江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编(word版含解析)

资源下载
  1. 二一教育资源

江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编(word版含解析)

资源简介

江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题
一.倒数(共1小题)
1.(2021 扬州)实数100的倒数是(  )
A.100 B.﹣100 C. D.﹣
二.实数的性质(共1小题)
2.(2020 扬州)实数3的相反数是(  )
A.﹣3 B. C.3 D.±3
三.实数大小比较(共1小题)
3.(2019 扬州)下列各数中,小于﹣2的数是(  )
A.﹣ B.﹣ C.﹣ D.﹣1
四.同底数幂的除法(共1小题)
4.(2020 扬州)下列各式中,计算结果为m6的是(  )
A.m2 m3 B.m3+m3 C.m12÷m2 D.(m2 )3
五.分式的值为零的条件(共1小题)
5.(2021 扬州)不论x取何值,下列代数式的值不可能为0的是(  )
A.x+1 B.x2﹣1 C. D.(x+1)2
六.分式的基本性质(共1小题)
6.(2019 扬州)分式可变形为(  )
A. B.﹣ C. D.﹣
七.点的坐标(共1小题)
7.(2020 扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
八.函数的图象(共1小题)
8.(2020 扬州)小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足(  )
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
九.一次函数图象上点的坐标特征(共1小题)
9.(2019 扬州)若点P在一次函数y=﹣x+4的图象上,则点P一定不在(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
一十.一次函数图象与几何变换(共1小题)
10.(2021 扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为(  )
A.+ B.3 C.2+ D.+
一十一.反比例函数系数k的几何意义(共1小题)
11.(2021 扬州)如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是(  )
A.①② B.①③ C.②③ D.①
一十二.反比例函数图象上点的坐标特征(共1小题)
12.(2019 扬州)若反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点都在一次函数y=﹣x+m的图象上,则m的取值范围是(  )
A.m>2 B.m<﹣2
C.m>2或m<﹣2 D.﹣2<m<2
一十三.展开图折叠成几何体(共1小题)
13.(2021 扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是(  )
A.五棱锥 B.五棱柱 C.六棱锥 D.六棱柱
一十四.三角形三边关系(共1小题)
14.(2019 扬州)已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有(  )
A.4个 B.5个 C.6个 D.7个
一十五.等腰直角三角形(共1小题)
15.(2021 扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是(  )
A.2 B.3 C.4 D.5
一十六.多边形内角与外角(共2小题)
16.(2021 扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=(  )
A.220° B.240° C.260° D.280°
17.(2020 扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为(  )
A.100米 B.80米 C.60米 D.40米
一十七.圆周角定理(共1小题)
18.(2020 扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为(  )
A. B. C. D.
一十八.轴对称图形(共1小题)
19.(2020 扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是(  )
A.
B.
C.
D.
一十九.中心对称图形(共1小题)
20.(2019 扬州)下列图案中,是中心对称图形的是(  )
A. B. C. D.
二十.简单组合体的三视图(共1小题)
21.(2019 扬州)如图所示物体的左视图是(  )
A. B.
C. D.
二十一.调查收集数据的过程与方法(共1小题)
22.(2020 扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是(  )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
二十二.众数(共1小题)
23.(2019 扬州)一组数据3、2、4、5、2,则这组数据的众数是(  )
A.2 B.3 C.3.2 D.4
二十三.随机事件(共1小题)
24.(2021 扬州)下列生活中的事件,属于不可能事件的是(  )
A.3天内将下雨
B.打开电视,正在播新闻
C.买一张电影票,座位号是偶数号
D.没有水分,种子发芽
江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题
参考答案与试题解析
一.倒数(共1小题)
1.(2021 扬州)实数100的倒数是(  )
A.100 B.﹣100 C. D.﹣
【解答】解:100的倒数为,
故选:C.
二.实数的性质(共1小题)
2.(2020 扬州)实数3的相反数是(  )
A.﹣3 B. C.3 D.±3
【解答】解:实数3的相反数是:﹣3.
故选:A.
三.实数大小比较(共1小题)
3.(2019 扬州)下列各数中,小于﹣2的数是(  )
A.﹣ B.﹣ C.﹣ D.﹣1
【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数,
分析选项可得,﹣<﹣2<﹣<﹣<﹣1,只有A符合.
故选:A.
四.同底数幂的除法(共1小题)
4.(2020 扬州)下列各式中,计算结果为m6的是(  )
A.m2 m3 B.m3+m3 C.m12÷m2 D.(m2 )3
【解答】解:A、m2 m3=m5,故此选项不合题意;
B、m3+m3=2m3,故此选项不合题意;
C、m12÷m2=m10,故此选项不合题意;
D、(m2 )3=m6,故此选项符合题意.
故选:D.
五.分式的值为零的条件(共1小题)
5.(2021 扬州)不论x取何值,下列代数式的值不可能为0的是(  )
A.x+1 B.x2﹣1 C. D.(x+1)2
【解答】解:A、当x=﹣1时,x+1=0,故不合题意;
B、当x=±1时,x2﹣1=0,故不合题意;
C、分子是1,而1≠0,则≠0,故符合题意;
D、当x=﹣1时,(x+1)2=0,故不合题意;
故选:C.
六.分式的基本性质(共1小题)
6.(2019 扬州)分式可变形为(  )
A. B.﹣ C. D.﹣
【解答】解:分式可变形为:﹣.
故选:D.
七.点的坐标(共1小题)
7.(2020 扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵x2+2>0,
∴点P(x2+2,﹣3)所在的象限是第四象限.
故选:D.
八.函数的图象(共1小题)
8.(2020 扬州)小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足(  )
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
【解答】解:由图象可知,当x>0时,y<0,
∴a<0;
x=﹣b时,函数值不存在,
∴﹣b<0,
∴b>0;
故选:C.
九.一次函数图象上点的坐标特征(共1小题)
9.(2019 扬州)若点P在一次函数y=﹣x+4的图象上,则点P一定不在(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵﹣1<0,4>0,
∴一次函数y=﹣x+4的图象经过第一、二、四象限,即不经过第三象限.
∵点P在一次函数y=﹣x+4的图象上,
∴点P一定不在第三象限.
故选:C.
一十.一次函数图象与几何变换(共1小题)
10.(2021 扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为(  )
A.+ B.3 C.2+ D.+
【解答】解:∵一次函数y=x+的图象与x轴、y轴分别交于点A、B,
令x=0,则y=,令y=0,则x=﹣,
则A(﹣,0),B(0,),
则△OAB为等腰直角三角形,∠ABO=45°,
∴AB==2,
过点C作CD⊥AB,垂足为D,
∵∠CAD=∠OAB=45°,
∴△ACD为等腰直角三角形,设CD=AD=x,
∴AC==x,
由旋转的性质可知∠ABC=30°,
∴BC=2CD=2x,
∴BD==x,
又BD=AB+AD=2+x,
∴2+x=x,
解得:x=+1,
∴AC=x=(+1)=,
故选:A.
一十一.反比例函数系数k的几何意义(共1小题)
11.(2021 扬州)如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是(  )
A.①② B.①③ C.②③ D.①
【解答】解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,
设P(m,),
则C(m,),A(m,0),B(0,),令,
则,即D(,),
∴PC=,PD=,
∵==,==,即,
又∠DPC=∠BPA,
∴△PDC∽△PBA,
∴∠PDC=∠PBA,
∴CD∥AB,故①正确;
△PDC的面积==,故③正确;
S△OCD=S四边形OAPB﹣S△OCA﹣S△OBD﹣S△DPC

