高考生物历年全国卷真题汇编6——遗传规律和变异与进化

资源下载
  1. 二一教育资源

高考生物历年全国卷真题汇编6——遗传规律和变异与进化

资源简介

高考生物历年全国卷真题汇编6——遗传规律和变异与进化
一、单选题
1.(2022·全国乙卷)依据鸡的某些遗传性状可以在早期区分雌雄,提高养鸡场的经济效益。已知鸡的羽毛性状芦花和非芦花受1对等位基因控制。芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡。下列分析及推断错误的是(  )
A.正交亲本中雌鸡为芦花鸡,雄鸡为非芦花鸡
B.正交子代和反交子代中的芦花雄鸡均为杂合体
C.反交子代芦花鸡相互交配,所产雌鸡均为芦花鸡
D.仅根据羽毛性状芦花和非芦花即可区分正交子代性别
2.(2022·全国甲卷)某种自花传粉植物的等位基因A/a和B/b位于非同源染色体上。A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育。B/b控制花色,红花对白花为显性。若基因型为AaBb的亲本进行自交,则下列叙述错误的是()
A.子一代中红花植株数是白花植株数的3倍
B.子一代中基因型为aabb的个体所占比例是1/12
C.亲本产生的可育雄配子数是不育雄配子数的3倍
D.亲本产生的含B的可育雄配子数与含b的可育雄配子数相等
3.(2021·全国甲)果蝇的翅型、眼色和体色3个性状由3对独立遗传的基因控制,且控制眼色的基因位于X染色体上。让一群基因型相同的果蝇(果蝇M)与另一群基因型相同的果蝇(果蝇N)作为亲本进行杂交,分别统计子代果蝇不同性状的个体数量,结果如图所示。已知果蝇N表现为显性性状灰体红眼。下列推断错误的是(  )
A.果蝇M为红眼杂合体雌蝇 B.果蝇M体色表现为黑檀体
C.果蝇N为灰体红眼杂合体 D.亲本果蝇均为长翅杂合体
4.(2021·全国乙卷)某种二倍体植物的n个不同性状由n对独立遗传的基因控制(杂合子表现显性性状)。已知植株A的n对基因均杂合。理论上,下列说法错误的是(  )
A.植株A的测交子代会出现2n种不同表现型的个体
B.n越大,植株A测交子代中不同表现型个体数目彼此之间的差异越大
C.植株A测交子代中n对基因均杂合的个体数和纯合子的个体数相等
D.n≥2时,植株A的测交子代中杂合子的个体数多于纯合子的个体数
5.(2020·全国Ⅰ)已知果蝇的长翅和截翅由一对等位基因控制。多只长翅果蝇进行单对交配(每个瓶中有1只雌果蝇和1只雄果蝇),子代果蝇中长翅∶截翅=3∶1。据此无法判断的是(  )
A.长翅是显性性状还是隐性性状
B.亲代雌蝇是杂合子还是纯合子
C.该等位基因位于常染色体还是X染色体上
D.该等位基因在雌蝇体细胞中是否成对存在
6.(2019·全国Ⅲ卷)假设在特定环境中,某种动物基因型为BB和Bb的受精卵均可发育成个体,基因型为bb的受精卵全部死亡。现有基因型均为Bb的该动物1 000对(每对含有1个父本和1个母本),在这种环境中,若每对亲本只形成一个受精卵,则理论上该群体的子一代中BB、Bb、bb个体的数目依次为(  )
A.250、500、0 B.250、500、250
C.500、250、0 D.750、250、0
7.(2019·全国Ⅱ卷)某种植物的羽裂叶和全缘叶是一对相对性状。某同学用全缘叶植株(植株甲)进行了下列四个实验。
①植株甲进行自花传粉,子代出现性状分离
②用植株甲给另一全缘叶植株授粉,子代均为全缘叶
③用植株甲给羽裂叶植株授粉,子代中全缘叶与羽裂叶的比例为1∶1
④用植株甲给另一全缘叶植株授粉,子代中全缘叶与羽裂叶的比例为3∶1
其中能够判定植株甲为杂合子的实验是(  )
A.①或② B.①或④ C.②或③ D.③或④
8.(2019·全国Ⅰ卷)某种二倍体高等植物的性别决定类型为XY型。该植物有宽叶和窄叶两种叶形,宽叶对窄叶为显性。控制这对相对性状的基因(B/b)位于X染色体上,含有基因b的花粉不育。下列叙述错误的是(  )
