资源简介 人教版数学七年级下册期末复习应用题分类训练1一、二元一次方程组亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五 四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:批发价(元) 零售价(元)黑色文化衫 10 25白色文化衫 8 20假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?某水果店3月份购进甲种水果50千克、乙种水果80千克,共花费1700元,其中甲种水果以15元/千克,乙种水果以20元/千克全部售出;4月份又以同样的价格购进甲种水果60千克、乙种水果40千克,共花费1200元,由于市场不景气,4月份两种水果均以3月份售价的8折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店3月和4月甲、乙两种水果总赢利多少元?某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.二、不等式与不等式组某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生,本次一共种植多少棵树.(请用一元一次不等式组解答)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.若婷去桂林漓江风景区游览,乘坐摩托艇顺水而下,然后返回登艇处,水流速度是2km/h,摩托艇在静水中的速度是18km/h,为了使游览时间不超过3小时,若婷最多可以游览多少km?小佳的老板预计订购5盒巧克力,每盒颗数都相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数是多少 某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?三、二元一次方程组和不等式综合威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?某学校为了增强学生体质,鼓励学生加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买3根跳绳和2个毽子共需26元;购买4根跳绳和3个毽子共需36元.求购买一根跳绳和一个毽子分别需要多少元某班需要购买跳绳和毽子的总数量是,且购买的总费用不能超过元若要求购买跳绳数量多于根,通过计算说明共有哪几种购买的方案.2020年1月突来的新冠肺炎疫情,扰乱了武汉人民正常的生产生活.但我们众志成城,病毒无情人有情,共抗疫情,相信病毒最终一定会无处遁形.某学校为了支援武汉,筹集了一些医疗防护用品捐献给武汉疫区.若筹集甲种防护品4件,乙种防护品3件,需要550元;若筹集甲种防护品5件,乙种防护品6件,需要800元.(1)求筹集甲、乙两种防护品每件各需要多少元?(2)若该学校决定筹集这两种防护品共80件,其中甲种防护品的数量不少于60件,考虑到资金问题,筹集这80件防护品的资金不能超过7100元,那么该学校共有哪几种分配方案?某学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买2台学习机多1400元,购买1台平板电脑和4台学习机共需6200元.(1)求购买1台平板电脑和1台学习机各需多少元;(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?参考答案1.解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.2.解:(1)设跳绳的单价为x元/根,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/根,毽子的单件为4元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.3.解:设黑色文化衫x件,白色文化衫y件,依题意得,解得,答:黑色文化衫60件,白色文化衫80件.4.解:(1)设甲种水果的进价为每千克x元,乙种水果的进价为每千克y元,依题意,得:,解得:.答:甲种水果的进价为每千克10元,乙种水果的进价为每千克15元.(2)50×(15-10)+80×(20-15)+60×(15×0.8-10)+40×(20×0.8-15)=810(元).答:该水果店3月和4月甲、乙两种水果共赢利810元.5.解:设甲工程队每天需费用x元,乙工程队每天需费用y元,由题意得,,解得:.答:甲工程队每天需费用600元,乙工程队每天需费用280元.6.解:设A型粽子x千克,B型粽子y千克,由题意得解得答:A型粽子40千克,B型粽子60千克.7.解:设该班有x名学生,则本次一共种植(3x+86)棵树,依题意,得:,解得:44<x<45,又∵x为正整数,∴x=45,3x+86=221.答:该班有45名学生,本次一共种植221棵树.8.解:由租用甲种汽车x辆,知租用乙种汽车(8-x)辆.由题意,得,解得5≤x≤6,即共有两种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.9.解:设摩托艇顺水走xkm就必须返回,由题意得: +≤3, +≤3,(+)×80≤3×80, 4 x+5x≤240, 9 x≤240, x≤.答:若婷最多可以游览km.10.【解】设该公司的工作人员为x人.则解得16< x 19.x是整数,x=17,18或19.答:工作人员人数可能是17人、18人或19人.11.解:(1)设安排x辆大型车,则安排(30-x)辆中型车,依题意,得:,解得:18≤x≤20.∵x为整数,∴x=18,19,20.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(2)方案1所需费用为:900×18+600×12=23400(元),方案2所需费用为:900×19+600×11=23700(元),方案3所需费用为:900×20+600×10=24000(元).∵23400<23700<24000,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.12.解:设小明要答对x道题,根据题意,得10x-5(20-x)>90,解得x>12.x要取整数,x最小取13.答:他至少要答对13道题.13.解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元,由题意得:,解得:,答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元;(2)设威丽商场需购进A种商品a件,则购进B种商品(34-a)件. 由题意得:200a+100(34-a)4000,解得:a6,答:威丽商场至少需购进6件A种商品.14.解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60-a)解得a≤32.答:最多可购买32个篮球.15.解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100-a)件,根据题意得:16a+4(100-a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.16.【小题1】设购买一根跳绳需要x元,购买一个毽子需要y元,依题意,得解得答:购买一根跳绳需要6元,购买一个毽子需要4元.【小题2】设购买m根跳绳,则购买(54-m)个毽子,依题意,得解得2022.又m为正整数,m可以为21,22.共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.17.解:(1)设筹集甲种防护品每件需要x元,筹集乙种防护品每件需要y元,依题意,得:,解得:.答:筹集甲种防护品每件需要100元,筹集乙种防护品每件需要50元.(2)设学校筹集甲种防护品m件,则筹集乙种防护品(80-m)件,依题意,得:,解得:60≤m≤62.又∵m为正整数,∴m可以为60,61,62,∴该学校共有三种分配方案,方案1:筹集甲种防护品60件,乙种防护品20件;方案2:筹集甲种防护品61件,乙种防护品19件;方案3:筹集甲种防护品62件,乙种防护品18件.18.解:(1)设购买1台平板电脑a元,购买1台学习机b元,由题意可得:,解得,答:购买1台平板电脑3000元,购买1台学习机800元;(2)设购买平板电脑x台,则购买学习机(100-x)台,由题意可得:,解得37≤x≤40,∵x为整数,∴x=38,39,40,∴共有三种购买方案,方案一:购买平板电脑38台,购买学习机62台,所需费用为:3000×38+800×62=163600(元);方案二:购买平板电脑39台,购买学习机61台,所需费用为:3000×39+800×61=165800(元);方案三:购买平板电脑40台,购买学习机60台,所需费用为:3000×40+800×60=168000(元);由上可得,方案一最省钱,答:有三种购买方案,方案一:购买平板电脑38台,购买学习机62台;方案二:购买平板电脑39台,购买学习机61台;方案三:购买平板电脑40台,购买学习机60台;其中方案一最省钱.第6页,共12页第7页,共12页 展开更多...... 收起↑ 资源预览