=,故②错误;
故选:B.
一十二.反比例函数图象上点的坐标特征(共1小题)
12.(2019 扬州)若反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点都在一次函数y=﹣x+m的图象上,则m的取值范围是(  )
A.m>2 B.m<﹣2
C.m>2或m<﹣2 D.﹣2<m<2
【解答】解:∵反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点在反比例函数y=的图象上,
∴解方程组得x2﹣mx+2=0,
∵y=的图象与一次函数y=﹣x+m有两个不同的交点,
∴方程x2﹣mx+2=0有两个不同的实数根,
∴△=m2﹣8>0,
∴m>2或m<﹣2,
故选:C.
一十三.展开图折叠成几何体(共1小题)
13.(2021 扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是(  )
A.五棱锥 B.五棱柱 C.六棱锥 D.六棱柱
【解答】解:由图可知:折叠后,该几何体的底面是五边形,
则该几何体为五棱锥,
故选:A.
一十四.三角形三边关系(共1小题)
14.(2019 扬州)已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有(  )
A.4个 B.5个 C.6个 D.7个
【解答】解:由三角形三边关系可得,

解得2<n<10,
∴正整数n有7个:3,4,5,6,7,8,9.
故选:D.
一十五.等腰直角三角形(共1小题)
15.(2021 扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是(  )
A.2 B.3 C.4 D.5
【解答】解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:B.
一十六.多边形内角与外角(共2小题)
16.(2021 扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=(  )
A.220° B.240° C.260° D.280°
【解答】解:连接BD,
∵∠BCD=100°,
∴∠CBD+∠CDB=180°﹣100°=80°,
∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,
故选:D.
17.(2020 扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为(  )
A.100米 B.80米 C.60米 D.40米
【解答】解:∵小明每次都是沿直线前进10米后向左转45度,
∴他走过的图形是正多边形,
∴边数n=360°÷45°=8,
∴他第一次回到出发点A时,一共走了8×10=80(m).
故选:B.
一十七.圆周角定理(共1小题)
18.(2020 扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为(  )
A. B. C. D.
【解答】解:如图,连接AC、BC.
∵∠ADC和∠ABC所对的弧长都是,
∴根据圆周角定理的推论知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC=,
∵AC=2,BC=3,
∴AB==,
∴sin∠ABC==,
∴sin∠ADC=.
故选:A.
一十八.轴对称图形(共1小题)
19.(2020 扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是(  )
A.
B.
C.
D.
【解答】解:A、是轴对称图形,故本选项不合题意;
B、是轴对称图形,故本选项不合题意;
C、不是轴对称图形,故本选项符合题意;
D、是轴对称图形,故本选项不合题意.
故选:C.
一十九.中心对称图形(共1小题)
20.(2019 扬州)下列图案中,是中心对称图形的是(  )
A. B. C. D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,正确.
故选:D.
二十.简单组合体的三视图(共1小题)
21.(2019 扬州)如图所示物体的左视图是(  )
A. B.
C. D.
【解答】解:左视图为:,
故选:B.
二十一.调查收集数据的过程与方法(共1小题)
22.(2020 扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是(  )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,
故选:C.
二十二.众数(共1小题)
23.(2019 扬州)一组数据3、2、4、5、2,则这组数据的众数是(  )
A.2 B.3 C.3.2 D.4
【解答】解:在这组数据中2出现了2次,出现的次数最多,则这组数据的众数是2;
故选:A.
二十三.随机事件(共1小题)
24.(2021 扬州)下列生活中的事件,属于不可能事件的是(  )
A.3天内将下雨
B.打开电视,正在播新闻
C.买一张电影票,座位号是偶数号
D.没有水分,种子发芽
【解答】解:A、3天内将下雨,是随机事件;
B、打开电视,正在播新闻,是随机事件;
C、买一张电影票,座位号是偶数号,是随机事件;
D、没有水分,种子不可能发芽,故是不可能事件;
故选:D.江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题
一.科学记数法—表示较大的数(共3小题)
1.(2021 扬州)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为    .
2.(2020 扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为   .
3.(2019 扬州)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000米用科学记数法表示为   .
二.规律型:图形的变化类(共1小题)
4.(2021 扬州)将黑色圆点按如图所示的规律进行排列:
图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为    .
三.平方差公式(共1小题)
5.(2021 扬州)计算:20212﹣20202=   .
四.提公因式法与公式法的综合运用(共2小题)
6.(2021 黄石)分解因式:a3﹣2a2+a=   .
7.(2019 扬州)分解因式:a3b﹣9ab=   .
五.二次根式有意义的条件(共1小题)
8.(2020 扬州)代数式在实数范围内有意义,则实数x的取值范围是   .
六.二次根式的混合运算(共1小题)
9.(2019 扬州)计算:(﹣2)2018(+2)2019的结果是   .
七.一元一次方程的应用(共1小题)
10.(2021 扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马    天追上慢马.
八.解一元二次方程-直接开平方法(共1小题)
11.(2020 扬州)方程(x+1)2=9的根是   .
九.解一元二次方程-因式分解法(共1小题)
12.(2019 扬州)一元二次方程x(x﹣2)=x﹣2的根是   .
一十.点的坐标(共1小题)
13.(2021 扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为    .
一十一.平行线的性质(共2小题)
14.(2019 扬州)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D2作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=   .
15.(2019 扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=   °.
一十二.勾股定理的应用(共1小题)
16.(2020 扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面   尺高.
一十三.三角形中位线定理(共1小题)
17.(2021 扬州)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=   .
一十四.平行四边形的性质(共2小题)
18.(2021 扬州)如图,在 ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则 ABCD的面积为    .
19.(2020 扬州)如图,在 ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造 EFGC,连接EG,则EG的最小值为   .
一十五.矩形的性质(共1小题)
20.(2021 扬州)如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为    .
一十六.正方形的性质(共1小题)
21.(2019 扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=   .
一十七.正多边形和圆(共2小题)
22.(2020 扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=   cm.
23.(2019 扬州)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=   .
一十八.圆锥的计算(共1小题)
24.(2020 扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为   .
一十九.作图—基本作图(共1小题)
25.(2020 扬州)如图,在△ABC中,按以下步骤作图:
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为    .
二十.旋转的性质(共1小题)
26.(2019 扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为   cm2.
二十一.由三视图判断几何体(共1小题)
27.(2021 扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为    cm2.
二十二.中位数(共1小题)
28.(2021 扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是    .
二十三.利用频率估计概率(共2小题)
29.(2020 扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为    cm2.
30.(2019 扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:
抽取的毛绒玩具数n 20 50 100 200 500 1000 1500 2000
优等品的频数m 19 47 91 184 462 921 1379 1846
优等品的频率 0.950 0.940 0.910 0.920 0.924 0.921 0.919 0.923
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是    .(精确到0.01)
江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题
参考答案与试题解析
一.科学记数法—表示较大的数(共3小题)
1.(2021 扬州)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为  3.02×106 .
【解答】解:将3020000用科学记数法表示为3.02×106.
故答案为:3.02×106.
2.(2020 扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 6.5×106 .
【解答】解:6500000用科学记数法表示应为:6.5×106,
故答案为:6.5×106.
3.(2019 扬州)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000米用科学记数法表示为 1.79×106 .
【解答】解:数据1790000米用科学记数法表示为1.79×106,
故答案为:1.79×106.
二.规律型:图形的变化类(共1小题)
4.(2021 扬州)将黑色圆点按如图所示的规律进行排列:
图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为  1275 .
【解答】解:第①个图形中的黑色圆点的个数为:1,
第②个图形中的黑色圆点的个数为:=3,
第③个图形中的黑色圆点的个数为:=6,
第④个图形中的黑色圆点的个数为:=10,