A.窄叶性状只能出现在雄株中,不可能出现在雌株中
B.宽叶雌株与宽叶雄株杂交,子代中可能出现窄叶雄株
C.宽叶雌株与窄叶雄株杂交,子代中既有雌株又有雄株
D.若亲本杂交后子代雄株均为宽叶,则亲本雌株是纯合子
9.(2018·全国Ⅲ卷)下列研究工作中由我国科学家完成的是(  )。
A.以豌豆为材料发现性状遗传规律的实验
B.用小球藻发现光合作用暗反应途径的实验
C.证明DNA是遗传物质的肺炎双球菌转化实验
D.首例具有生物活性的结晶牛胰岛素的人工合成
二、综合题
10.(2022·全国乙卷)某种植物的花色有白、红和紫三种,花的颜色由花瓣中色素决定,色素的合成途径是:白色 红色 紫色。其中酶1的合成由基因A控制,酶2的合成由基因B控制,基因A和基因B位于非同源染色体上、回答下列问题。
(1)现有紫花植株(基因型为AaBb)与红花杂合体植株杂交,子代植株表现型及其比例为   ;子代中红花植株的基因型是   ;子代白花植株中纯合体占的比例为   。
(2)已知白花纯合体的基因型有2种。现有1株白花纯合体植株甲,若要通过杂交实验(要求选用1种纯合体亲本与植株甲只进行1次杂交)来确定其基因型,请写出选用的亲本基因型、预期实验结果和结论。
11.(2022·全国甲卷)玉米是我国重要的粮食作物。玉米通常是雌雄同株异花植物(顶端长雄花序,叶腋长雌花序),但也有的是雌雄异株植物。玉米的性别受两对独立遗传的等位基因控制,雌花花序由显性基因B控制,雄花花序由显性基因T控制,基因型bbtt个体为雌株。现有甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株。回答下列问题。
(1)若以甲为母本、丁为父本进行杂交育种,需进行人工传粉,具体做法是   。
(2)乙和丁杂交,F1全部表现为雌雄同株;F1自交,F2中雌株所占比例为   ,F2中雄株的基因型是   ;在F2的雌株中,与丙基因型相同的植株所占比例是   。
(3)已知玉米籽粒的糯和非糯是由1对等位基因控制的相对性状。为了确定这对相对性状的显隐性,某研究人员将糯玉米纯合体与非糯玉米纯合体(两种玉米均为雌雄同株)间行种植进行实验,果穗成熟后依据果穗上籽粒的性状,可判断糯与非糯的显隐性。若糯是显性,则实验结果是   ;若非糯是显性,则实验结果是   。
12.(2020·全国Ⅲ)普通小麦是目前世界各地栽培的重要粮食作物。普通小麦的形成包括不同物种杂交和染色体加倍过程,如图所示(其中A、B、D分别代表不同物种的一个染色体组,每个染色体组均含7条染色体)。在此基础上,人们又通过杂交育种培育出许多优良品种。回答下列问题:
(1)在普通小麦的形成过程中,杂种一是高度不育的,原因是   。已知普通小麦是杂种二染色体加倍形成的多倍体,普通小麦体细胞中有   条染色体。一般来说,与二倍体相比,多倍体的优点是   (答出2点即可)。
(2)若要用人工方法使植物细胞染色体加倍,可采用的方法有   (答出1点即可)。
(3)现有甲、乙两个普通小麦品种(纯合体),甲的表现型是抗病易倒伏,乙的表现型是易感病抗倒伏。若要以甲、乙为实验材料设计实验获得抗病抗倒伏且稳定遗传的新品种,请简要写出实验思路   。
13.(2020·全国Ⅱ)控制某种植物叶形、叶色和能否抗霜霉病3个性状的基因分别用A/a、B/b、D/d表示,且位于3对同源染色体上。现有表现型不同的4种植株:板叶紫叶抗病(甲)、板叶绿叶抗病(乙)、花叶绿叶感病(丙)和花叶紫叶感病(丁)。甲和丙杂交,子代表现型均与甲相同;乙和丁杂交,子代出现个体数相近的8种不同表现型。回答下列问题:
(1)根据甲和丙的杂交结果,可知这3对相对性状的显性性状分别是   。
(2)根据甲和丙、乙和丁的杂交结果,可以推断甲、乙、丙和丁植株的基因型分别为   、   、   和   。
(3)若丙和丁杂交,则子代的表现型为   。
(4)选择某一未知基因型的植株X与乙进行杂交,统计子代个体性状。若发现叶形的分离比为3∶1、叶色的分离比为1∶1、能否抗病性状的分离比为1∶1,则植株X的基因型为   。
