(济南卷)2022年中考数学最后押题卷(考试版+全解析)

资源下载
  1. 二一教育资源

(济南卷)2022年中考数学最后押题卷(考试版+全解析)

资源简介

中小学教育资源及组卷应用平台
2022年中考最后押题卷【山东济南卷】
数学·全解全析
1 2 3 4 5 6 7 8 9 10 11 12
A A C D A D C C A C D A
1.【答案】A
【分析】利用绝对值的定义直接得出结果即可
【详解】解:的绝对值是:9
故选:A
【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点
2.【答案】A
【详解】
试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.
考点:三视图.
3.【答案】C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】解:将4254000用科学记数法表示是4.254×106.
故选:C.
【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.【答案】D
【分析】
根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.
【详解】
首先根据三角尺的直角被直线m平分,
∴∠6=∠7=45°;
A、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n,∴∠2=∠8=75°结论正确,选项不合题意;
B、∵∠7=45°,m∥n,∴∠3=∠7=45°,结论正确,选项不合题意;
C、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;
D、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.
故选:D.
【点睛】
本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.
5.【答案】A
【分析】
根据三视图的定义,得到左视图是矩形,进而即可得到答案.
【详解】
解:圆柱体的左视图是矩形,它既是轴对称图形,又是中心对称图形,
故选A.
【点睛】
本题主要考查三视图以及轴对称和中心对称图形,熟练掌握三视图的定义以及轴对称和中心对称图形的定义,是解题的关键.
6.【答案】D
【分析】
根据数轴确定和的范围,再根据有理数的加法法则即可做出选择.
【详解】
解:根据数轴可得-3<<-2,0<<1,则-3<<-1.
故选:D.
【点睛】
本题考查的知识点为数轴,有理数的加法,解决本题的关键是要根据数轴明确和的范围,然后再确定的范围即可.
7.【答案】C
【分析】
要使式子在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可.
【详解】
解:式子在实数范围内有意义,
必须同时满足下列条件:
,,,
综上:且,
故选:C.
【点睛】
本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.
8.【答案】C
【分析】
依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论.
【详解】
解:.任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;
.“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;
.了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;
.若平均数相同的甲、乙两组数据,,,则乙组数据更稳定,故原说法错误,不合题意;
故选:.
【点睛】
本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
9.【答案】A
【分析】
利用分比例函数的增减性解答即可.
【详解】
解:∵
∴当x>0时,y随x的增大,且y<0;当x<0时,y随x的增大,且y>0;
∵0<1<3,-2<0
∴y2<y1<0,y3>0
∴.
故选A.
【点睛】
本题主要考查了反比例函数的增减性,掌握数形结合思想成为解答本题的关键.
10.【答案】C
【分析】
根据题意易得OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.
【详解】
解:由题意得:OA⊥MN,∠N=43°,∠M=35°,OA=135m,AB=40m,
∴,
∴,,
∴;
故选C.
【点睛】
本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.
11.【答案】D
【分析】
利用基本作图得到b>AB,从而可对各选项进行判断.
【详解】
解:根据题意得:b>AB,
即b>3,
故选:D.
【点睛】
本题考查了作图 基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
12.【答案】A
【分析】
根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.
【详解】
解:∵抛物线的开口向上,
∴a>0,故①正确;
∵抛物线与x轴没有交点
∴<0,故②错误
∵由抛物线可知图象过(1,1),且过点(3,3)
∴8a+2b=2
∴4a+b=1,故③错误;
由抛物线可知顶点坐标为(1,1),且过点(3,3)
则抛物线与直线y=x交于这两点
∴<0可化为,
根据图象,解得:1<x<3
故④错误.
故选A.
【点睛】
本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.
13.【答案】
【分析】
首先将公因式a提出来,再根据完全平方公式进行因式分解即可.
【详解】

故填:.
【点睛】
本题考查提公因式因式分解,公式法因式分解,解题关键是掌握因式分解的方法:提公因式因式分解和公式法因式分解.
14.【答案】
【分析】
卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.
【详解】
解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,
根据概率公式,(轴对称图形).
故答案为:.
【点睛】
本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.
15.【答案】
【分析】
分别计算正六边形和正方形的每个内角的度数,再利用三角形的内角和定理即可得出答案.
【详解】
解:∵ABDEF是正六边形,

