资源简介 高尔顿板问题一.多选题(共2小题)1.如图是一块改造的高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,2,,6的球槽内.用表示小球经过第7层通过的空隙编号(从左向右的空隙编号依次为0,1,2,,,用表示小球最后落入球槽的号码,则下列结论正确的是 A.B.C.D.若放入80个小球,则落入1号球槽的小球个数的期望为52.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,,6,用表示小球落入格子的号码,则 A. B.C. D.二.解答题(共3小题)3.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,,7的球槽内.例如小球要掉入3号球槽,则在6次碰撞中有2次向右4次向左滚下.(1)如图,进行一次高尔顿板试验,求小球落入6号球槽的概率;(2)曾经在街头巷尾的地摊上流行过一种利用高尔顿板改造的赌博游戏.摊主规定:2元可以尝试一次,如果小球落入1号和7号球槽可以得到5元奖金;如果小球落入2号和6号球槽可以得到2元奖金;如果小球落入3号和5号球槽可以得到1元奖金;如果小球落入4球槽没有奖金.如果某天有100人次尝试此游戏,摊主预计可以获取多少收益.4.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图1所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,,7的球槽内.例如小球要掉入3号球槽,则在6次碰撞中有2次向右4次向左滚下.(Ⅰ)如图1,进行一次高尔顿板试验,求小球落入5号球槽的概率;(Ⅱ)小红、小明同学在研究了高尔顿板后,利用高尔顿板来到社团文化节上进行盈利性“抽奖”活动.小红使用图1所示的高尔顿板,付费6元可以玩一次游戏,小球掉入号球槽得到的奖金为元,其中.小明改进了高尔顿板(如图,首先将小木块减少成5层,然后使小球在下落的过程中与小木块碰撞时,有的概率向左,的概率向右滚下,最后掉入编号为1,2,,5的球槽内,改进高尔顿板后只需付费4元就可以玩一次游戏,小球掉入号球槽得到的奖金为元,其中两位同学的高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小红和小明同学谁的盈利多?请说明理由.5.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,,7的球槽内.例如小球要掉入3号球槽,则在前6次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前6次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.(Ⅰ)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;(Ⅱ)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入号球槽得到的奖金为元.其中.(ⅰ)求的分布列:(ⅱ)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?高尔顿板问题参考答案与试题解析一.多选题(共2小题)1.如图是一块改造的高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,2,,6的球槽内.用表示小球经过第7层通过的空隙编号(从左向右的空隙编号依次为0,1,2,,,用表示小球最后落入球槽的号码,则下列结论正确的是 A.B.C.D.若放入80个小球,则落入1号球槽的小球个数的期望为5【解答】解:对于选项,小球从通道口落下通过第七层空隙要经过6次碰撞,每次向左、向右落下的概率均为,并且相互独立,做了6次独立重复试验,此时小球经过第七层通过的空隙编号,1,2,3,4,5,时,说明小球经过的6次碰撞中,次向右,次向左,即,正确;对于选项,小球从通道口落入3号球槽要经过7次碰撞,其中3次向右,4次向左,根据独立重复试验事件发生的概率公式,由选项可得,故,故错误;对于选项,小球从通道口落入2号球槽要经过7次碰撞,其中2次向右,5次向左,根据独立重复试验事件发生的概率公式可得,,同理可得:,故选项正确;对于选项,,又因为80个小球,每个小球落入1号球槽的概率都相同,且互不影响,故,故落入1号球槽的小球个数的数学期望为,正确.故选:.2.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,,6,用表示小球落入格子的号码,则 A. B.C. D.【解答】解:设,依题意,,所以,,.故选:.二.解答题(共3小题)3.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,,7的球槽内.例如小球要掉入3号球槽,则在6次碰撞中有2次向右4次向左滚下.(1)如图,进行一次高尔顿板试验,求小球落入6号球槽的概率;(2)曾经在街头巷尾的地摊上流行过一种利用高尔顿板改造的赌博游戏.摊主规定:2元可以尝试一次,如果小球落入1号和7号球槽可以得到5元奖金;如果小球落入2号和6号球槽可以得到2元奖金;如果小球落入3号和5号球槽可以得到1元奖金;如果小球落入4球槽没有奖金.如果某天有100人次尝试此游戏,摊主预计可以获取多少收益.【解答】解:(1)设这个小球掉入6号球槽为事件,掉入6号球槽,需要向右5次向左1次,所以,所以这个小球掉入6号球槽的概率为.(2)由题意可得,每一次游戏中,的可能取值为0,1,2,5,,,,,故的分布列为:0 1 2 5一次游戏付出的奖金,则摊主的收益为,所以100人次的总收益为100元.4.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图1所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,,7的球槽内.例如小球要掉入3号球槽,则在6次碰撞中有2次向右4次向左滚下.(Ⅰ)如图1,进行一次高尔顿板试验,求小球落入5号球槽的概率;(Ⅱ)小红、小明同学在研究了高尔顿板后,利用高尔顿板来到社团文化节上进行盈利性“抽奖”活动.小红使用图1所示的高尔顿板,付费6元可以玩一次游戏,小球掉入号球槽得到的奖金为元,其中.小明改进了高尔顿板(如图,首先将小木块减少成5层,然后使小球在下落的过程中与小木块碰撞时,有的概率向左,的概率向右滚下,最后掉入编号为1,2,,5的球槽内,改进高尔顿板后只需付费4元就可以玩一次游戏,小球掉入号球槽得到的奖金为元,其中两位同学的高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小红和小明同学谁的盈利多?请说明理由.【解答】解:(Ⅰ)设这个小球掉入5号球槽为事件.掉入5号球槽,需要向右4次向左2次,所以(A).所以这个小球掉入5号球槽的概率为.(4分)(Ⅱ)小红的收益计算如下:每一次游戏中,的可能取值为0,4,8,,,,.0 4 8 12一次游戏付出的奖金,则小红的收益为.(8分)小明的收益计算如下:每一次游戏中,的可能取值为0,1,4,9.,,,.的分布列为:0 1 4 9一次游戏付出的奖金,则小明的收益为.,小明的盈利多.(12分)5.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以的概率向左或向右滚下,依次经过7次与小木块碰撞,最后掉入编号为1,,7的球槽内.例如小球要掉入3号球槽,则在前6次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以的概率向左滚下,或在前6次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以的概率向右滚下.(Ⅰ)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;(Ⅱ)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入号球槽得到的奖金为元.其中.(ⅰ)求的分布列:(ⅱ)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?【解答】解:(1)记小球落入记小球落入第7层第6个空隙处的事件为,小球落入第7层第6个空隙处,需要6次碰撞中有1次向左5次向右,这个小球 落入第7层第6个空隙处的概率.(2)由已知得的可能取值为1,2,3,4,5,6,7,,,,,的分布列为:1 2 3 4 5 6 7,的可能取值为0,5,10,15,,,,.,小明同学能盈利. 展开更多...... 收起↑ 资源预览