第n个图形中的黑色圆点的个数为,
则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,…,
其中每3个数中,都有2个能被3整除,
33÷2=16…1,
16×3+2=50,
则第33个被3整除的数为原数列中第50个数,即=1275,
故答案为:1275.
三.平方差公式(共1小题)
5.(2021 扬州)计算:20212﹣20202= 4041 .
【解答】解:20212﹣20202
=(2021+2020)×(2021﹣2020)
=4041×1
=4041
故答案为:4041.
四.提公因式法与公式法的综合运用(共2小题)
6.(2021 黄石)分解因式:a3﹣2a2+a= a(a﹣1)2 .
【解答】解:a3﹣2a2+a
=a(a2﹣2a+1)
=a(a﹣1)2.
故答案为:a(a﹣1)2.
7.(2019 扬州)分解因式:a3b﹣9ab= ab(a+3)(a﹣3) .
【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).
故答案为:ab(a+3)(a﹣3).
五.二次根式有意义的条件(共1小题)
8.(2020 扬州)代数式在实数范围内有意义,则实数x的取值范围是 x≥﹣2 .
【解答】解:代数式在实数范围内有意义,
则x+2≥0,
解得:x≥﹣2.
故答案为:x≥﹣2.
六.二次根式的混合运算(共1小题)
9.(2019 扬州)计算:(﹣2)2018(+2)2019的结果是 +2 .
【解答】解:原式=[(﹣2)(+2)]2018 (+2)
=(5﹣4)2018 (+2)
=+2,
故答案为+2.
七.一元一次方程的应用(共1小题)
10.(2021 扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马  20 天追上慢马.
【解答】解:设快马行x天追上慢马,则此时慢马行了(x+12)日,
依题意,得:240x=150(x+12),
解得:x=20,
∴快马20天追上慢马,
故答案为:20.
八.解一元二次方程-直接开平方法(共1小题)
11.(2020 扬州)方程(x+1)2=9的根是 x1=2,x2=﹣4 .
【解答】解:(x+1)2=9,
x+1=±3,
x1=2,x2=﹣4.
故答案为:x1=2,x2=﹣4.
九.解一元二次方程-因式分解法(共1小题)
12.(2019 扬州)一元二次方程x(x﹣2)=x﹣2的根是 x1=2,x2=1 .
【解答】解:x(x﹣2)=x﹣2,
x(x﹣2)﹣(x﹣2)=0,
(x﹣2)(x﹣1)=0,
x﹣2=0,x﹣1=0,
x1=2,x2=1,
故答案为:x1=2,x2=1.
一十.点的坐标(共1小题)
13.(2021 扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为  2 .
【解答】解:由题意得:,
解得:,
∴整数m的值为2,
故答案为:2.
一十一.平行线的性质(共2小题)
14.(2019 扬州)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D2作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)= 40380 .
【解答】解:∵D1F1∥AC,D1E1∥AB,
∴,即,
∵AB=5,BC=4,
∴4D1E1+5D1F1=20,
同理4D2E2+5D2F2=20,…,4D2019E2019+5D2019F2019=20,
∴4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=20×2019=40380.
故答案为:40380.
15.(2019 扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= 128 °.
【解答】解:延长DC,
由题意可得:∠ABC=∠BCE=∠BCA=26°,
则∠ACD=180°﹣26°﹣26°=128°.
故答案为:128.
一十二.勾股定理的应用(共1小题)
16.(2020 扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55 尺高.
【解答】解:设折断处离地面x尺,
根据题意可得:x2+32=(10﹣x)2,
解得:x=4.55.
答:折断处离地面4.55尺.
故答案为:4.55.
一十三.三角形中位线定理(共1小题)
17.(2021 扬州)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE= 3 .
【解答】解:∵∠ACB=90°,DE⊥BC,
∴DE∥AC,
∵点D是AB的中点,
∴E是BC的中点,AB=2CD=10,
∴AC=2DE,
∵BC=8,
∴AC===6,
∴DE=3.
故答案为3.
一十四.平行四边形的性质(共2小题)
18.(2021 扬州)如图,在 ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则 ABCD的面积为  50 .
【解答】解:过点E作EF⊥BC,垂足为F,
∵∠EBC=30°,BE=10,
∴EF=BE=5,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DEC=∠BCE,
又EC平分∠BED,即∠BEC=∠DEC,
∴∠BCE=∠BEC,
∴BE=BC=10,
∴平行四边形ABCD的面积=BC×EF=10×5=50,
故答案为:50.
19.(2020 扬州)如图,在 ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造 EFGC,连接EG,则EG的最小值为 9 .
【解答】解:作CH⊥AB于点H,
∵在 ABCD中,∠B=60°,BC=8,
∴CH=4,
∵四边形ECGF是平行四边形,
∴EF∥CG,
∴△EOD∽△GOC,
∴=,
∵DF=DE,
∴,
∴,
∴,
∴当EO取得最小值时,EG即可取得最小值,
当EO⊥CD时,EO取得最小值,
∴CH=EO,
∴EO=4,
∴GO=5,
∴EG的最小值是,
故答案为:9.
一十五.矩形的性质(共1小题)
20.(2021 扬州)如图,在△ABC中,AC=BC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF=4,BF=3,且DE=2EF,则EF的长为   .
【解答】解:∵DE=2EF,设EF=x,则DE=2x,
∵四边形DEFG是矩形,
∴GF∥AB,
∴△CGF∽△CAB,
∴,即,
∴AB=,
∴AD+BE=AB﹣DE=,
∵AC=BC,
∴∠A=∠B,
在△ADG和△BEF中,

