近五年(2018—2022)数学高考真题分类汇编06:函数与导数(含解析)

资源下载
  1. 二一教育资源

近五年(2018—2022)数学高考真题分类汇编06:函数与导数(含解析)

资源简介

六:函数与导数
一、选择题
1.(2022·全国甲(文T7)(理T5))函数在区间的图象大致为( )
A. B.
C. D.
2.(2022·全国甲(文T8)(理T6)). 当时,函数取得最大值,则( )
A. B. C. D. 1
3.(2022·全国乙(文T8) 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A. B. C. D.
4.(2022·全国乙(理)T12) 已知函数的定义域均为R,且.若的图像关于直线对称,,则( )
A. B. C. D.
5.(2022·新高考Ⅰ卷T10)已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
6.(2022·新高考Ⅰ卷T12) 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
7.(2022·新高考Ⅱ卷T8) 若函数的定义域为R,且,则( )
A. B. C. 0 D. 1
8.(2022·北京卷T4) 己知函数,则对任意实数x,有( )
A. B.
C. D.
9.(2022·北京卷T7) 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A. 当,时,二氧化碳处于液态
B. 当,时,二氧化碳处于气态
C. 当,时,二氧化碳处于超临界状态
D. 当,时,二氧化碳处于超临界状态
10.(2022·浙江卷T7) 已知,则( )
A. 25 B. 5 C. D.
11.(2021·全国(文))下列函数中是增函数的为( )
A. B. C. D.
12.(2021·全国)若过点可以作曲线的两条切线,则( )
A. B.
C. D.
13.(2021·浙江)已知函数,则图象为如图的函数可能是( )
A. B.
C. D.
14.(2021·全国(文))设是定义域为R的奇函数,且.若,则( )
A. B. C. D.
15.(2021·全国(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()
A.1.5 B.1.2 C.0.8 D.0.6
16.(2021·全国(理))设函数的定义域为R,为奇函数,为偶函数,当时,.若,则( )
A. B. C. D.
17.(2021·全国(理))设,,.则( )
A. B. C. D.
18.(2021·全国(理))设,若为函数的极大值点,则( )
A. B. C. D.
19.(2021·全国(文))下列函数中最小值为4的是( )
A. B.
C. D.
20.(2021·全国(理))设函数,则下列函数中为奇函数的是( )
A. B. C. D.
21.(2020·海南)已知函数在上单调递增,则的取值范围是( )
A. B. C. D.
22.(2020·天津)设,则的大小关系为( )
A. B. C. D.
23.(2020·天津)已知函数若函数恰有4个零点,则的取值范围是( )
A. B.
C. D.
24.(2020·天津)函数的图象大致为( )
A. B.
C. D.
25.(2020·海南)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )
A.1.2天 B.1.8天
C.2.5天 D.3.5天
26.(2020·海南)若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )
A. B.
C. D.
27.(2020·全国(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
28.(2020·全国(理))已知55<84,134<85.设a=log53,b=log85,c=log138,则( )
A.a29.(2020·全国(文))Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为( )(ln19≈3)
A.60 B.63 C.66 D.69
30.(2020·全国(理))若,则( )
A. B. C. D.
31.(2020·全国(理))设函数,则f(x)( )
A.是偶函数,且在单调递增 B.是奇函数,且在单调递减
C.是偶函数,且在单调递增 D.是奇函数,且在单调递减
32.(2019·北京(理))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
A.1010.1 B.10.1 C.lg10.1 D.
33.(2019·全国(理))设是定义域为的偶函数,且在单调递减,则
A.
B.
C.
D.
34.(2019·全国(理))已知曲线在点处的切线方程为,则
A. B. C. D.
35.(2019·浙江)在同一直角坐标系中,函数且的图象可能是
A. B.
C. D.
36.(2019·浙江)已知,函数,若函数恰有三个零点,则
A. B.
C. D.
37.(2019·天津(理))已知,设函数若关于的不等式在上恒成立,则的取值范围为
A. B. C. D.
38.(2019·全国(理))函数在的图像大致为
A. B.
C.D.
39.(2019·天津(文))已知函数若关于的方程恰有两个互异的实数解,则的取值范围为
A. B. C. D.
40.(2019·全国(理))设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是
A. B.
C. D.
41.(2019·全国(理))若a>b,则
A.ln(a b)>0 B.3a<3b
C.a3 b3>0 D.│a│>│b│
42.(2018·全国(文))函数的图像大致为 (  )
A. B.
C. D.
43.(2018·浙江)已知成等比数列,且.若,则
A. B.
C. D.
44.(2018·全国(文))设函数,则满足的x的取值范围是
A. B. C. D.
45.(2018·全国(文))已知是定义域为的奇函数,满足.若,则
A. B. C. D.
46.(2018·全国(理))已知函数.若g(x)存在2个零点,则a的取值范围是
A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)
47.(2018·全国(理))设,,则
A. B.
C. D.
二、填空题
48(2022·全国乙(文T16) 若是奇函数,则_____,______.
49(2022·全国乙(理)T16) 已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
50.(2022·新高考Ⅰ卷T15)若曲线有两条过坐标原点的切线,则a的取值范围是______________.
51.(2022·新高考Ⅱ卷T14) 写出曲线过坐标原点的切线方程:____________,____________.
52.(2022·北京卷T11) 函数的定义域是_________.
53.(2022·北京卷T14)设函数若存在最小值,则a的一个取值为________;a的最大值为___________.
54.(2022·浙江卷T14) 已知函数则________;若当时,,则的最大值是_________.
55.(2021·浙江)已知,函数若,则___________.
56.(2021·全国)函数的最小值为______.
57.(2021·全国)已知函数是偶函数,则______.
58.(2020·北京)函数的定义域是____________.
59.(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在这段时间内,甲企业的污水治理能力比乙企业强;
