2021-2022学年北师大版七年级数学下册期末复习综合练习题(word版 含解析)

资源下载
  1. 二一教育资源

2021-2022学年北师大版七年级数学下册期末复习综合练习题(word版 含解析)

资源简介

2021-2022学年北师大版七年级数学下册期末复习综合练习题(附答案)
一.选择题
1.下列计算中,正确的是(  )
A.(a+3)2=a2+9 B.a8÷a4=a2
C.2(a﹣b)=2a﹣b D.a2+a2=2a2
2.下面四幅图是摄影爱好者抢拍的一组照片.从对称美的角度看,拍得最成功的是(  )
A. B. C. D.
3.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为(  )
A.4 B.5 C.6 D.7
4.图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状,由此能验证的式子是(  )
A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2﹣(a2+b2)=2ab
C.(a+b)2﹣(a﹣b)2=4ab D.(a﹣b)2+2ab=a2+b2
5.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为(  )
A.2 B.3 C.4 D.6
6.下列事件为必然事件的是(  )
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
7.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是(  )
A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC
8.已知实数a、b满足a+b=2,ab=,则a﹣b=(  )
A.1 B.﹣ C.±1 D.±
9.“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是(  )
A. B. C. D.
10.如图,将直尺与三角尺叠放在一起,如果∠1=28°,那么∠2的度数为(  )
A.62° B.56° C.28° D.72°
11.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为(  )
A.8 B.11 C.16 D.17
12.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有(  )
A.1个 B.2个 C.3个 D.4个
二.填空题
13.等腰三角形的一个角是80°,则它的另外两个角的度数是   .
14.在一个不透明的口袋里装有除颜色不同外,其余都相同的4个红球和若干个绿球,袋中的球已被搅匀,若从中任意取出一个小球为绿球的概率是,则口袋里绿球个数是    个.
15.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为    .
16.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为   .
17.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=   .
18.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为   .
三.解答题
19.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.
20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.
21.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.
22.如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.
求证:AF=CM.
23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××
小张同学要破解其密码:
(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是   .
(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;
(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.
24.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)
25.数学课上,张老师举了下面的例题:
例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)
例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
变式等腰三角形ABC中,∠A=80°,求∠B的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.
26.如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=   ;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
参考答案
一.选择题
1.解:A选项,原式=a2+6a+9,故该选项不符合题意;
B选项,原式=a4,故该选项不符合题意;
C选项,原式=2a﹣2b,故该选项不符合题意;
D选项,原式=2a2,故该选项符合题意;
故选:D.
2.解:A、不是轴对称图形,故本选项不符合题意;
B、是轴对称图形,故本选项符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:B.
3.解:①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
③长度分别为2、7、3,不能构成三角形;
④长度分别为6、3、3,不能构成三角形;
综上所述,得到三角形的最长边长为5.
故选:B.
4.解:根据图形可得:
∵AB=,
∴S阴影=(a+b)2﹣(a2+b2)=2ab.
故选:B.
5.解:由作图知,MN是线段BC的垂直平分线,
∴BD=CD,
∵AC=6,AD=2,
∴BD=CD=4,故选:C.
6.解:A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球是不可能事件;
B.三角形的内角和为180°是必然事件;
C.打开电视机,任选一个频道,屏幕上正在播放广告是随机事件;
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上是随机事件;故选:B.
7.解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.
B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;
C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;
D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.
8.解:∵a+b=2,ab=,
∴(a+b)2=4=a2+2ab+b2,
∴a2+b2=,
∴(a﹣b)2=a2﹣2ab+b2=1,
∴a﹣b=±1,故选:C.
9.解:由题意可得:粽子总数为11个,其中6个为甜粽,
所以选到甜粽的概率为:,故选:D.
10.解:如图,标注字母,
由题意可得:∠BAC=90°,∠DAC=∠BAC﹣∠1=62°,
∵EF∥AD,
∴∠2=∠DAC=62°,
故选:A.
11.解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=11.
故选:B.
12.解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴EC=BD,∠BDA=∠AEC,故①正确
∵∠DOF=∠AOE,
∴∠DFO=∠EAO=90°,
∴BD⊥EC,故②正确,
∵△BAD≌△CAE,AM⊥BD,AN⊥EC,
∴AM=AN,
∴FA平分∠EFB,
∴∠AFE=45°,故④正确,
若③成立,则∠EAF=∠BAF,
∵∠AFE=∠AFB,
∴∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,
所以AF不一定平分∠CAD,故③错误,
故选:C.
二.填空题
13.解:①当这个角是底角时,另外两个角是:80°,20°;
②当这个角是顶角时,另外两个角是:50°,50°.
故答案为:80°,20°或50°,50°.
14.解:设袋中的绿球个数为x个,
∴=,
解得:x=2,
经检验,x=2是原方程的解,
∴袋中绿球的个数2个;
故答案为:2.
15.解:如图,
∵∠B=30°,∠DCB=65°,
∴∠DFB=∠B+∠DCB=30°+65°=95°,
∴∠α=∠D+∠DFB=45°+95°=140°,
故答案为:140°.
16.解:∵AB=5,AC=8,AF=AB,
∴FC=AC﹣AF=8﹣5=3,
由作图方法可得:AD平分∠BAC,
∴∠BAD=∠CAD,
在△ABD和△AFD中