∴△ADG≌△BEF(AAS),
∴AD=BE=,
在Rt△BEF中,BE2+EF2=BF2,
即,
解得:x=或﹣(舍),
∴EF=,
故答案为:.
一十六.正方形的性质(共1小题)
21.(2019 扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=  .
【解答】解:连接CF,
∵正方形ABCD和正方形BEFG中,AB=7,BE=5,
∴GF=GB=5,BC=7,
∴GC=GB+BC=5+7=12,
∴=13.
∵M、N分别是DC、DF的中点,
∴MN==.
故答案为:.
一十七.正多边形和圆(共2小题)
22.(2020 扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=  cm.
【解答】解:如图,连接AC,过点B作BD⊥AC于D,
由正六边形,得
∠ABC=120°,AB=BC=a,
∠BCD=∠BAC=30°.
由AC=3,得CD=1.5.
cos∠BCD==,即=,
解得a=,
故答案为:.
23.(2019 扬州)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n= 15 .
【解答】解:连接BO,
∵AC是⊙O内接正六边形的一边,
∴∠AOC=360°÷6=60°,
∵BC是⊙O内接正十边形的一边,
∴∠BOC=360°÷10=36°,
∴∠AOB=∠AOC﹣∠BOC=60°﹣36°=24°,
∴n=360°÷24°=15;
故答案为:15.
一十八.圆锥的计算(共1小题)
24.(2020 扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 4 .
【解答】解:∵S侧=πrl,
∴3πl=12π,
∴l=4.
答:这个圆锥的母线长为4.
故答案为:4.
一十九.作图—基本作图(共1小题)
25.(2020 扬州)如图,在△ABC中,按以下步骤作图:
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为  27 .
【解答】解:如图,过点G作GM⊥AB于点M,GN⊥BC于点N,
根据作图过程可知:
BG是∠ABC的平分线,
∴GM=GN,
∵△ABG的面积为18,
∴AB×GM=18,
∴4GM=18,
∴GM=,
∴△CBG的面积为:BC×GN=12×=27.
故答案为:27.
二十.旋转的性质(共1小题)
26.(2019 扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为 32π cm2.
【解答】解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,
则图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积==32π;
故答案为:32π.
二十一.由三视图判断几何体(共1小题)
27.(2021 扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为  100π cm2.
【解答】解:由题意得圆柱的底面直径为10cm,高为10cm,
∴侧面积=10π×10=100π(cm2).
故答案为:100π.
二十二.中位数(共1小题)
28.(2021 扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是  5 .
【解答】解:∵这组数据的平均数为5,
则,
解得:a=3,
将这组数据从小到大重新排列为:3,4,5,6,7,
观察数据可知最中间的数是5,
则中位数是5.
故答案为:5.
二十三.利用频率估计概率(共2小题)
29.(2020 扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为  2.4 cm2.
【解答】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴点落入黑色部分的概率为0.6,
∵边长为2cm的正方形的面积为4cm2,
设黑色部分的面积为S,
则=0.6,
解得S=2.4(cm2).
∴估计黑色部分的总面积约为2.4cm2.
故答案为:2.4.
30.(2019 扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:
抽取的毛绒玩具数n 20 50 100 200 500 1000 1500 2000
优等品的频数m 19 47 91 184 462 921 1379 1846
优等品的频率 0.950 0.940 0.910 0.920 0.924 0.921 0.919 0.923
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是  0.92 .(精确到0.01)
【解答】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,
故答案为0.92.江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题
一.实数的运算(共1小题)
1.(2021 扬州)计算或化简:
(1)(﹣)0+|﹣3|+tan60°.
(2)(a+b)÷(+).
二.分式的乘除法(共1小题)
2.(2020 扬州)计算或化简:
(1)2sin60°+()﹣1﹣.
(2)÷.
三.分式的加减法(共1小题)
3.(2019 扬州)计算或化简:
(1)﹣(3﹣π)0﹣4cos45°;
(2)+.
四.二元一次方程组的解(共1小题)
4.(2021 扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
五.二元一次方程组的应用(共1小题)
5.(2020 扬州)阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组则x﹣y=   ,x+y=   ;
(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=   .
六.分式方程的应用(共3小题)
6.(2021 扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
7.(2020 扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品 进价(元/件) 数量(件) 总金额(元)
甲 7200
乙 3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
8.(2019 扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
七.一元一次不等式组的整数解(共2小题)
9.(2020 扬州)解不等式组并写出它的最大负整数解.
10.(2019 扬州)解不等式组,并写出它的所有负整数解.
八.反比例函数综合题(共1小题)
11.(2020 扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当n=1时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
九.二次函数的应用(共1小题)
12.(2021 扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是    元;当每个公司租出的汽车为    辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
一十.二次函数综合题(共1小题)
13.(2021 扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b=   ,c=   ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
一十一.三角形综合题(共1小题)
14.(2019 扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分别为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.
请依据上述定义解决如下问题:
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=   ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),
一十二.平行四边形的性质(共2小题)
15.(2020 扬州)如图, ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
(1)若OE=,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
16.(2019 扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求证:∠BEC=90°;
(2)求cos∠DAE.
一十三.平行四边形的判定与性质(共1小题)
17.(2021 扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.
(1)试判断四边形AFDE的形状,并说明理由;
(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.
一十四.四边形综合题(共2小题)
18.(2020 扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求的值;
(3)当四边形ABCD的周长取最大值时,求的值.
19.(2019 扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.
(1)若a=12.
①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为   ;
②在运动过程中,求四边形AMQP的最大面积;
(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.
一十五.直线与圆的位置关系(共1小题)
20.(2020 扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
一十六.切线的判定与性质(共1小题)
21.(2019 扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是上的一点.
①求∠AQB的度数;
②若OA=18,求的长.
一十七.扇形面积的计算(共1小题)
22.(2021 扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
(1)试判断CD与⊙B的位置关系,并说明理由;
(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.
一十八.圆的综合题(共1小题)
23.(2021 扬州)在一次数学探究活动中,李老师设计了一份活动单:
已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?
“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为    ;
②△ABC面积的最大值为    ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.
①线段PB长的最小值为    ;
②若S△PCD=S△PAD,则线段PD长为    .
一十九.几何变换综合题(共1小题)
24.(2019 扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B′.
(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为    ;
(2)如图2,当PB=5时,若直线l∥AC,则BB′的长度为    ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB′面积的最大值.
二十.频数(率)分布直方图(共1小题)
25.(2019 扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间t/h 频数 频率
0<t≤0.5 24
0.5<t≤1 36 0.3
1<t≤1.5 0.4
1.5<t≤2 12 b
合计 a 1
根据以上信息,回答下列问题:
(1)表中a=   ,b=   ;
(2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.
二十一.扇形统计图(共1小题)
26.(2021 扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度 人数
A.非常喜欢 50人
B.比较喜欢 m人
C.无所谓 n人
D.不喜欢 16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是    ;
(2)扇形统计图中表示A程度的扇形圆心角为    °,统计表中m=   ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
二十二.条形统计图(共1小题)
27.(2020 扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是   ,扇形统计图中表示A等级的扇形圆心角为   °;
(2)补全条形统计图;
(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
二十三.列表法与树状图法(共3小题)
28.(2021 扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是    ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
29.(2020 扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是   ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
30.(2019 扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.
(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是   ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题
参考答案与试题解析
一.实数的运算(共1小题)
1.(2021 扬州)计算或化简:
(1)(﹣)0+|﹣3|+tan60°.
(2)(a+b)÷(+).
【解答】解:(1)原式=
=4;
(2)原式=