②在时刻,甲企业的污水治理能力比乙企业强;
③在时刻,甲、乙两企业的污水排放都已达标;
④甲企业在这三段时间中,在的污水治理能力最强.
其中所有正确结论的序号是____________________.
60.(2020·全国(理))关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
61.(2019·江苏)在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是____.
62.(2019·浙江)已知,函数,若存在,使得,则实数的最大值是____.
63.(2019·全国(文))曲线在点处的切线方程为___________.
64.(2018·上海)已知常数,函数的图象经过点,.若,则______.
65.(2018·江苏)函数满足,且在区间上,则的值为____.
66.(2018·江苏)若函数在内有且只有一个零点,则在上的最大值与最小值的和为__________.
67.(2018·全国(文))已知函数,,则________.
68.(2018·全国(理))曲线在点处的切线的斜率为,则________.
69.(2018·天津(理))已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.
70.(2018·天津(文))已知,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________.
71.(2019·北京(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
72.(2019·北京(理))设函数f(x)=ex+ae x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.
73.(2018·浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.
74.(2018·浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.
75.(2017·北京(理))三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.
中小学教育资源及组卷应用平台
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.
解答题
76.(2022·全国甲(文)T20) 已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
77.(2022·全国甲(理)T21) 已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则环.
78.(2022·全国乙(文)T20) 已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
79.(2022·全国乙(理)T21)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
80.(2022·新高考Ⅰ卷T22) 已知函数和有相同最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
81.(2022·新高考Ⅱ卷T22) 已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
82.(2022·北京卷T20) 已知函数.
(1)求曲线在点处切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
83.(2022·浙江卷T22) 设函数.
(1)求的单调区间;
(2)已知,曲线上不同的三点处的切线都经过点.证明:
(ⅰ)若,则;
(ⅱ)若,则.
(注:是自然对数底数)
84.(2021·全国)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
85.(2021·全国(文))设函数,其中.
(1)讨论的单调性;
(2)若的图像与轴没有公共点,求a的取值范围.
86.(2021·浙江)设a,b为实数,且,函数
(1)求函数的单调区间;
(2)若对任意,函数有两个不同的零点,求a的取值范围;
(3)当时,证明:对任意,函数有两个不同的零点,满足.
(注:是自然对数的底数)
87.(2021·全国(理))已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
88.(2021·全国(理))设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
89.(2020·天津)已知函数,为的导函数.
(Ⅰ)当时,
(i)求曲线在点处的切线方程;
(ii)求函数的单调区间和极值;
(Ⅱ)当时,求证:对任意的,且,有.
90.(2020·北京)已知函数.
(Ⅰ)求曲线的斜率等于的切线方程;
(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.
91.(2020·浙江)已知,函数,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在上有唯一零点;
(Ⅱ)记x0为函数在上的零点,证明:
(ⅰ);
(ⅱ).
92.(2020·海南)已知函数.
(1)当时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.
93.(2020·全国(文))已知函数f(x)=2lnx+1.
(1)若f(x)≤2x+c,求c的取值范围;
(2)设a>0时,讨论函数g(x)=的单调性.
94.(2020·全国(理))已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(2)证明:;
(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤.
95.(2020·全国(理))设函数,曲线在点(,f())处的切线与y轴垂直.
(1)求b.
(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.
96.(2020·全国(文))已知函数.
(1)讨论的单调性;
(2)若有三个零点,求的取值范围.
97.(2019·全国(文))已知函数.
(1)讨论的单调性;
(2)当时,记在区间的最大值为,最小值为,求的取值范围.
98.(2019·全国(理))已知函数.
(1)讨论的单调性;
(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.
99.(2019·天津(文))设函数,其中.
(Ⅰ)若,讨论的单调性;
(Ⅱ)若,
(i)证明恰有两个零点
(ii)设为的极值点,为的零点,且,证明.
100.(2019·浙江)已知实数,设函数
(1)当时,求函数的单调区间;
(2)对任意均有 求的取值范围.
注:为自然对数的底数.
101.(2019·全国(文))已知函数.证明:
(1)存在唯一的极值点;
(2)有且仅有两个实根,且两个实根互为倒数.
102.(2018·天津(文))设函数,其中,且是公差为的等差数列.
(I)若 求曲线在点处的切线方程;
(II)若,求的极值;
(III)若曲线与直线有三个互异的公共点,求d的取值范围.
103.(2018·天津(理))已知函数,,其中a>1.
(I)求函数的单调区间;
(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;
(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.