14.(2019·全国Ⅲ卷)玉米是一种二倍体异花传粉作物,可作为研究遗传规律的实验材料。玉米子粒的饱满与凹陷是一对相对性状,受一对等位基因控制。回答下列问题。
(1)在一对等位基因控制的相对性状中,杂合子通常表现的性状是   。
(2)现有在自然条件下获得的一些饱满的玉米子粒和一些凹陷的玉米子粒,若要用这两种玉米子粒为材料验证分离定律。写出两种验证思路及预期结果。
15.(2018·全国Ⅱ卷)某种家禽的豁眼和正常眼是一对相对性状,豁眼雌禽产蛋能力强。已知这种家禽的性别决定方式与鸡相同,豁眼性状由Z染色体上的隐性基因a控制,且在W染色体上没有其等位基因
问答下列问题:
(1)用纯合体正常眼雄禽与豁眼雌禽杂交,杂交亲本的基因型为   ;理论上,F1个体的基因型和表现型为   .F2雌禽中豁眼禽所占的比例为   .
(2)为了给饲养场提供产蛋能力强的该种家禽,请确定一个合适的杂交组合,使其子代中雌禽均为豁眼,雄禽均为正常眼。写出杂交组合和预期结果,要求标明亲本和子代的表现型,基因型。
(3)假设M/m基因位于染色体上,m基因纯合时可使部分应表现为豁眼的个体表现为正常眼,而MM和Mm对个体眼的表现无影响。以此推测,在考虑M/m基因的情况下,若两只表现型均为正常眼的亲本交配。其子代中出现豁眼雄禽,则亲本雌禽的基因为   ,子代中豁眼雄禽可能的基因型包括   。
16.(2018·全国Ⅰ卷)果蝇体细胞有4对染色体,其中2、3、4号为常染色体,已知控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上,某小组用一只无眼灰体长翅雌蝇与一只有眼灰体长翅雄蝇杂交,杂交子代的表现型及其比例如下:
眼 性别 灰体长翅:灰体残翅:黑檀体长翅:黑檀体残翅
1/2有眼 1/2雌 9:3:3:1
1/2雄 9:3:3:1
1/2无眼 1/2雌 9:3:3:1
1/2雄 9:3:3:1
回答下列问题:
(1)根据杂交结果,   (填“能”或“不能”)判断控制果蝇有眼/无眼性状的基因是位于X染色体还是常染色体上,若控制有眼/无眼性状的基因位于X染色体上,根据上述亲本杂交组合和杂交结果判断,显性性状是   ,判断依据是    。
(2)若控制有眼/无眼性状的基因位于常染色体上,请用上表中杂交子代果蝇为材料设计一个杂交实验来确定无眼性状的显隐性(要求:写出杂交组合和预期结果)。
(3)若控制有影/无眼性状的基因位于4号染色体上,用灰体长翅有眼纯合体和黑檀体残翅无眼纯合体果蝇杂交,F1相互交配后,F2中雌雄均有    种表现型,其中黑檀体长翅无眼所占比例为3/64时,则说明无眼性状为   (填”显性”或”隐性”)
三、实验探究题
17.(2021·全国甲)植物的性状有的由1对基因控制,有的由多对基因控制。一种二倍体甜瓜的叶形有缺刻叶和全缘叶,果皮有齿皮和网皮。为了研究叶形和果皮这两个性状的遗传特点,某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮。杂交实验及结果见下表(实验②中F1自交得F2)。
实验 亲本 F1 F2
① 甲×乙 1/4缺刻叶齿皮,1/4缺刻叶网皮 1/4全缘叶齿皮,1/4全缘叶网皮 /
② 丙×丁 缺刻叶齿皮 9/16缺刻叶齿皮,3/16缺刻叶网皮 3/16全缘叶齿皮,1/16全缘叶网皮
回答下列问题:
(1)根据实验①可判断这2对相对性状的遗传均符合分离定律,判断的依据是   。根据实验②,可判断这2对相对性状中的显性性状是   。
(2)甲乙丙丁中属于杂合体的是   。
(3)实验②的F2中纯合体所占的比例为   。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮不是9∶3∶3∶1,而是45∶15∶3∶1,则叶形和果皮这两个性状中由1对等位基因控制的是   ,判断的依据是   。