=ab.
二.分式的乘除法(共1小题)
2.(2020 扬州)计算或化简:
(1)2sin60°+()﹣1﹣.
(2)÷.
【解答】解:(1)原式=2×+2﹣2
=+2﹣2
=2﹣;
(2)原式=
=1.
三.分式的加减法(共1小题)
3.(2019 扬州)计算或化简:
(1)﹣(3﹣π)0﹣4cos45°;
(2)+.
【解答】解:(1)原式=2﹣1﹣4×
=2﹣1﹣2
=﹣1;
(2)原式=﹣


=a+1.
四.二元一次方程组的解(共1小题)
4.(2021 扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
【解答】解:方程组,
把②代入①得:2(y﹣1)+y=7,
解得:y=3,代入①中,
解得:x=2,
把x=2,y=3代入方程ax+y=4得,2a+3=4,
解得:a=.
五.二元一次方程组的应用(共1小题)
5.(2020 扬州)阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组则x﹣y= ﹣1 ,x+y= 5 ;
(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= ﹣11 .
【解答】解:(1).
由①﹣②可得:x﹣y=﹣1,
由(①+②)可得:x+y=5.
故答案为:﹣1;5.
(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,
依题意,得:,
由2×①﹣②可得m+n+p=6,
∴5m+5n+5p=5×6=30.
答:购买5支铅笔、5块橡皮、5本日记本共需30元.
(3)依题意,得:,
由3×①﹣2×②可得:a+b+c=﹣11,
即1*1=﹣11.
故答案为:﹣11.
六.分式方程的应用(共3小题)
6.(2021 扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
【解答】解:设原先每天生产x万剂疫苗,
由题意可得:,
解得:x=40,
经检验:x=40是原方程的解,
∴原先每天生产40万剂疫苗.
7.(2020 扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品 进价(元/件) 数量(件) 总金额(元)
甲 7200
乙 3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
【解答】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,
依题意,得:﹣=40,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴(1+50%)x=60,=80,=120.
答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.
8.(2019 扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
【解答】解:设甲工程队每天修x米,则乙工程队每天修(1500﹣x)米,根据题意可得:
=,
解得:x=900,
经检验得:x=900是原方程的根,
答:甲工程队每天修900米.
七.一元一次不等式组的整数解(共2小题)
9.(2020 扬州)解不等式组并写出它的最大负整数解.
【解答】解:解不等式x+5≤0,得x≤﹣5,
解不等式≥2x+1,得:x≤﹣3,
则不等式组的解集为x≤﹣5,
所以不等式组的最大负整数解为﹣5.
10.(2019 扬州)解不等式组,并写出它的所有负整数解.
【解答】解:解不等式4(x+1)≤7x+13,得:x≥﹣3,
解不等式x﹣4<,得:x<2,
则不等式组的解集为﹣3≤x<2,
所以不等式组的所有负整数解为﹣3、﹣2、﹣1.
八.反比例函数综合题(共1小题)
11.(2020 扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当n=1时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
【解答】解:(1)①当n=1时,B(5,1),
设线段AB所在直线的函数表达式为y=mx+n,
把A(1,2)和B(5,1)代入得:,
解得:,
则线段AB所在直线的函数表达式为y=﹣x+;
②不完全同意小明的说法,理由为:
k=xy=x(﹣x+)=﹣(x﹣)2+,
∵1≤x≤5,
∴当x=1时,kmin=2;
当x=时,kmax=,
则不完全同意;
(2)当n=2时,A(1,2),B(5,2),符合;
当n≠2时,y=x+,
k=x(x+)=(x﹣)2+,
当n<2时,k随x的增大而增大,则有≥5,
此时≤n<2;
当n>2时,k随x的增大而增大,则有≤1,
此时n>2,
综上,n≥.
九.二次函数的应用(共1小题)
12.(2021 扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是  48000 元;当每个公司租出的汽车为  37 辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
【解答】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,
当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;
设每个公司租出的汽车为x辆,
由题意可得:[(50﹣x)×50+3000]x﹣200x=3500x﹣1850,
解得:x=37或x=﹣1(舍),
∴当每个公司租出的汽车为37辆时,两公司的月利润相等;
(2)设两公司的月利润分别为y甲,y乙,月利润差为y,
则y甲=[(50﹣x)×50+3000]x﹣200x,
y乙=3500x﹣1850,
当甲公司的利润大于乙公司时,0<x<37,
y=y甲﹣y乙=[(50﹣x)×50+3000]x﹣200x﹣(3500x﹣1850)
=﹣50x2+1800x+1850,
当x==18时,利润差最大,且为18050元;
当乙公司的利润大于甲公司时,37<x≤50,
y=y乙﹣y甲=3500x﹣1850﹣[(50﹣x)×50+3000]x+200x
=50x2﹣1800x﹣1850,
∵对称轴为直线x==18,50>0,