104.(2018·江苏)记分别为函数的导函数.若存在,满足且,则称为函数与的一个“点”.
(1)证明:函数与不存在“点”;
(2)若函数与存在“点”,求实数的值;
(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“点”,并说明理由.
105.(2018·北京(理))设函数=[].
(1)若曲线在点(1,)处的切线与轴平行,求;
(2)若在处取得极小值,求的取值范围.
106.(2018·北京(文))设函数.
(Ⅰ)若曲线在点处的切线斜率为0,求a;
(Ⅱ)若在处取得极小值,求a的取值范围.
107.(2018·全国(理))已知函数.
(1)若,证明:当时,;当时,;
(2)若是的极大值点,求.
108.(2018·全国(文))已知函数.
(1)求曲线在点处的切线方程;
(2)证明:当时,.
109.(2018·全国(文))已知函数.
(1)若,求的单调区间;
(2)证明:只有一个零点.
110.(2018·全国(理))已知函数.
(1)若,证明:当时,;
(2)若在只有一个零点,求的值.
111.(2018·全国(理))已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
参考答案
一、选择题
1.A
【解析】令,
则,
所以为奇函数,排除BD;
又当时,,所以,排除C.故选:A.
2.B
【解析】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.故选:B.
3.A
【解析】设,则,故排除B;
设,当时,,
所以,故排除C;
设,则,故排除D.故选:A.
4.D
【解析】因为的图像关于直线对称,
所以,
因为,所以,即,
因为,所以,
代入得,即,
所以,
.
因为,所以,即,所以.
因为,所以,又因为,
联立得,,
所以的图像关于点中心对称,因为函数的定义域为R,
所以
因为,所以.
所以.
故选:D
5.AC
【解析】由题,,令得或,
令得,
所以在上单调递减,在,上单调递增,
所以是极值点,故A正确;
因,,,
所以,函数在上有一个零点,
当时,,即函数在上无零点,
综上所述,函数有一个零点,故B错误;
令,该函数的定义域为,,
则是奇函数,是的对称中心,
将的图象向上移动一个单位得到的图象,
所以点是曲线的对称中心,故C正确;
令,可得,又,
当切点为时,切线方程为,当切点为时,切线方程为,
故D错误.故选:AC
6.BC
【解析】因为,均为偶函数,
所以即,,
所以,,则,故C正确;
函数,的图象分别关于直线对称,
又,且函数可导,
所以,
所以,所以,
所以,,故B正确,D错误;
若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.
7.A
【解析】因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.
因为,,,,,所以
一个周期内的.由于22除以6余4,
所以.故选:A.
8.C
【解析】
,故A错误,C正确;
,不是常数,故BD错误;故选:C.
9.D
【解析】当,时,,此时二氧化碳处于固态,故A错误.
当,时,,此时二氧化碳处于液态,故B错误.
当,时,与4非常接近,故此时二氧化碳处于固态,
另一方面,时对应的是非超临界状态,故C错误.
当,时,因, 故此时二氧化碳处于超临界状态,故D正确.故选:D
10.C
【解析】因为,,即,所以.故选:C.
11.D
【解析】
对于A,为上的减函数,不合题意,舍.
对于B,为上的减函数,不合题意,舍.
对于C,在为减函数,不合题意,舍.
对于D,为上的增函数,符合题意,故选:D.
12.D
【解析】
在曲线上任取一点,对函数求导得,
所以,曲线在点处的切线方程为,即,
由题意可知,点在直线上,可得,
令,则.
当时,,此时函数单调递增,
当时,,此时函数单调递减,
所以,,
由题意可知,直线与曲线的图象有两个交点,则,
当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.
故选:D.
解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.
故选:D.
13.D
【解析】
对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;
对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;
对于C,,则,
当时,,与图象不符,排除C.
故选:D.
14.C
【解析】
由题意可得:,
而,
故.故选:C.
15.C
【解析】
由,当时,,则.故选:C.
16.D
【解析】
因为是奇函数,所以①;
因为是偶函数,所以②.
令,由①得:,由②得:,
因为,所以,
令,由①得:,所以.
思路一:从定义入手.
所以.
思路二:从周期性入手
由两个对称性可知,函数的周期.
所以.故选:D.
17.B
【解析】
,
所以;
下面比较与的大小关系.
记,则,,
由于
所以当0所以在上单调递增,
所以,即,即;
令,则,,
由于,在x>0时,,
所以,即函数在[0,+∞)上单调递减,所以,即,即b18.D
【解析】
若,则为单调函数,无极值点,不符合题意,故.
依题意,为函数的极大值点,
当时,由,,画出的图象如下图所示:
由图可知,,故.
当时,由时,,画出的图象如下图所示:
由图可知,,故.综上所述,成立.
19.C
【解析】
对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.故选:C.
20.B
【解析】
由题意可得,
对于A,不是奇函数;对于B,是奇函数;
对于C,,定义域不关于原点对称,不是奇函数;
对于D,,定义域不关于原点对称,不是奇函数.故选:B
21.D
【解析】
由得或,所以的定义域为
因为在上单调递增,所以在上单调递增,所以故选:D
22.D
【解析】因为,,,
所以.故选:D.
23.D
【解析】
注意到,所以要使恰有4个零点,只需方程恰有3个实根
即可,
令,即与的图象有个不同交点.
因为,
当时,此时,如图1,与有个不同交点,不满足题意;
当时,如图2,此时与恒有个不同交点,满足题意;
当时,如图3,当与相切时,联立方程得,
令得,解得(负值舍去),所以.
综上,的取值范围为.
故选:D.
24.A
【解析】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.
故选:A.
25.B
【解析】
因为,,,所以,所以,
设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,
则,所以,所以,所以天.
故选:B.
26.D
【解析】
因为定义在上的奇函数在上单调递减,且,
所以在上也是单调递减,且,,
所以当时,,当时,,
所以由可得:或或
解得或,所以满足的的取值范围是,
故选:D.
27.B
【解析】
由题意,第二天新增订单数为,,故至少需要志愿者名.故选:B
28.A
【解析】
由题意可知、、,,;
由,得,由,得,,可得;
由,得,由,得,,可得.
综上所述,.
故选:A.
29.C
【解析】,所以,则,
所以,,解得.故选:C.
30.A
【解析】由得:,令,
为上的增函数,为上的减函数,为上的增函数,
,,,,则A正确,B错误;
与的大小不确定,故CD无法确定.故选:A.
31.D
【解析】
由得定义域为,关于坐标原点对称,
又,
为定义域上的奇函数,可排除AC;
当时,,
在上单调递增,在上单调递减,
在上单调递增,排除B;
当时,,
在上单调递减,在定义域内单调递增,
根据复合函数单调性可知:在上单调递减,D正确.
故选:D.
32.A
【解析】
两颗星的星等与亮度满足,令,
.故选A.
33.C
【解析】
是R的偶函数,.