∵ABGH是正方形,





故答案为:
【点睛】
本题考查了多边形的内角和与正多边形每个内角的计算等知识点,熟知多边形的内角和的计算公式是解题的关键.
16.【答案】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:
去分母得:,
去括号化简得:,
解得:,
经检验是分式方程的根,
故填:.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
17.【答案】
【分析】
根据题意得到,反向延长中线至,使得,连接,最后根据三角形三边关系解题.
【详解】
如图,反向延长中线至,使得,连接,
是的内角平分线,
由三角形三边关系可知,
故答案为:.
【点睛】
本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.
18.【答案】
【分析】
由题意易得四边形是菱形,过点D作DE⊥BC于点E,连接AC,交BD于点O,易得,,然后根据勾股定理可得,则,,进而可得,要使为最小,即的值为最小,则可过点A作AM⊥AP,且使,连接BM,最后根据“胡不归”问题可求解.
【详解】
解:∵纸条的对边平行,即,
∴四边形是平行四边形,
∵两张纸条的宽度都为,
∴,
∴,
∴四边形是菱形,
过点D作DE⊥BC于点E,连接AC,交BD于点O,如图所示:
∴,
∴,
∴,
∵,,
∴,,
∴,
∴,
∴,,
∴,
过点A作AM⊥AP,且使,连接BM,如图所示:
∴,
要使的值为最小,则需满足为最小,根据三角不等关系可得:,所以当B、P、M三点共线时,取最小,即为BM的长,如图所示:
∴,
∴,
∴的最小值为,即的最小值为;
故答案为.
【点睛】
本题主要考查三角函数、菱形的性质与判定及含30°直角三角形的性质,解题的关键是利用“胡不归”原理找到最小值的情况,然后根据三角函数及菱形的性质进行求解即可.
19.【答案】
【分析】
先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.
【详解】
解:

【点睛】
本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.
20.【答案】
【分析】
解一元一次不等式组,先求出不等式组中每一个不等式的解集,再找到解集的公共部分.
【详解】
解:解不等式①得:
解不等式②得:
在数轴上表示不等式①、②的解集(如图)
∴不等式组的解集为.
【点睛】
本题考查了解一元一次不等式组,熟练解一元一次不等式是解题的关键,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).
21.【答案】(1)见解析;(2)
【分析】
(1)利用全等三角形性质和菱形对角线互相垂直平分,证四边形是矩形;
(2)根据菱形性质得出,,由含30度直角三角形的性质求出OB,即可求解.
【解析】
(1)证明:∵△BOC △CEB .
∴,(全等三角形的对应边相等)
∴四边形是平行四边形(两组对边分别相等的四边形是平行四边形)
∵四边形是菱形,
∴ (菱形的两条对角线互相垂直)

∴四边形是矩形(有一个角是直角的平行四边形是矩形);
(2)∵四边形是菱形,,,
∴ (菱形的四条边相等),


在中,
(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)

∴矩形的周长.
【点睛】
本题考查了菱形的性质、全等三角形性质、平行四边形的判定和性质以及矩形的性质,熟记各种特殊四边形的判定方法和性质以及勾股定理是解题的关键.
22.【答案】(1)B;(2)①7,7;②144人;(3)
【分析】
(1)根据抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况进行分析;
(2)①由众数好中位数的定义求解即可;
②由九年级人数乘以平均每天睡眼时间t≥8的人数所占的比例即可;
(3)画树状图,共有12种等可能的结果,抽得2人平均每天睡眠时间都是6小时的结果有2种,再由概率公式求解即可.
【详解】
解:(1)不具有全面性,
故答案是:B.
(2)①这组数据的众数为小时,中位数为,
故答案是:.
解②:估计九年级学生平均每天睡眠时间的人是大约为:
答:九年级学生平均每天睡眠超过8小时人数约为144人.
(3)画树状图如下:
∴由树状图可知,所有等可能结果有12种,2人睡眠时间都是6小时的结果有2种.
∴.
【点睛】
本题考查了用列表法求概率以及抽样调查、众数和中位数等知识,解题的关键是:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.
23.【答案】(1)见详解;(2),
【分析】
(1)连接OC,由题意易得,则有,进而可得,然后问题可求证;
(2)连接BC,由题意及(1)易得,则有DC=6,然后可得,然后问题可求解.
【详解】
(1)证明:连接OC,如图所示:
∵CD是⊙O的切线,
∴,
∵AD⊥CD,
∴,
∴,
∴,
∵,
∴,
∴平分;
(2)解:连接BC,如图所示:
由(1)可得:,
∵,
∴,
∵,
∴,
∴,
∴,
∵为⊙的直径,
∴,
∴.
【点睛】
本题主要考查切线的性质及解直角三角形,熟练掌握切线的性质及三角函数是解题的关键.
24.【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件
【分析】
(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;
(2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;
(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.
【详解】
解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.
根据题意,得,
解得:,
答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
(2)根据题意,得,
解得:,
∵m为整数,
∴m可取5、6、7,
∴有三种方案:
方案一:购买甲种农机具5件,乙种农机具5件;
方案二:购买甲种农机具6件,乙种农机具4件;
方案三:购买甲种农机具7件,乙种农机具3件.
设总资金为W万元,则,
∵,
∴W随m的增大而增大,
∴当时,(万元),
∴方案一需要资金最少,最少资金是10万元.
(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,
根据题意,此时,节省的费用为(万元),
降价后的单价分别为:甲种0.8万元,乙种0.3万元,
设节省的资金可购买a台甲种,b台乙种,
则:,
由题意,a,b均为非负整数,
∴满足条件的解为:或,
∴节省的资金再次购买农机具的方案有两种:
方案一:购买甲种农机具0件,乙种农机具15件;
方案二:购买甲种农机具3件,乙种农机具7件.
【点睛】
本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.
25.【答案】(1);(2)点P的坐标为;(3)或
【分析】
(1)过点A作轴于点E,根据三角函数的性质,得点A,将点A代入,得;通过列二元一次方程组并求解,即可得到答案;
(2)连接OB、、,结合(1)的结论,得点B;结合题意得;把代入,得点C;设点的坐标为,通过计算即可得到答案;
(3)根据(1)和(2)的结论,结合反比例和一次函数的图像,即可得到答案.
【详解】
(1)如图,过点A作轴于点E,
∵,,
∴,,
∴点A,
∴双曲线的解析式为,
把,分别代入,
得:,
解得:,
∴直线AB的解析式为;
(2)如图,连接OB、、
把代入,得,
∴点B,
∴,
∴,
把代入,得,
∴点C
设点的坐标为,