18.(2021·全国乙卷)果蝇的灰体对黄体是显性性状,由X染色体上的1对等位基因(用A/a表示)控制:长翅对残翅是显性性状,由常染色体上的1对等位基因(用B/b表示)控制。回答下列问题:
(1)请用灰体纯合子雌果蝇和黄体雄果蝇为实验材料,设计杂交实验以获得黄体雌果蝇。(要求:用遗传图解表示杂交过程。)
(2)若用黄体残翅雌果蝇与灰体长翅雄果蝇(XAYBB)作为亲本杂交得到F1,F1相互交配得F2,则F2中灰体长翅:灰体残翅:黄体长翅:黄体残翅=   , F2中灰体长翅雌蝇出现的概率为   。
19.(2019·全国Ⅱ卷) 某种甘蓝的叶色有绿色和紫色。已知叶色受2对独立遗传的基因A/a和B/b控制,只含隐性基因的个体表现隐性性状,其他基因型的个体均表现显性性状。某小组用绿叶甘蓝和紫叶甘蓝进行了一系列实验。
实验①:让绿叶甘蓝(甲)的植株进行自交,子代都是绿叶
实验②:让甲植株与紫叶甘蓝(乙)植株进行杂交,子代个体中绿叶∶紫叶=1∶3
回答下列问题。
(1)甘蓝叶色中隐性性状是   ,实验①中甲植株的基因型为   。
(2)实验②中乙植株的基因型为   ,子代中有   种基因型。
(3)用另一紫叶甘蓝(丙)植株与甲植株杂交,若杂交子代中紫叶和绿叶的分离比为1∶1,则丙植株所有可能的基因型是   ;若杂交子代均为紫叶,则丙植株所有可能的基因型是   ;若杂交子代均为紫叶,且让该子代自交,自交子代中紫叶与绿叶的分离比为15∶1,则丙植株的基因型为   。
20.(2019·全国Ⅰ卷)某实验室保存有野生型和一些突变型果蝇。果蝇的部分隐性突变基因及其在染色体上的位置如图所示。回答下列问题。
(1)同学甲用翅外展粗糙眼果蝇与野生型(正常翅正常眼)纯合子果蝇进行杂交,F2中翅外展正常眼个体出现的概率为   。图中所列基因中,不能与翅外展基因进行自由组合的是   。
(2)同学乙用焦刚毛白眼雄蝇与野生型(直刚毛红眼)纯合子雌蝇进行杂交(正交),则子代雄蝇中焦刚毛个体出现的概率为   ;若进行反交,子代中白跟个体出现的概率为   。
(3)为了验证遗传规律,同学丙让白眼黑檀体雄果蝇与野生型(红眼灰体)纯合子雌果蝇进行杂交得到F1,F1相互交配得到F2。那么,在所得实验结果中,能够验证自由组合定律的F1表现型是   ,F2表现型及其分离比是   ;验证伴性遗传时应分析的相对性状是   ,能够验证伴性遗传的F2表现型及其分离比是   。
21.(2018·全国Ⅲ卷)某小组利用某二倍体自花传粉植物进行两组杂交实验,杂交涉及的四对相对性状分别是:红果(红)与黄果(黄),子房二室(二)与多室(多),圆形果(圆)与长形果(长),单一花序(单)与复状花序(复)。实验数据如下表:
组别 杂交组合 F1表现型 F2表现型及个体数
甲 红二×黄多 红二 450红二、160红多、150黄二、50黄多
红多×黄二 红二 460红二、150红多、160黄二、50黄多
乙 圆单×长复 圆单 660圆单、90圆复、90长单、160长复
圆复×长单 圆单 510圆单、240圆复、240长单、10长复
回答下列问题:
(1)根据表中数据可得出的结论是:控制甲组两对相对性状的基因位于   上,依据是   ;控制乙组两对相对性状的基因位于   (填“一对”或“两对”)同源染色体上,依据是   。
(2)某同学若用“长复”分别与乙组的两个F1进行杂交,结合表中数据分析,其子代的统计结果不符合的   的比例。
答案解析部分
1.【答案】C
【知识点】伴性遗传
【解析】【解答】A、由题意可知, 芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则芦花为显性性状,非芦花为隐性性状,正反交结果不相同,说明该对等位基因位于性染色体上,鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,正交子代中芦花鸡和非芦花鸡数目相同,即正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZA、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZA、ZAW,且全为芦花鸡,A正确;