又在(0,+∞)单调递减,∴,
,故选C.
34.D
【解析】,
将代入得,故选D.
35.D
【解析】
当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.
36.C
【解析】
当时,,得;最多一个零点;
当时,,

当,即时,,在,上递增,最多一个零点.不合题意;
当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;
根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,
解得,,.故选.
37.C
【解析】∵,即,
(1)当时,,
当时,,
故当时,在上恒成立;
若在上恒成立,即在上恒成立,
令,则,
当函数单增,当函数单减,
故,所以.当时,在上恒成立;
综上可知,的取值范围是,故选C.
38.B
【解析】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.
39.D
【解析】如图,当直线位于点及其上方且位于点及其下方,
或者直线与曲线相切在第一象限时符合要求.
即,即,
或者,得,,即,得,
所以的取值范围是.
故选D.
40.B
【解析】时,,,,即右移1个单位,图像变为原来的2倍.如图所示:当时,,令,整理得:,(舍),时,成立,即,,故选B.
41.C
【解析】取,满足,,知A错,排除A;因为,知B错,排除B;取,满足,,知D错,排除D,因为幂函数是增函数,,所以,故选C.
42.B
【解析】为奇函数,舍去A,
舍去D;

所以舍去C;因此选B.
43.B
【解析】令则,令得,所以当时,,当时,,因此,
若公比,则,不合题意;
若公比,则
但,
即,不合题意;
因此,
,选B.
44.D
【解析】:将函数的图像画出来,观察图像可知会有,解得,所以满足的x的取值范围是,故选D.
45.C
【解析】因为是定义域为的奇函数,且,
所以,
因此,
因为,所以,
,从而,选C.
46.C
【解析】
画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,
可以发现当直线过点A时,直线与函数图像有两个交点,
并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,
即方程有两个解,也就是函数有两个零点,
此时满足,即,故选C.
47.B
【解析】
,即
又 即 故选B.
二、填空题
48.①. ; ②. .
【解析】因为函数为奇函数,所以其定义域关于原点对称.
由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.
49.
【解析】解:,
因为分别是函数的极小值点和极大值点,
所以函数在和上递减,在上递增,
所以当时,,当时,,
若时,
当时,,
则此时,与前面矛盾,
故不符合题意,
若时,
则方程的两个根为,
即方程的两个根为,
即函数与函数的图象有两个不同的交点,
令,则,
设过原点且与函数的图象相切的直线的切点为,
则切线的斜率为,
故切线方程为,
则有,
解得,
则切线的斜率为,
因为函数与函数的图象有两个不同的交点,
所以,解得,
又,所以,
综上所述,的范围为.
50.
【解析】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
51. ①. ②.
【解析】解: 因为,
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;
故答案为:;
52.
【解析】解:因为,所以,解得且,
故函数的定义域为;
故答案为:
53. ① 0(答案不唯一) ②. 1
【解析】解:若时,,∴;
若时,当时,单调递增,当时,,故没有最小值,不符合题目要求;
若时,
当时,单调递减,,
当时,
∴或,
解得,
综上可得;
故答案为:0(答案不唯一),1
54. ①. ②. ##
【解析】由已知,,
所以,
当时,由可得,所以,
当时,由可得,所以,
等价于,所以,
所以的最大值为.
故答案为:,.
55.2
【解析】,故,故答案为:2.
56.1
【解析】
由题设知:定义域为,
∴当时,,此时单调递减;
当时,,有,此时单调递减;
当时,,有,此时单调递增;
又在各分段的界点处连续,
∴综上有:时,单调递减,时,单调递增;
∴,故答案为:1.
57.1
【解析】因为,故,
因为为偶函数,故,
时,整理得到,故,
58.
【解析】由题意得,故答案为:
59.①②③
【解析】表示区间端点连线斜率的负数,
在这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;
甲企业在这三段时间中,甲企业在这段时间内,甲的斜率最小,其相反数最大,即在的污水治理能力最强.④错误;
在时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;
在时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;
故答案为:①②③
60.②③
【解析】
对于命题①,,,则,
所以,函数的图象不关于轴对称,命题①错误;
对于命题②,函数的定义域为,定义域关于原点对称,