∴,
∵,
∴点P的坐标为;
(3)根据(1)和(2)的结论,结合点A、点B
∴或.
【点睛】
本题考查了一次函数、反比例函数、二元一次方程组、一元一次方程的知识;解题的关键是熟练掌握一次函数、反比例函数的性质,从而完成求解.
26.【答案】(1);(2)见解析;(3)存在,
【分析】
(1)先解直角三角形ABC得出,从而得出是等边三角形,再解直角三角形ACP即可求出AC的长,进而得出BC的长;
(2)连结,先利用AAS证出,得出AE=2PE,AC=DE,再得出是等边三角形,然后由SAS得出,得出AE=BC即可得出结论;
(3)过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,由(2)得AE=2AP,DE=AC,再证明,从而得出得出DE=BE,然后利用勾股定理即可得出m的值.
【详解】
(1)解 ,



是等边三角形,
是的中点,

在中,,


(2)证明:连结,







又,

是等边三角形,


又,



(3)存在这样的.
过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,则,

由(2)得AE=2AP,DE=AC,
∴CG=EN,
∵,
∴AE=BC,
∵∠ANE=∠BGC=90°,

∴∠EAN=∠CBG
∵AE=BC,AB=BA,

∴AC=BE,
∴DE=BE,
∴∠EDB=∠EBD=45°,
∴∠DEB=90°,
∴,


【点睛】
本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.
27.【答案】(1);(2);(3)有最大值为,P点坐标为
【分析】
(1)将,代入中,列出关于a、b的二元一次方程组,求出a、b的值即可;
(2)设与y轴交于点E,根据轴可知,,当,即,由此推断为等腰三角形,设,则,所以,由勾股定理得,解出点E的坐标,用待定系数法确定出BP的函数解析式即可;
(3)设与交于点N,过B作y轴的平行线与相交于点M.由A、C两点坐标可得所在直线表达式,求得 M点坐标,则,由,可得,,设,则,根据二次函数性质求解即可.
【详解】
解:(1)由题意可得:
解得:,
∴二次函数的表达式为;
(2)设与y轴交于点E,
∵轴,




,设,
则,,
在中,由勾股定理得,
解得,

设所在直线表达式为
解得
∴直线的表达式为.
(3)设与交于点N.
过B作y轴的平行线与相交于点M.
由A、C两点坐标分别为,
可得所在直线表达式为
∴M点坐标为,
由,可得,
设,则