B、鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZa、ZAW,且全为芦花鸡,则正交子代和反交子代中的芦花雄鸡均为杂合体ZAZa,B正确;
C、鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZa、ZAW,且全为芦花鸡,反交子代芦花鸡相互交配,即ZAW(芦花鸡)×ZAZa(芦花鸡),所产雌鸡为(芦花鸡)和ZaW(非芦花雄鸡),C错误;
D、由题意可知,正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,子代中雌性全为非芦花,雄性全为芦花,仅根据羽毛性状芦花和非芦花即可区分性别,D正确。
故答案为:C。
【分析】鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ。鸡的芦花与非芦花性状的基因分别是B和b,位于Z染色体上,所以母鸡基因型为:ZBW(芦花)、ZbW(非芦花);公鸡基因型为:ZBZB(芦花)、ZBZb(芦花)、ZbZb(非芦花)。若想尽快确定小鸡的性别,则应将小鸡的花色和性别联系,则应选择芦花母鸡与非芦花公鸡交配,子代小鸡芦花的均为公鸡,非芦花的均为母鸡。
2.【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、基因型为AaBb的亲本进行自交,由于等位基因A/a和B/b位于非同源染色体上,含a的花粉育性不影响B和b基因的遗传,则基因型为AaBb的亲本进行自交时,子一代中红花植株数(BB+Bb):白花植株数(bb)=3,A正确;
B、由题意可知,A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育,B/b控制花色,红花对白花为显性。基因型为AaBb的亲本进行自交,则雌配子基因型及比例为AB:Ab:aB:ab=1:1:1:1,雄配子中含A的花粉都可育,含a的花粉50%可育、50%不育,则可育的配子之比为A=2a,即雄配子基因型及比例为AB:Ab:aB:ab=2:2:1:1,则子一代中基因型为aabb的个体所占比例是1/4×1/6=1/24,B错误;
C、由题意可知,A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育,基因型为AaBb的亲本进行自交,则可育的配子之比为A=2a,即可育雄配子数(A+1/2a)是不育雄配子数的3倍,C正确;
D、基因型为AaBb的亲本进行自交,由于等位基因A/a和B/b位于非同源染色体上,含a的花粉育性不影响B和b基因的遗传,则基因型为AaBb的亲本进行自交时,B和b基因遵循分离定律,产生的含B的可育雄配子数与含b的可育雄配子数相等,D正确。
故答案为:B。
【分析】1、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
2、等位基因A/a和B/b位于非同源染色体上,遵循自由组合定律。
3.【答案】A
【知识点】伴性遗传
【解析】【解答】AB、M的基因型为Aa cc XbY或AaccXbXb,表现为长翅黑檀体白眼雄蝇或者长翅黑檀体白眼雌蝇,A错误,B正确;
C、N基因型为AaCcXBXb或AaCcXBY,三对等位基因均为杂合的, 果蝇N为灰体红眼杂合体,C正确;
D、由于亲本长翅的基因型均是Aa,为杂合体,D正确。
故答案为:A。