所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则,
所以,函数的图象关于直线对称,命题③正确;
对于命题④,当时,,则,
命题④错误.故答案为:②③.
61..
【解析】设点,则.又,
当时,,点A在曲线上的切线为,
即,代入点,得,即,
考查函数,当时,,当时,,
且,当时,单调递增,
注意到,故存在唯一的实数根,此时,
故点的坐标为.
62.
【解析】
使得,
使得令,则原不等式转化为存在,
由折线函数,如图
只需,即,即的最大值是
63..
【解析】
所以,
所以,曲线在点处的切线方程为,即.
64.6
【解析】函数f(x)=的图象经过点P(p,),Q(q,).
则:,整理得:=1,
解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.
65.
【解析】由得函数的周期为4,所以因此
66..
【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,
67.
【解析】因为,
,且,则.
68.
【解析】则所以故答案为-3.
69.
【解析】分类讨论:当时,方程即,
整理可得:,很明显不是方程的实数解,则,
当时,方程即,整理可得:,
很明显不是方程的实数解,则,
令,
其中,
原问题等价于函数与函数有两个不同的交点,求的取值范围.
结合对勾函数和函数图象平移的规律绘制函数的图象,
同时绘制函数的图象如图所示,考查临界条件,
结合观察可得,实数的取值范围是.
70.
【解析】
分类讨论:①当时,即:,
整理可得:,
由恒成立的条件可知:,
结合二次函数的性质可知:
当时,,则;
②当时,即:,整理可得:,
由恒成立的条件可知:,
结合二次函数的性质可知:
当或时,,则;
综合①②可得的取值范围是,故答案为.
71.130. 15.
【解析】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元. 所以的最大值为.
72.-1; .
【解析】
若函数为奇函数,则,
对任意的恒成立.
若函数是上的增函数,则恒成立,.
即实数的取值范围是
73.
【解析】
74.(1,4)
【解析】
由题意得或,所以或,即,不等式f(x)<0的解集是
当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.
75.Q1 p2
【解析】作图可得中点的纵坐标比中点的纵坐标大,所以Q1,Q2,Q3中最大的是, 分别作关于原点的对称点,比较直线的斜率(即为第i名工人在这一天中平均每小时加工的零件数),可得最大,所以p1,p2,p3中最大的是
解答题
76.【解析】
【小问1详解】
由题意知,,,,则在点处的切线方程为,
即,设该切线与切于点,,则,解得,则,解得;
【小问2详解】
,则在点处的切线方程为,整理得,
设该切线与切于点,,则,则切线方程为,整理得,
则,整理得,
令,则,令,解得或,
令,解得或,则变化时,的变化情况如下表:
0 1
0 0 0
则的值域为,故的取值范围为.
77.【解析】
【小问1详解】
的定义域为,
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
【小问2详解】
由题知,一个零点小于1,一个零点大于1
不妨设
要证,即证
因为,即证
因为,即证
即证
即证
下面证明时,
设,


所以,而
所以,所以
所以在单调递增
即,所以

所以在单调递减
即,所以;
综上, ,所以.
78.【解析】
【小问1详解】
当时,,则,
当时,,单调递增;
当时,,单调递减;
所以;
【小问2详解】
,则,
当时,,所以当时,,单调递增;
当时,,单调递减;
所以,此时函数无零点,不合题意;
当时,,在上,,单调递增;
在上,,单调递减;
又,当x趋近正无穷大时,趋近于正无穷大,
所以仅在有唯一零点,符合题意;
当时,,所以单调递增,又,
所以有唯一零点,符合题意;
当时,,在上,,单调递增;
在上,,单调递减;此时,
又,当n趋近正无穷大时,趋近负无穷,
所以在有一个零点,在无零点,
所以有唯一零点,符合题意;
综上,a的取值范围为.
79.【解析】
【小问1详解】
的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
【小问2详解】

若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意

(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以


所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当

所以在单调递增
所以存在,使得
当单调递减
当单调递增

所以存在,使得,即
当单调递增,当单调递减

而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
80.【解析】
【小问1详解】
的定义域为,而,
若,则,此时无最小值,故.
的定义域为,而.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
因为和有相同的最小值,
故,整理得到,其中,
设,则,
故为上的减函数,而,
故的唯一解为,故的解为.
综上,.
【小问2详解】
由(1)可得和的最小值为.
当时,考虑的解的个数、的解的个数.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
设,其中,则,
故在上为增函数,故,
故,故有两个不同的零点,即的解的个数为2.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
有两个不同的零点即的解的个数为2.
当,由(1)讨论可得、仅有一个零点,
当时,由(1)讨论可得、均无零点,
故若存在直线与曲线、有三个不同的交点,
则.
设,其中,故,
设,,则,
故在上为增函数,故即,
所以,所以在上为增函数,
而,,
故在上有且只有一个零点,且:
当时,即即,
当时,即即,
因此若存在直线与曲线、有三个不同交点,
故,
此时有两个不同的零点,
此时有两个不同的零点,
故,,,
所以即即,
故为方程的解,同理也为方程的解
又可化为即即,
故为方程的解,同理也为方程的解,
所以,而,
故即.
81.【解析】
【小问1详解】
当时,,则,
当时,,当时,,
故的减区间为,增区间为.
【小问2详解】
设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
【小问3详解】
取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,


故不等式成立.
82.【解析】
【小问1详解】
解:因为,所以,
即切点坐标为,
又,
∴切线斜率
∴切线方程为:
【小问2详解】
解:因为,
所以,
令,
则,
∴在上单调递增,

∴在上恒成立,
∴上单调递增.
【小问3详解】
解:原不等式等价于,
令,,
即证,
∵,

由(2)知在上单调递增,
∴,

∴在上单调递增,又因为,
∴,所以命题得证.
83.【解析】
【小问1详解】

当,;当,,
故的减区间为,的增区间为.
【小问2详解】
(ⅰ)因为过有三条不同的切线,设切点为,
故,
故方程有3个不同的根,
该方程可整理为,
设,


当或时,;当时,,
故在上为减函数,在上为增函数,
因为有3个不同的零点,故且,
故且,
整理得到:且,
此时,
设,则,
故为上的减函数,故,

(ⅱ)当时,同(ⅰ)中讨论可得:
故在上为减函数,在上为增函数,
不妨设,则,
因为有3个不同的零点,故且,
故且,
整理得到:,
因为,故,
又,
设,,则方程即为:
即为,

