
(2)①由(1)知,椭圆的方程为,即,
当在椭圆的内部时,,可得.
设点、,则,所以,,
由已知可得,两式作差得,
所以,
所以,直线方程为,即.
所以,直线的方程为;
②联立,消去可得.

由韦达定理可得,,
又,而,,

解得合乎题意,故,因此,椭圆的方程为.
8.(2021·天津·高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
【解析】(1)易知点、,故,
因为椭圆的离心率为,故,,
因此,椭圆的方程为;
(2)设点为椭圆上一点,
先证明直线的方程为,
联立,消去并整理得,,
因此,椭圆在点处的切线方程为.
在直线的方程中,令,可得,由题意可知,即点,
直线的斜率为,所以,直线的方程为,
在直线的方程中,令,可得,即点,
因为,则,即,整理可得,
所以,,因为,,故,,
所以,直线的方程为,即.
9.(2021·全国·高考真题)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
【解析】(1)由题意,椭圆半焦距且,所以,
又,所以椭圆方程为;
(2)由(1)得,曲线为,
当直线的斜率不存在时,直线,不合题意;
当直线的斜率存在时,设,
必要性:
若M,N,F三点共线,可设直线即,
由直线与曲线相切可得,解得,
联立可得,所以,
所以,
所以必要性成立;
充分性:设直线即,
由直线与曲线相切可得,所以,
联立可得,
所以,
所以

化简得,所以,
所以或,所以直线或,
所以直线过点,M,N,F三点共线,充分性成立;
所以M,N,F三点共线的充要条件是.
10.(2021·北京·高考真题)已知椭圆一个顶 点,以椭圆的四个顶点为顶点的四边形面积为.
(1)求椭圆E的方程;
(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
【解析】(1)因为椭圆过,故,
因为四个顶点围成的四边形的面积为,故,即,
故椭圆的标准方程为:.
(2)
设,
因为直线的斜率存在,故,
故直线,令,则,同理.
直线,由可得,
故,解得或.
又,故,所以

故即,综上,或.
11.(2022·上海·高考真题)在椭圆中,直线上有两点C、D (C点在第一象限),左顶点为A,下顶点为B,右焦点为F.
(1)若∠AFB,求椭圆的标准方程;
(2)若点C的纵坐标为2,点D的纵坐标为1,则BC与AD的交点是否在椭圆上?请说明理由;
(3)已知直线BC与椭圆相交于点P,直线AD与椭圆相交于点Q,若P与Q关于原点对称,求的最小值.
【解析】(1)由题可得,又,
所以,解得,
所以,
故椭圆的标准方程为;
(2)由,得直线的方程为:,
由,得直线的方程为:,
联立两方程,解得交点为,
代入椭圆方程的左边,得,
故直线与的交点在椭圆上;
(3)由题有
因为两点在椭圆上,且关于原点对称,
则设,
直线,则,
直线,则,
所以
设,则,
因为,
所以,则,即的最小值为6.
12.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.
(1)求抛物线的标准方程;
(2)若过点的直线与抛物线交于,两点,且,求直线的方程.
【解析】解:(1)由椭圆可知,,
所以,,则,
因为抛物线的焦点为,可设抛物线方程为,
所以,即.
所以抛物线的标准方程为.
(2)由椭圆可知,,
若直线无斜率,则其方程为,经检验,不符合要求.
所以直线的斜率存在,设为,直线过点,
则直线的方程为,
设点,,
联立方程组,
消去,得.①
因为直线与抛物线有两个交点,
所以,即,
解得,且.
由①可知,
所以,
则,
因为,且,
所以,
解得或,
因为,且,
所以不符合题意,舍去,
所以直线的方程为,即.
13.(2020·天津·高考真题)已知椭圆的一个顶点为,右焦点为,且,其中为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
【解析】(Ⅰ)椭圆的一个顶点为,

由,得,
又由,得,
所以,椭圆的方程为;
(Ⅱ)直线与以为圆心的圆相切于点,所以,
根据题意可知,直线和直线的斜率均存在,
设直线的斜率为,则直线的方程为,即,
,消去,可得,解得或.
将代入,得,
所以,点的坐标为,
因为为线段的中点,点的坐标为,
所以点的坐标为,
由,得点的坐标为,
所以,直线的斜率为,
又因为,所以,
整理得,解得或.所以,直线的方程为或.
14.(2020·山东·高考真题)已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
【解析】(1)由题意可得:,解得:,
故椭圆方程为:.
(2)[方法一]:通性通法
设点,
若直线斜率存在时,设直线的方程为:,
代入椭圆方程消去并整理得:,
可得,,
因为,所以,即,
根据,代入整理可得:

所以,
整理化简得,
因为不在直线上,所以,
故,于是的方程为,
所以直线过定点直线过定点.
当直线的斜率不存在时,可得,
由得:,
得,结合可得:,
解得:或(舍).
此时直线过点.
令为的中点,即,
若与不重合,则由题设知是的斜边,故,
若与重合,则,故存在点,使得为定值.
[方法二]【最优解】:平移坐标系
将原坐标系平移,原来的O点平移至点A处,则在新的坐标系下椭圆的方程为,设直线的方程为.将直线方程与椭圆方程联立得,即,化简得,即.
设,因为则,即.
代入直线方程中得.则在新坐标系下直线过定点,则在原坐标系下直线过定点.
又,D在以为直径的圆上.的中点即为圆心Q.经检验,直线垂直于x轴时也成立.
故存在,使得.
[方法三]:建立曲线系
A点处的切线方程为,即.设直线的方程为,直线的方程为,直线的方程为.由题意得.
则过A,M,N三点的二次曲线系方程用椭圆及直线可表示为(其中为系数).
用直线及点A处的切线可表示为(其中为系数).
即.
对比项、x项及y项系数得
将①代入②③,消去并化简得,即.
故直线的方程为,直线过定点.又,D在以为直径的圆上.中点即为圆心Q.
经检验,直线垂直于x轴时也成立.故存在,使得.
[方法四]:
设.
若直线的斜率不存在,则.
因为,则,即.
由,解得或(舍).
所以直线的方程为.
若直线的斜率存在,设直线的方程为,则.
令,则.
又,令,则.
因为,所以,
即或.
当时,直线的方程为.所以直线恒过,不合题意;
当时,直线的方程为,所以直线恒过.
综上,直线恒过,所以.
又因为,即,所以点D在以线段为直径的圆上运动.
取线段的中点为,则.
所以存在定点Q,使得为定值.

展开更多......

收起↑

资源预览