∴当37<x≤50时,y随x的增大而增大,
∴当x=50时,利润差最大,且为33150元,
综上:两公司月利润差的最大值为33150元;
(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,
则利润差为y=﹣50x2+1800x+1850﹣ax=﹣50x2+(1800﹣a)x+1850,
对称轴为直线x=,
∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,
∴16.5<<17.5,
解得:50<a<150.
一十.二次函数综合题(共1小题)
13.(2021 扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b= ﹣2 ,c= ﹣3 ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
【解答】解:(1)∵点A和点B在二次函数y=x2+bx+c图象上,
则,解得:,
故答案为:﹣2,﹣3;
(2)连接BC,由题意可得:
A(﹣1,0),B(3,0),C(0,﹣3),y=x2﹣2x﹣3,
∴S△ABC==6,
∵S△ABD=2S△ABC,设点D(m,m2﹣2m﹣3),
∴|yD|=2×6,即×4×|m2﹣2m﹣3|=2×6,
解得:m=或,代入y=x2﹣2x﹣3,
可得:y值都为6,
∴D(,6)或(,6);
(3)设P(n,n2﹣2n﹣3),
∵点P在抛物线位于x轴上方的部分,
∴n<﹣1或n>3,
当点P在点A左侧时,即n<﹣1,
可知点C到AP的距离小于点B到AP的距离,
∴S△APC<S△APB,不成立;
当点P在点B右侧时,即n>3,
∵△APC和△APB都以AP为底,若要面积相等,
则点B和点C到AP的距离相等,即BC∥AP,
设直线BC的解析式为y=kx+p,
则,解得:,
则设直线AP的解析式为y=x+q,将点A(﹣1,0)代入,
则﹣1+q=0,解得:q=1,
则直线AP的解析式为y=x+1,将P(n,n2﹣2n﹣3)代入,
即n2﹣2n﹣3=n+1,
解得:n=4或n=﹣1(舍),
n2﹣2n﹣3=5,
∴点P的坐标为(4,5).
一十一.三角形综合题(共1小题)
14.(2019 扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分别为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.
请依据上述定义解决如下问题:
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= 2 ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),
【解答】解:(1)如图1中,作CH⊥AB.
∵T(AC,AB)=3,
∴AH=3,
∵AB=5,
∴BH=5﹣3=2,
∴T(BC,AB)=BH=2,
故答案为2.
(2)如图2中,作CH⊥AB于H.
∵T(AC,AB)=4,T(BC,AB)=9,
∴AH=4,BH=9,
∵∠ACB=∠CHA=∠CHB=90°,
∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,
∴∠A=∠BCH,
∴△ACH∽△CBH,
∴=,
∴=,
∴CH=6,
∴S△ABC= AB CH=×13×6=39.
(3)如图3中,作CH⊥AD于H,BK⊥CD于K.
∵∠ACD=90°,T(AD,AC)=2,
∴AC=2,
∵∠A=60°,
∴∠ADC=∠BDK=30°,
∴CD=AC=2,AD=2AC=4,AH=AC=1,DH=AD﹣AH=3,
∵T(BC,AB)=6,CH⊥AB,
∴BH=6,
∴DB=BH﹣DH=3,
在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,
∴DK=BD cos30°=,
∴CK=CD+DK=2+=,
∴T(BC,CD)=CK=.
一十二.平行四边形的性质(共2小题)
15.(2020 扬州)如图, ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
(1)若OE=,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AO=CO,
∴∠FCO=∠EAO,
又∵∠AOE=∠COF,
∴△AOE≌△COF(ASA),
∴OE=OF=,
∴EF=2OE=3;
(2)四边形AECF是菱形,
理由:∵△AOE≌△COF,
∴AE=CF,
又∵AE∥CF,
∴四边形AECF是平行四边形,
又∵EF⊥AC,
∴四边形AECF是菱形.
16.(2019 扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求证:∠BEC=90°;
(2)求cos∠DAE.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴DC=AB,AD=BC,DC∥AB,
∴∠DEA=∠EAB,
∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DAE=∠DEA
∴AD=DE=10,
∴BC=10,AB=CD=DE+CE=16,
∵CE2+BE2=62+82=100=BC2,
∴△BCE是直角三角形,∠BEC=90°;
(2)解:∵AB∥CD,
∴∠ABE=∠BEC=90°,
∴AE===8,
∴cos∠DAE=cos∠EAB===.
一十三.平行四边形的判定与性质(共1小题)
17.(2021 扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.
(1)试判断四边形AFDE的形状,并说明理由;
(2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.
【解答】解:(1)四边形AFDE是菱形,理由是:
∵DE∥AB,DF∥AC,
∴四边形AFDE是平行四边形,
∵AD平分∠BAC,
∴∠FAD=∠EAD,
∵DE∥AB,
∴∠EDA=∠FAD,
∴∠EDA=∠EAD,
∴AE=DE,
∴平行四边形AFDE是菱形;
(2)∵∠BAC=90°,
∴四边形AFDE是正方形,
∵AD=,