则为有三个不同的根,
设,,
要证:,即证,
即证:,
即证:,
即证:,
而且,
故,
故,
故即证:,
即证:
即证:,
记,则,
设,则即,
故在上为增函数,故,
所以,
记,
则,
所以在为增函数,故,
故即,
故原不等式得证:
84.【解析】(1)函数的定义域为,又,
当时,,当时,,
故的递增区间为,递减区间为.
(2)因为,故,即,
故,设,由(1)可知不妨设.
因为时,,时,,
故.先证:,若,必成立.
若, 要证:,即证,而,
故即证,即证:,其中.
设,
则,
因为,故,故,
所以,故在为增函数,所以,
故,即成立,所以成立,
综上,成立.
设,则,结合,可得:,
即:,故,
要证:,即证,即证,
即证:,即证:,
令,
则,
先证明一个不等式:.
设,则,
当时,;当时,,
故在上为增函数,在上为减函数,故,
故成立
由上述不等式可得当时,,故恒成立,
故在上为减函数,故,
故成立,即成立.综上所述,.
85.【解析】(1)函数的定义域为,又,
因为,故,
当时,;当时,;
所以的减区间为,增区间为.
(2)因为且的图与轴没有公共点,
所以的图象在轴的上方,
由(1)中函数的单调性可得,
故即.
86.①若,则,所以在上单调递增;
②若,当时,单调递减,
当时,单调递增.
综上可得,时,在上单调递增;
时,函数的单调减区间为,单调增区间为.
(2)有2个不同零点有2个不同解有2个不同的解,
令,则,
记,
记,
又,所以时,时,,
则在单调递减,单调递增,,
.
即实数的取值范围是.
(3)有2个不同零点,则,故函数的零点一定为正数.
由(2)可知有2个不同零点,记较大者为,较小者为,

注意到函数在区间上单调递减,在区间上单调递增,
故,又由知,

要证,只需,
且关于的函数在上单调递增,
所以只需证,
只需证,
只需证,
,只需证在时为正,
由于,故函数单调递增,
又,故在时为正,
从而题中的不等式得证.
87.【解析】(1)当时,,
令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2),设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
88.【解析】(1)由,,
又是函数的极值点,所以,解得;
(2)由(1)得,,且,
当 时,要证,, ,即证,化简得;
同理,当时,要证,, ,即证,化简得;
令,再令,则,,
令,,
当时,,单减,假设能取到,则,故;
当时,,单增,假设能取到,则,故;
综上所述,在恒成立
89.【解析】
(Ⅰ) (i) 当k=6时,,.可得,,
所以曲线在点处的切线方程为,即.
(ii) 依题意,.
从而可得,整理可得:,
令,解得.
当x变化时,的变化情况如下表:
单调递减 极小值 单调递增
所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞);
g(x)的极小值为g(1)=1,无极大值.
(Ⅱ)证明:由,得.
对任意的,且,令,则
. ①
令.
当x>1时,,
由此可得在单调递增,所以当t>1时,,即.
因为,,,
所以
. ②
由(Ⅰ)(ii)可知,当时,,即,
故 ③
由①②③可得.
所以,当时,任意的,且,有
.
90..【解析】(Ⅰ)因为,所以,
设切点为,则,即,所以切点为,
由点斜式可得切线方程为:,即.
(Ⅱ)显然,
因为在点处的切线方程为:,
令,得,令,得,
所以,
不妨设时,结果一样,
则,
所以

由,得,由,得,
所以在上递减,在上递增,
所以时,取得极小值,也是最小值为.
91.【解析】
(I)在上单调递增,

所以由零点存在定理得在上有唯一零点;
(II)(i),


一方面: ,
在单调递增,,

另一方面:,
所以当时,成立,
因此只需证明当时,
因为
当时,,当时,,
所以,
在单调递减,,,
综上,.
(ii),
,,
,因为,所以,

只需证明,
即只需证明,
令,
则,
,即成立,
因此.
92.【解析】(1),,.
,∴切点坐标为(1,1+e),
∴函数f(x)在点(1,f(1)处的切线方程为,即,
切线与坐标轴交点坐标分别为,
∴所求三角形面积为;
(2)解法一:,
,且.
设,则
∴g(x)在上单调递增,即在上单调递增,
当时,,∴,∴成立.
当时, ,,,
∴存在唯一,使得,且当时,当时,,,
因此
>1,
∴∴恒成立;
当时, ∴不是恒成立.
综上所述,实数a的取值范围是[1,+∞).
解法二:等价于
,
令,上述不等式等价于,
显然为单调增函数,∴又等价于,即,
令,则
在上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减,
∴,,∴a的取值范围是[1,+∞).
93.【解析】(1)函数的定义域为:

设,则有 ,
当时,单调递减,当时,单调递增,
所以当时,函数有最大值,即,
要想不等式在上恒成立,
只需;
(2)且
因此,设 ,
则有,
当时,,所以, 单调递减,因此有,即
,所以单调递减;
当时,,所以, 单调递增,因此有,即 ,所以单调递减,
所以函数在区间和 上单调递减,没有递增区间.
94.【解析】(1)由函数的解析式可得:,则:

在上的根为:,
当时,单调递增,
当时,单调递减,
当时,单调递增.
(2)注意到,
故函数是周期为的函数,
结合(1)的结论,计算可得:,
,,
据此可得:,,即.
(3)结合(2)的结论有:
.
95.【解析】(1)因为,由题意,,即
则;
(2)由(1)可得,,
令,得或;令,得,
所以在上单调递减,在,上单调递增,
且,
若所有零点中存在一个绝对值大于1的零点,则或,
即或.
当时,,
又,
由零点存在性定理知在上存在唯一一个零点,
即在上存在唯一一个零点,在上不存在零点,
此时不存在绝对值不大于1的零点,与题设矛盾;
当时,,
又,
由零点存在性定理知在上存在唯一一个零点,
即在上存在唯一一个零点,在上不存在零点,
此时不存在绝对值不大于1的零点,与题设矛盾;
综上,所有零点的绝对值都不大于1.
96.【解析】(1)由题,,
当时,恒成立,所以在上单调递增;
当时,令,得,令,得,
令,得或,所以在上单调递减,在
,上单调递增.
(2)由(1)知,有三个零点,则,且
即,解得,
当时,,且,
所以在上有唯一一个零点,
同理,,
所以在上有唯一一个零点,
又在上有唯一一个零点,所以有三个零点,
综上可知的取值范围为.
97.【解析】(1)对求导得.所以有
当时,区间上单调递增,区间上单调递减,区间上单调递增;
当时,区间上单调递增;
当时,区间上单调递增,区间上单调递减,区间上单调递增.
(2)若,在区间单调递减,在区间单调递增,所以区间上最小值为.而,故所以区间上最大值为.
所以,设函数,求导当时从而单调递减.而,所以.即的取值范围是.
若,在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.
所以,而,所以.即的取值范围是.综上得的取值范围是.
98.【解析】(1)对求导得.所以有
当时,区间上单调递增,区间上单调递减,区间上单调递增;
当时,区间上单调递增;
当时,区间上单调递增,区间上单调递减,区间上单调递增.
(2)若在区间有最大值1和最小值-1,所以
若,区间上单调递增,区间上单调递减,区间上单调递增;
此时在区间上单调递增,所以,代入解得,,与矛盾,所以不成立.
若,区间上单调递增;在区间.所以,代入解得 .
若,区间上单调递增,区间上单调递减,区间上单调递增.
即在区间单调递减,在区间单调递增,所以区间上最小值为
而,故所以区间上最大值为.
即相减得,即,又因为,所以无解.
若,区间上单调递增,区间上单调递减,区间上单调递增.
即在区间单调递减,在区间单调递增,所以区间上最小值为
而,故所以区间上最大值为.
即相减得,解得,又因为,所以无解.
若,区间上单调递增,区间上单调递减,区间上单调递增.
所以有区间上单调递减,所以区间上最大值为,最小值为
即解得.综上得或.
99.【解析】(I)解:由已知,的定义域为,
且,
因此当时,,从而,所以在内单调递增.
(II)证明:(i)由(I)知,,
令,由,可知在内单调递减,
又,且,
故在内有唯一解,从而在内有唯一解,不妨设为,
则,当时,,
所以在内单调递增;
当时,,所以在内单调递减,
因此是的唯一极值点.
令,则当时,,故在内单调递减,
从而当时,,所以,
从而,
又因为,所以在内有唯一零点,
又在内有唯一零点1,从而,在内恰有两个零点.
(ii)由题意,,即,
从而,即,
因为当时,,又,故,
两边取对数,得,于是,整理得,
100.【解析】(1)当时,,函数的定义域为,且:

因此函数的单调递增区间是,单调递减区间是.
(2)由,得,
当时,,等价于,
令,则,设,,
则,
(i)当时,,
则,
记,

列表讨论:
x () 1 (1,+∞)
p′(x) ﹣ 0 +
P(x) p() 单调递减 极小值p(1) 单调递增
(ii)当时,,
令,
则,
故在上单调递增,,
由(i)得,

由(i)(ii)知对任意,
即对任意,均有,
综上所述,所求的a的取值范围是.
101.【解析】(1)由题意可得,的定义域为,
由,得,
显然单调递增;
又,,
故存在唯一,使得;
又当时,,函数单调递增;当时,,函数单调递减;
因此,存在唯一的极值点;
(2)由(1)知,,又,
所以在内存在唯一实根,记作.
由得,又,
故是方程在内的唯一实根;
综上,有且仅有两个实根,且两个实根互为倒数.
102.【解析】
(Ⅰ)由已知,可得f(x)=x(x 1)(x+1)=x3 x,
故=3x2 1,因此f(0)=0,= 1,
又因为曲线y=f(x)在点(0,f(0))处的切线方程为y f(0)=(x 0),故所求切线方程为x+y=0.
(Ⅱ)由已知可得
f(x)=(x t2+3)(x t2)(x t2 3)=(x t2)3 9(x t2)=x3 3t2x2+(3t22 9)x t23+9t2.
故=3x2 6t2x+3t22 9.
令=0,解得x=t2 或x=t2+.
当x变化时,,f(x)的变化如下表:
x ( ∞,t2 ) t2 (t2 ,t2+) t2+ (t2+,+∞)
+ 0 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
所以函数f(x)的极大值为f(t2 )=( )3 9×( )=6,
函数f(x)的极小值为f(t2+)=()3 9×()= 6.
(Ⅲ)曲线y=f(x)与直线y= (x t2) 6有三个互异的公共点等价于关于x的方程(x t2+d)(x t2)(x t2 d)+(x t2)+ 6=0有三个互异的实数解,
令u=x t2,可得u3+(1 d2)u+6=0.
设函数g(x)=x3+(1 d2)x+6,则曲线y=f(x)与直线y= (x t2) 6有三个互异的公共点等价于函数y=g(x)有三个零点.
=3x3+(1 d2).
当d2≤1时,≥0,这时在上R单调递增,不合题意.
当d2>1时,=0,解得x1=,x2=.
易得,g(x)在( ∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.
g(x)的极大值g(x1)=g()=>0.
g(x)的极小值g(x2)=g()= .
若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.
若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.
所以,的取值范围是.
103.【解析】(I)由已知,,有.
令,解得x=0.
由a>1,可知当x变化时,,的变化情况如下表:
x 0
0 +
极小值
所以函数的单调递减区间为,单调递增区间为.
(II)由,可得曲线在点处的切线斜率为.
由,可得曲线在点处的切线斜率为.
因为这两条切线平行,故有,即.
两边取以a为底的对数,得,所以.
(III)曲线在点处的切线l1:.
曲线在点处的切线l2:.
要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,
只需证明当时,存在,,使得l1和l2重合.
即只需证明当时,方程组有解,
由①得,代入②,得. ③
因此,只需证明当时,关于x1的方程③存在实数解.
设函数,
即要证明当时,函数存在零点.
,可知时,;
时,单调递减,
又,,
故存在唯一的x0,且x0>0,使得,即.
由此可得在上单调递增,在上单调递减.
在处取得极大值.
因为,故,
所以.
下面证明存在实数t,使得.
由(I)可得,
当时,有

