高中数学人教A版(2019)选择性必修第三册7.5正态分布 学案(Word版含答案)

资源下载
  1. 二一教育资源

高中数学人教A版(2019)选择性必修第三册7.5正态分布 学案(Word版含答案)

资源简介

第七章 随机变量及其分布
7.5 正态分布
学案
一、学习目标
1. 通过误差模型,了解正态曲线、正态分布的概念;
2. 通过借助具体实例的频率分布直方图,了解正态分布的特征及曲线表示的含义;
3. 了解正态分布的均值、方差及其含义,会用正态分布解决实际问题.
二、基础梳理
1. 正态分布:我们称,,为参数)为___________,称它的图象为___________,简称___________.若随机变量X的概率分布密度函数为,则称随机变量X服从___________,记为___________.特别地,当时,称随机变量X服从___________.
2. 正态曲线的特点:
(1)曲线是单峰的,它关于直线_________对称;
(2)曲线在_________处达到峰值;
(3)当无限增大时,曲线无限接近________轴.
3. 若,则___________,___________.
4. 原则:在实际应用中,通常认为服从于正态分布的随机变量X只取___________中的值,这在统计学中称为原则.
三、巩固练习
1. 若随机变量X服从正态分布,且,则( )
A. B. C. D.
2.某校有1 000人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为( )
A.150 B. 200 C.300 D.400
3.设随机变量,若,则( )
A.1 B.2 C.3 D.4
4.设随机变量,若,则( )
A. B.
C. D.
5.已知随机变量X服从正态分布,则( )
A.0.842 B.0.158 C.0.421 D.0.316
6.某中学在高三上学期期末考试中,理科学生的数学成绩.若已知,则从该校理科生中任选一名学生,他的数学成绩大于120分的概率为( )
A.0.86 B.0.64 C.0.36 D.0.14
7.设和Y的正态密度曲线如图所示,则下列结论正确的是( )
A. B.
C.对任意正数 D.对任意正数
8.设随机变量X服从正态分布,若,则实数___________.
9.在某市的高二期末考试中,理科学生的数学成绩,已知,则从全市理科生中任选一名学生,该学生的数学成绩小于110分的概率为___________.
10.某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值μ和方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记X为体重在的人数,求X的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重Y近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常,并说明理由.
答案解析
基础梳理
正态密度函数;正态密度曲线;正态曲线;正态分布;;标准正态分布
;;x

巩固练习
1.答案:B
解析:设,则,根据对称性可得,
则,所以,即,故.故选B.
2.答案:C
解析:,,.
此次数学考试成绩在90分到105分之间的人数约为.故选C.
3.答案:C
解析:由于随机变量,满足,
因此,根据正态曲线的对称性可知.故选C.
4.答案:A
解析:随机变量,且,
,,.故选A.
5.答案:B
解析:.
因为,所以.故选B.
6.答案:D
解析:因为学生成绩X服从正态分布,所以.
因为,所以,
所以.故选D.
7.答案:D
解析:A项,由题图可知,直线为X的正态密度曲线的对称轴,直线为Y的正态密度曲线的对称轴,,所以,故A错;B项,由题图可知,,所以,故B错;C项,对任意正数,即有,故C错;D项,对任意正数,因此有,故D正确.故选D.
8.答案:
解析:因为随机变量X服从正态分布,且,所以由正态曲线的对称性可知,解得.
9.答案:0.85
解析:,
又,


则.
∴该学生的数学成绩小于110分的概率为0.85.
10.答案:(1).
.
(2)由题图可得从全校学生中随机抽取1名学生,其体重在的概率为0.7.
随机抽取3人,相当于3重伯努利试验,随机变量X服从二项分布,




所以X的分布列为
X 0 1 2 3
P 0.027 0.189 0.441 0.343
.
(3)由题意知Y服从正态分布,
则,
所以该校学生的体重是正常的.

展开更多......

收起↑

资源预览