【高中数学一轮复习】04函数幂指对-6对数运算 练习 (pdf版,学生版+教师版)

资源下载
  1. 二一教育资源

【高中数学一轮复习】04函数幂指对-6对数运算 练习 (pdf版,学生版+教师版)

资源简介

对数运算(中)(习题集)
一、选择
1
已知1og2=a,3=5,则1log3√30用a,b可表示为()·
A@+B+1)
1
B.2a+)+1
1
c.3a+b+)
D.2+b+1
2
=10g43,则(2-2)2=()·
A
B
4
3
若函数f()=
(°,ee-1,0),则f0og3)=()·
4,x∈[0,1
A
B.3
c
D.4
4
8
已知2=3,1g43=y,则+2y的值为()·
A.3
B.8
C.4
D.10g48
5
知20==v而,则站+君-()
A
B.1
C.√2
D.2
6
已知2g(c-2划)=g+1gy,则二的值为().
1
A.1
B.4
C.1或4
D.
或4
41
7
设a,6,c都是正数,且34=4=6,那么()
A+号
c.1-2+2
a+6
D.
第1页(共2页)
二、
填空
8
27
计算:1ogsg
+2log510+1og60.25+71-1og72=
9
设1,2是方程g2x+algx+b=0的两个根,则1·花2的值是
10
已知集合A={z,y,lg(},B={0,,,若A=B,则x=一,y=—
11
B知g==c,且财+号=2,则e=
12
如果方程gx+lg6lg花+lg2,lg3=0的两个根分别为1,2,那么花1·x2的值为
13
设f(a)=,
三、
解答
14解下列方程.
(1)(og3)}2+1og12-3=0;
(2)1og4(2+6)=x.
15
若a,是方程2lg2-1g+1=0的两个实数根,求g(ab)·(1og。b+loga)的值.
16
解方程组:
∫公+w=y2
y+g=3
(其中x,y∈R+)
第2页(共2页)对数运算(中)(习题集)
一、选择
已知1og32=a,3=5,则log3V30用a,b可表示为()·
A
2(a+b+1)
1
B.2a+)+1
C.
(a+b+1)
02+6+1
答案
A
解析
log(log2+log3+o)10g5
bV顾=方a+1+),故选A
2
若x=10g43,则(2-2)2=().
A号
B.4
C.
D.
4
答案
D
解析
方法:2=1og43→4华=3→2=V3,2*=y5
31
以-呼-(-
方法二:(2-22,
=(2)2-2·24.2+(2)2,
3)24
=w3-2+()=3·
3
若函数f()=
(}产,e∈【-1,0),则f0g43)=()
4,xe[0,1]
A司
B.3
c
D.4
第1页(共6页)
答案
B
解析
.0<1og43<1,
'-f1og43)=4og43=3,
故选B.
4
8
已知2=3,1og=,则z+2y的值为()·
A.3
B.8
C.4
D.10g48
答案
P
解析
2r=3→z=b3a3,1e号=y→y=0oe8-8到=号-ge8,
所以x+2y=10g23+3-1og23=3.
5
已知==而,则+名=()
a
A
B.1
C.2
D.2
答案
D
解析
方法一:.24=5=√10,a=log2√10,b=1og5√10,
=gm2,君=8ym5,+号=gm2+ngym5=8vm0=2
1
a
方法二:这道题不需要计算对数,
显然,4,均大于0,24=105,
两边平方,得22a=10=2×5,则22a-1=5,
故22a0-b=6=20,
即2ab-b=a,得a+b=2ab,
两边同除以ab,即得答案为2.
已知2g(c-2划)=g花+gy,则的值为()
第2页(共6页)
A.1
B.4
C.1或4
答案
B
解析
(e-2划)2=y
21g(-2y=g0+lgy台
x-2y>0
e>0
y>0
7
设a,b,c都是正数,且3=4=6,那么()·
A是+号
B.
2_21
c+
D.
答案
B
解析
方法一:由题意可得alg3=blg4=clg6,
令alg3=b1g4=clg6=(k≠0),
则片-紧,君--货2,名-2+9
'c k
则-+-2+后故选都
方法二:设34=4==k>1,
a loggk,b log4k,c=logek,
日-1e8,8=lg4=2g2,&-e6=le2+e8,
显然可得-+6
+6
故应选B.
二、
填空
27
8计算:1og%3
+2l0gs10+1og50,25+71-1ogr2=
答案
21
第3页(共6页)

展开更多......

收起↑

资源列表