所以存在实数t,使得
因此,当时,存在,使得.
所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.
104.【解析】
(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.
由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,
因此,f(x)与g(x)不存在“S”点.
(2)函数,,则.
设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得
,即,(*)
得,即,则.
当时,满足方程组(*),即为f(x)与g(x)的“S”点.
因此,a的值为.
(3)对任意a>0,设.
因为,且h(x)的图象是不间断的,
所以存在∈(0,1),使得,令,则b>0.
函数,
则.
由f(x)与g(x)且f′(x)与g′(x),得
,即(**)
此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
105.【解析】
(Ⅰ)因为=[],
所以f ′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)
=[ax2–(2a+1)x+2]ex.
f ′(1)=(1–a)e.
由题设知f ′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.
(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.
若a>,则当x∈(,2)时,f ′(x)<0;
当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.
若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.
所以2不是f (x)的极小值点.
综上可知,a的取值范围是(,+∞).
106.【解析】
(Ⅰ)因为,
所以.,
由题设知,即,解得.
(Ⅱ)方法一:由(Ⅰ)得.
若a>1,则当时,;
当时,.
所以在x=1处取得极小值.
若,则当时,,
所以.
所以1不是的极小值点.
综上可知,a的取值范围是.
方法二:.
(1)当a=0时,令得x=1.
随x的变化情况如下表:
x 1
+ 0
↗ 极大值 ↘
∴在x=1处取得极大值,不合题意.
(2)当a>0时,令得.
①当,即a=1时,,
∴在上单调递增,
∴无极值,不合题意.
②当,即0x 1
+ 0 0 +
↗ 极大值 ↘ 极小值 ↗
∴在x=1处取得极大值,不合题意.
③当,即a>1时,随x的变化情况如下表:
x
+ 0 0 +
↗ 极大值 ↘ 极小值 ↗
∴在x=1处取得极小值,即a>1满足题意.
(3)当a<0时,令得.
随x的变化情况如下表:
x
0 + 0
↘ 极小值 ↗ 极大值 ↘
∴在x=1处取得极大值,不合题意.
综上所述,a的取值范围为.
107.【解析】
(1)当时,,.
设函数,则.
当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.
所以在单调递增.
又,故当时,;当时,.
(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.
(ii)若,设函数.
由于当时,,故与符号相同.
又,故是的极大值点当且仅当是的极大值点.
.
如果,则当,且时,,故不是的极大值点.
如果,则存在根,故当,且时,,所以不是的极大值点.
如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点
综上,.
108.【解析】(1),.
因此曲线在点处的切线方程是.
(2)当时,.
令,则,
当时,,单调递减;当时,,单调递增;
所以 .因此.
109.【解析】
(1)当a=3时,f(x)=,f ′(x)=.
令f ′(x)=0解得x=或x=.
当x∈(–∞,)∪(,+∞)时,f ′(x)>0;
当x∈(,)时,f ′(x)<0.
故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.
(2)由于,所以等价于.
设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.
又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.
综上,f(x)只有一个零点.
110.【解析】
(1)当时,等价于.
设函数,则.
当时,,所以在单调递减.
而,故当时,,即.
(2)设函数.
在只有一个零点当且仅当在只有一个零点.
(i)当时,,没有零点;
(ii)当时,.
当时,;当时,.
所以在单调递减,在单调递增.
故是在的最小值.
①若,即,在没有零点;
②若,即,在只有一个零点;
③若,即,由于,所以在有一个零点,
由(1)知,当时,,所以.
故在有一个零点,因此在有两个零点.
综上,在只有一个零点时,.
111.【解析】
(1)的定义域为,.
(i)若,则,当且仅当,时,所以在单调递减.
(ii)若,令得,或.
当时,;
当时,.所以在单调递减,在单调递增.
(2)由(1)知,存在两个极值点当且仅当.
由于的两个极值点满足,所以,不妨设,则.由于

所以等价于.
设函数,由(1)知,在单调递减,又,从而当时,.
所以,即.

展开更多......

收起↑

资源预览