∴△ABD≌△AFD(SAS),
∴BD=DF,
∴△DFC的周长为:DF+FC+DC=BD+DC+FC=BC+FC=9+3=12.
故答案为:12.
17.解:如图,延长CB交l1于点D,
∵AB=BC,∠C=30°,
∴∠C=∠4=30°,
∵l1∥l2,∠1=80°,
∴∠1=∠3=80°,
∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,
∴∠2=40°.
故答案为:40°.
18.解:从图象②和已知可知:AB=4,BC=10﹣4=6,
所以矩形ABCD的面积是4×6=24,
故答案为:24.
三.解答题
19.解:原式=a2+2a+1+a﹣a2﹣1
=3a.
当a=时,
原式=3.
20.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2
=6xy,
当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.
21.证明一:∵∠A=∠1,
∴AE∥BF,
∴∠2=∠E.
∵CE∥DF,
∴∠2=∠F,
∴∠E=∠F.
证明二:∵CE∥DF,
∴∠ACE=∠D,
∵∠A=∠1,
∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,
又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,
∴∠E=∠F.
22.证明:∵AB=AC,
∴∠B=∠C,
∴∠DAC=∠B+∠C=2∠C,
∵AF是∠DAC的平分线,
∴∠EAF=∠DAC=∠C,
∵E是AC的中点,
∴AE=CE,
在△AEF和△CEM中,

∴△AEF≌△CEM(ASA),
∴AF=CM.
23.解:(1)∵小黄同学是9月份中旬出生
∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;
故答案为1或2;
(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;
能被3整除的有912,915,918,;
密码数能被3整除的概率.
(3)小张同学是6月份出生,6月份只有30天,
∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能是0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0;
∴一共有9+10+10+1=30,
∴小张生日设置的密码的所有可能个数为30种.(也可以直接根据6月份只有30天,有30个不同的数字,得出设置的密码的所有可能个数为30种)
24.解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.
证明:∵AD⊥BC,
∴∠ADB=90°,
∴∠BPD+∠PBD=90°.
∵∠BAC=90°,
∴∠AQP+∠ABQ=90°.
∵∠ABQ=∠PBD,
∴∠BPD=∠AQP.
∵∠BPD=∠APQ,
∴∠APQ=∠AQP,
∴AP=AQ.
25.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;
若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;
若∠A为底角,∠B为底角,则∠B=80°;
故∠B=50°或20°或80°;
(2)分两种情况:
①当90≤x<180时,∠A只能为顶角,
∴∠B的度数只有一个;
②当0<x<90时,
若∠A为顶角,则∠B=()°;
若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;
若∠A为底角,∠B为底角,则∠B=x°.
当≠180﹣2x且180﹣2x≠x且≠x,
即x≠60时,∠B有三个不同的度数.
综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.
26.解:(1)设AP的长是x,则BP=2a﹣x,
∴S△APC+S△PBD=x x+(2a﹣x) (2a﹣x)
=x2﹣ax+a2,
当x=﹣=﹣=a时△APC与△PBD的面积之和取最小值,
故答案为:a;
(2)α的大小不会随点P的移动而变化,
理由:∵△APC是等边三角形,
∴PA=PC,∠APC=60°,
∵△BDP是等边三角形,
∴PB=PD,∠BPD=60°,
∴∠APC=∠BPD,
∴∠APD=∠CPB,
∴△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°﹣120°=60°;
(3)此时α的大小不会发生改变,始终等于60°.
理由:∵△APC是等边三角形,
∴PA=PC,∠APC=60°,
∵△BDP是等边三角形,
∴PB=PD,∠BPD=60°,
∴∠APC=∠BPD,
∴∠APD=∠CPB,
∴△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°﹣120°=60°.

展开更多......

收起↑

资源预览