∴当时,有最大值0.8,
此时P点坐标为.
【点睛】
本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
绝密★启用前|
2022年中考最后押题卷【山东济南卷】
数 学
注意事项:
1.本试卷共6页,满分150分,考试时间120分钟。
2.考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考号、姓名、试室号、座位号,用2B铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔、涂改液,不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁,考试结束时,将答题卡交回。
一、选择题(本大题包括本题有12小题,每小题4分,共48分。在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑)
1.(2021·安徽中考真题)的绝对值是( )
A. B. C. D.
2.(2021·江苏苏州市·中考真题)如图所示的圆锥的主视图是( )
A.B.C.D.
3.(2021·四川泸州市·中考真题)第七次全国人口普查统计,泸州市常住人口约为4 254 000人,将4 254 000用科学记数法表示为( )
A. B. C. D.
4.(2021·山东泰安市·中考真题)如图,直线,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若,则下列结论错误的是( )
A. B. C. D.
5.(2021·山东中考真题)一个圆柱体如图所示,下面关于它的左视图的说法,其中正确的是( )
A.既是轴对称图形,又是中心对称图形
B.既不是轴对称图形,又不是中心对称图形
C.是轴对称图形,但不是中心对称图形
D.是中心对称图形,但不是轴对称图形
6.(2021·湖南邵阳市·中考真题)如图,若数轴上两点,所对应的实数分别为,,则的值可能是( )
A.2 B.1 C. D.
7.(2021·黑龙江绥化市·中考真题)若式子在实数范围内有意义,则的取值范围是( )
A. B.且 C.且 D.
8.(2021·辽宁沈阳·中考真题)下列说法正确的是( )
A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数
B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件
C.了解一批冰箱的使用寿命,采用抽样调查的方式
D.若平均数相同的甲、乙两组数据,,,则甲组数据更稳定
9.(2021·江苏宿迁市·中考真题)已知双曲线过点(3,)、(1,)、(-2,),则下列结论正确的是( )
A. B. C. D.
10.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为的处测得试验田右侧出界处俯角为,无人机垂直下降至处,又测得试验田左侧边界处俯角为,则,之间的距离为(参考数据:,,,,结果保留整数)( )
A. B.
C. D.
11.(2021·贵州中考真题)如图,已知线段,利用尺规作的垂直平分线,步骤如下:①分别以点为圆心,以的长为半径作弧,两弧相交于点和.②作直线.直线就是线段的垂直平分线.则的长可能是( )
A.1 B.2 C.3 D.4
12.(2021·江苏中考真题)已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )
A.1 B.2 C.3 D.4
二、填空题(本大题包括有6小题,每小题4分,共24分。请把各题的答案填写在答题卡上)
13.(2021·内蒙古中考真题)因式分解:_______.
14.(2021·四川内江·中考真题)有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.
15.(2021·四川中考真题)如图,为正六边形,为正方形,连接CG,则∠BCG+∠BGC=______.
16.(2021·湖北黄石市·中考真题)分式方程的解是______.
17.(2021·黑龙江中考真题)已知,如图1,若是中的内角平分线,通过证明可得,同理,若是中的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在中,是的内角平分线,则的边上的中线长的取值范围是________
18.两张宽为的纸条交叉重叠成四边形,如图所示.若,则对角线上的动点到三点距离之和的最小值是__________.
三、解答题(本题有9小题,共78分)
19.(6分)(2021·湖南张家界市·中考真题)计算:
20.(6分)(2021·江苏盐城市·中考真题)解不等式组:
21.(6分)(2021·青海西宁·中考真题)如图,四边形是菱形,对角线,相交于点O,.
(1)求证:四边形是矩形;
(2)若,,求矩形的周长.
22.(8分)(2021·内蒙古赤峰·中考真题)某学校九年级有12个班,每班50名学生,为了调查该校九年级学生平均每天的睡眠时间,并规定如下:设每个学生平均每天的睡眠时间为t(单位,小时),将收集到的学生平均每天睡眠时间按t≤6、6(1)下列抽取方法具有代表性的是.
A.随机抽取一个班的学生
B.从12个班中,随机抽取50名学生
C.随机抽取50名男生
D.随机抽取50名女生
(2)由上述具有代表性的抽取方法抽取50名学生,平均每天的睡眠时间数据如表:
睡眠时间t(小时) 5 5.5 6 6.5 7 7.5 8 8.5
人数(人) 1 1 2 10 15 9 10 2
①这组数据的众数和中位数分别是__________,__________;
②估计九年级学生平均每天睡眼时间的人数大约为多少;
从样本中学生平均每天睡眠时间的4个学生里,随机抽取2人,画树状图或列表法求抽取的2人每天睡眠时间都是6小时的概率.
23.(8分)(2021·湖南湘西·中考真题)如图,为⊙的直径,为⊙O上一点,和过点的切线互相垂直,垂足为.
(1)求证:平分;
(2)若,,求:边及的长.
24.(10分)(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
25.(10分)(2021·山东东营市·中考真题)如图所示,直线与双曲线交于A、B两点,已知点B的纵坐标为,直线AB与x轴交于点C,与y轴交于点,,.
(1)求直线AB的解析式;
(2)若点P是第二象限内反比例函数图象上的一点,的面积是的面积的2倍,求点P的坐标;
(3)直接写出不等式的解集.
26.(12分)(2021·浙江中考真题)已知在中,是的中点,是延长线上的一点,连结.
(1)如图1,若,求的长.
(2)过点作,交延长线于点,如图2所示.若,求证:.
(3)如图3,若,是否存在实数,当时,?若存在,请直接写出的值;若不存在,请说明理由.
27.(12分)(2021·山东泰安市·中考真题)二次函数的图象经过点,,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴于点D.
(1)求二次函数的表达式;
(2)连接,当时,求直线的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表