∴AF=DF=DE=AE==2,
∴四边形AFDE的面积为2×2=4.
一十四.四边形综合题(共2小题)
18.(2020 扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求的值;
(3)当四边形ABCD的周长取最大值时,求的值.
【解答】(1)证明:∵AO=OD,
∴∠OAD=∠ADO,
∵OC平分∠BOD,
∴∠DOC=∠COB,
又∵∠DOC+∠COB=∠OAD+∠ADO,
∴∠ADO=∠DOC,
∴CO∥AD;
(2)解:如图1,
∵OA=OB=OD,
∴∠ADB=90°,
设∠DAC=α,则∠ACO=∠DAC=α.
∵OA=OD,DA∥OC,
∴∠ODA=∠OAD=2α,
∴∠DFE=3α,
∵DF=DE,
∴∠DEF=∠DFE=3α,
∴4α=90°,
∴α=22.5°,
∴∠DAO=45°,
∴△AOD和△ABD为等腰直角三角形,
∴AD=AO,
∴,
∵DE=DF,
∴∠DFE=∠DEF,
∵∠DFE=∠AFO,
∴∠AFO=∠AED,
又∠ADE=∠AOF=90°,
∴△ADE∽△AOF,
∴.
(3)解:如图2,
∵OD=OB,∠BOC=∠DOC,
∴△BOC≌△DOC(SAS),
∴BC=CD,
设BC=CD=x,CG=m,则OG=2﹣m,
∵OB2﹣OG2=BC2﹣CG2,
∴4﹣(2﹣m)2=x2﹣m2,
解得:m=,
∴OG=2﹣,
∵OD=OB,∠DOG=∠BOG,
∴G为BD的中点,
又∵O为AB的中点,
∴AD=2OG=4﹣,
∴四边形ABCD的周长为2BC+AD+AB=2x+4﹣+4=﹣+2x+8=﹣+10,
∵﹣<0,
∴x=2时,四边形ABCD的周长有最大值为10.
∴BC=2,
∴△BCO为等边三角形,
∴∠BOC=60°,
∵OC∥AD,
∴∠DAO=∠COB=60°,
∴∠ADF=∠DOC=60°,∠DAE=30°,
∴∠AFD=90°,
∴,DF=DA,
∴.
19.(2019 扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.
(1)若a=12.
①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为 3 ;
②在运动过程中,求四边形AMQP的最大面积;
(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.
【解答】(1)解:①P在线段AD上,PQ=AB=20,AP=x,AM=12,
四边形AMQP的面积=(12+20)x=48,
解得:x=3;
故答案为:3;
②当P,在AD上运动时,P到D点时四边形AMQP面积最大,四边形AMQP为直角梯形,
∴0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,
当P在DG上运动,10<x<20,四边形AMQP为不规则梯形,
作PK⊥AB于K,交CD于N,作GE⊥CD于E,交AB于F,如图2所示:
则PK=x,PN=x﹣10,EF=BC=10,
∵△GDC是等腰直角三角形,
∴DE=CE,GE=CD=10,
∴GF=GE+EF=20,
∴GH=20﹣x,
由题意得:PQ∥CD,
∴△GPQ∽△GDC,
∴=,
即=,
解得:PQ=40﹣2x,
∴梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,
∴当x=13时,四边形AMQP的面积最大=169;
(2)解:P在DG上,则10≤x<20,AM=a,PQ=40﹣2x,
梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,
∵0≤a≤20,
∴10≤10+≤15,对称轴在10和15之间,
∵10≤x<20,二次函数图象开口向下,
∴当x无限接近于20时,S最小,
∴﹣202+×20≥50,
∴a≥5;
综上所述,a的取值范围为5≤a≤20.
一十五.直线与圆的位置关系(共1小题)
20.(2020 扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
【解答】(1)证明:连接OA、AD,如图,
∵CD为⊙O的直径,
∴∠DAC=90°,
又∵∠ADC=∠B=60°,
∴∠ACE=30°,
又∵AE=AC,OA=OD,
∴△ADO为等边三角形,
∴∠AEC=30°,∠ADO=∠DAO=60°,
∴∠EAD=30°,
∴∠EAD+∠DAO=90°,
∴∠EAO=90°,即OA⊥AE,
∴AE为⊙O的切线;
(2)解:由(1)可知△AEO为直角三角形,且∠E=30°,
∴OA=2,AE=6,
∴阴影部分的面积为×6×2﹣=6﹣2π.
故阴影部分的面积为6﹣2π.
一十六.切线的判定与性质(共1小题)
21.(2019 扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是上的一点.
①求∠AQB的度数;
②若OA=18,求的长.
【解答】(1)证明:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵PC=CB,
∴∠CPB=∠PBC,
∵∠APO=∠CPB,
∴∠APO=∠CBP,
∵OC⊥OA,
∴∠AOP=90°,
∴∠OAP+∠APO=90°,
∴∠CBP+∠ABO=90°,
∴∠CBO=90°,
∴BC是⊙O的切线;
(2)解:①∵∠BAO=25°,
∴∠ABO=25°,∠APO=65°,
∴∠POB=∠APO﹣∠ABO=40°,
∴∠AQB=(∠AOP+∠POB)=130°=65°;
②∵∠AQB=65°,
∴∠AOB=130°,
∴弧AQB的度数=360°﹣130°=230°,
∵m在弧AB上,
∴的长=的长==23π.
一十七.扇形面积的计算(共1小题)
22.(2021 扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
(1)试判断CD与⊙B的位置关系,并说明理由;
(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.
【解答】解:(1)过点B作BF⊥CD,垂足为F,
∵AD∥BC,
∴∠ADB=∠CBD,
∵CB=CD,
∴∠CBD=∠CDB,
∴∠ADB=∠CDB.
在△ABD和△FBD中,

∴△ABD≌△FBD(AAS),
∴BF=BA,则点F在圆B上,
∴CD与⊙B相切;
(2)∵∠BCD=60°,CB=CD,
∴△BCD是等边三角形,
∴∠CBD=60°
∵BF⊥CD,
∴∠ABD=∠DBF=∠CBF=30°,
∴∠ABF=60°,
∵AB=BF=,
∴AD=DF=AB·tan30°=2,
∴阴影部分的面积=S△ABD﹣S扇形ABE

=.
一十八.圆的综合题(共1小题)
23.(2021 扬州)在一次数学探究活动中,李老师设计了一份活动单:
已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?
“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为  2 ;
②△ABC面积的最大值为   ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.
①线段PB长的最小值为   ;
②若S△PCD=S△PAD,则线段PD长为   .
【解答】解:(1)①设O为圆心,连接BO,CO,
∵∠BAC=30°,
∴∠BOC=60°,又OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=2,即半径为2;
②∵△ABC以BC为底边,BC=2,
∴当点A到BC的距离最大时,△ABC的面积最大,
如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,
∴BE=CE=1,DO=BO=2,
∴OE=,
∴DE=,
∴△ABC的最大面积为=;
(2)如图,延长BA′,交圆于点D,连接CD,
∵点D在圆上,
∴∠BDC=∠BAC,
∵∠BA′C=∠BDC+∠A′CD,
∴∠BA′C>∠BDC,
∴∠BA′C>∠BAC,即∠BA′C>30°;
(3)①如图,当点P在BC上,且PC=时,
∵∠PCD=90°,AB=CD=2,AD=BC=3,
∴tan∠DPC=,为定值,
连接PD,设点Q为PD中点,以点Q为圆心,PD为半径画圆,
∴当点P在优弧CPD上时,tan∠DPC=,连接BQ,与圆Q交于P′,
此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,
∵点Q是PD中点,
∴点E为PC中点,即QE=CD=1,PE=CE=PC=,
∴BE=BC﹣CE=3﹣=,
∴BQ=,
∵PD=,
∴圆Q的半径为,
∴BP′=BQ﹣P′Q=,即BP的最小值为;
②∵AD=3,CD=2,S△PCD=S△PAD,
则,
∴△PAD中AD边上的高=△PCD中CD边上的高,
即点P到AD的距离和点P到CD的距离相等,
则点P到AD和CD的距离相等,即点P在∠ADC的平分线上,如图,
过点C作CF⊥PD,垂足为F,
∵PD平分∠ADC,
∴∠ADP=∠CDP=45°,
∴△CDF为等腰直角三角形,又CD=2,
∴CF=DF=,
∵tan∠DPC=,
∴PF=,
∴PD=DF+PF=.
解法二:如图,作直径DG,连接PG,
∵△CDF为等腰直角三角形,又CD=2,
∴∠CDF=∠CED=45°,
∴CD=CE=2,
∴DE=2,
∵∠DPC=∠GDC,
∴tan∠DGC=tan∠DPC==,
∴CG=1.5,EG=0.5,
∵DG是直径,
∴∠DPG=∠EPG=90°,
∴PE=EG=,
∴PD=DE﹣PE=2﹣=.
一十九.几何变换综合题(共1小题)
24.(2019 扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B′.
(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为  4或0 ;
(2)如图2,当PB=5时,若直线l∥AC,则BB′的长度为  5 ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB′面积的最大值.
【解答】解:(1)如图1中,
∵△ABC是等边三角形,
∴∠A=60°,AB=BC=AC=8,
∵PB=4,
∴PB′=PB=PA=4,
∵∠A=60°,
∴△APB′是等边三角形,
∴AB′=AP=4.
当直线l经过C时,点B′与A重合,此时AB′=0
故答案为4或0.
(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.
∵PE∥AC,
∴∠BPE=∠A=60°,∠BEP=∠C=60°,
∴△PEB是等边三角形,
∵PB=5,
∴∵B,B′关于PE对称,
∴BB′⊥PE,BB′=2OB
∴OB=PB sin60°=,
∴BB′=5.
故答案为5.
(3)如图3中,结论:面积不变.
∵B,B′关于直线l对称,
∴BB′⊥直线l,
∵直线l⊥AC,
∴AC∥BB′,
∴S△ACB′=S△ACB=×8××8=16.
(4)如图4中,当B′P⊥AC时,△ACB′的面积最大,
设直线PB′交AC于E,
在Rt△APE中,∵PA=2,∠PAE=60°,
∴PE=PA sin60°=,
∴B′E=6+,
∴S△ACB′的最大值=×8×(6+)=4+24.
解法二:如图5中,过点P作PH垂直于AC,
由题意可得:B′在以P为圆心半径长为6的圆上运动,
当PH的延长线交圆P于点B′时面积最大,
此时BH=6+,S△ACB′的最大值=×8×(6+)=4+24.
二十.频数(率)分布直方图(共1小题)
25.(2019 扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间t/h 频数 频率
0<t≤0.5 24
0.5<t≤1 36 0.3
1<t≤1.5 0.4
1.5<t≤2 12 b
合计 a 1
根据以上信息,回答下列问题:
(1)表中a= 120 ,b= 0.1 ;
(2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.
【解答】解:(1)a=36÷0.3=120,b=12÷120=0.1,
故答案为:120,0.1;
(2)1<t≤1.5的人数为120×0.4=48,
补全图形如下:
(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).
二十一.扇形统计图(共1小题)
26.(2021 扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度 人数
A.非常喜欢 50人
B.比较喜欢 m人
C.无所谓 n人
D.不喜欢 16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是  200 ;
(2)扇形统计图中表示A程度的扇形圆心角为  90 °,统计表中m= 94 ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
【解答】解:(1)16÷8%=200,
则样本容量是200;
故答案为:200.
(2)×360°=90°,
则表示A程度的扇形圆心角为90°;
200×(1﹣8%﹣20%﹣×100%)=94,
则m=94;
故答案为:90;94.
(3)=1440(名),
∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.
二十二.条形统计图(共1小题)
27.(2020 扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 500 ,扇形统计图中表示A等级的扇形圆心角为 108 °;
(2)补全条形统计图;
(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
【解答】解:(1)本次调查的样本容量是150÷30%=500,
扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,
故答案为:500,108;
(2)B等级的人数为:500×40%=200,
补全的条形统计图如右图所示;
(3)2000×=200(人),
答:估计该校需要培训的学生有200人.
二十三.列表法与树状图法(共3小题)
28.(2021 扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是   ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
【解答】解:(1)∵丙坐了一张座位,
∴甲坐在①号座位的概率是;
(2)画树状图如图:
共有6种等可能的结果,甲与乙两人恰好相邻而坐的结果有4种,
∴甲与乙相邻而坐的概率为.
29.(2020 扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是  ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
【解答】解:(1)小明从A测温通道通过的概率是,
故答案为:;
(2)列表格如下:
A B C
A A,A B,A C,A
B A,B B,B C,B
C A,C B,C C,C
由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
所以小明和小丽从同一个测温通道通过的概率为=.
30.(2019 扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.
(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是  ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
【解答】解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是.
故答案为.
(2)树状图如图所示:
共有12种可能,满足条件的有4种可能,
所以抽到的两个素数之和等于30的概率==

展开更多......

收起↑

资源列表