【分析】根据图意数据的性状分离比可知:果蝇M与果蝇N作为亲本进行杂交杂交,子代中长翅:残翅=3:1,说明长翅相对残翅为显性性状,所以亲本的基因型均为Aa(假设控制翅型的基因为A/a);子代红眼:白眼=1:1,由书本果蝇红眼为显性性状,且控制眼色的基因位于X染色体上,假设控制眼色的基因为B/b),所以亲本基因型为XBXb×XbY或XbXb×XBY;子代灰身:黑檀体=1:1,灰体相对檀体为显性性状,亲本基因型为Cc×cc(假设控制体色的基因为C/c);。3个性状由3对独立遗传的基因控制,所以遗传时遵循基因的自由组合定律。因为N表现为显性性状灰体红眼,故N基因型为AaCcXBXb或AaCcXBY,则M的基因型对应为Aa cc XbY或AaccXbXb 。
4.【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、n对基因均杂合的植株A进行测交,后代表现型种类有2n种,A正确;
B、n越大,植株A测交子代中不同表现型个体数目彼此之间的差异相同,B错误;
C、植株A测交子代中n对基因均杂合的概率为1/2n,纯合子的概率为1/2n,这两种个体概率相等,C正确;
D、植株A测交子代中纯合子的概率为1/2n,杂合子的概率为1-(1/2n),n≥2时,1-(1/2n)大于1/2n,一般而言,植株A的测交子代中杂合子的个体数多于纯合子的个体数,D正确;
故答案为:B.
【分析】 1、通过分析1对、2对、3对……等位基因均杂合的个体,进行测交,用数学归纳法归纳出后代的表现型种类有2n种,其中,子代n对基因均杂合的占1/2n,隐性纯合子占1/2n,n对基因全是显性纯合子占1/2n,杂合子占(1-1/2n)。
2、基因自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子自由组合。
5.【答案】C
【知识点】伴性遗传
【解析】【解答】A、根据截翅为无中生有可知,截翅为隐性性状,长翅为显性性状,A不符合题意;
B、根据杂交的后代发生性状分离可知,亲本雌蝇一定为杂合子,B不符合题意;
C、无论控制翅形的基因位于X染色体上还是常染色体上,后代中均会出现长翅:截翅=3:1的分离比,C符合题意;
D、根据后代中长翅:截翅=3:1可知,控制翅形的基因符合基因的分离定律,故可推测该等位基因在雌蝇体细胞中是成对存在的,D不符合题意。
故答案为:C。
【分析】假设控制相对性状的基因用A/a来表示,当翅形的基因位于X染色体时,XAXa和XAY后代为XAXA、XAXa、XAY、XaY,长翅:截翅=3:1的分离比,当翅形的基因位于常染色体时,Aa和Aa后代为AA、2Aa、aa,长翅:截翅=3:1的分离比,所以无法确定该等位基因位于常染色体还是X染色体上。
6.【答案】A
【知识点】基因的分离规律的实质及应用
【解析】【解答】亲本基因型均为Bb,产生配子的比例B占1/2,b占1/2,子一代群体中BB、Bb、bb各占1/4、1/2、1/4,因该动物共1 000对(每对含有1个父本和1个母本),每对亲本只形成一个受精卵,则理论上产生后代1 000只,BB、Bb、bb个体的数目依次为250、500、250。由于基因型为bb的受精卵全部死亡。则理论上该群体的子一代中BB、Bb、bb个体的数目依次为250、500、0。
故答案为:A
【分析】主要考查基因的分离定律。由于亲本基因型均为Bb,产生配子的比例B占1/2,b占1/2,子一代群体中BB占1/2×1/2=1/4、Bb占1/2×1/2×2=1/2、bb占1/2×1/2=1/4,该动物1 000对(每对含有1个父本和1个母本),若每对亲本只形成一个受精卵,则子一代受精卵个数理论上是1000,即BB有1/4×1000=250、Bb有1/2×1000=500、bb有1/4×1000=250。因为基因型为bb的受精卵全部死亡。所以子一代存活个体中BB、Bb、bb个体的数目依次为250、500、0。
7.【答案】B
【知识点】基因的分离规律的实质及应用
【解析】【解答】①植株甲进行自花传粉,子代出现性状分离,说明全缘叶为显性性状,子代出现羽裂叶,羽裂叶为隐性性状,羽裂叶植株为隐性纯合子,则植株甲一定为杂合子;②用植株甲给另一全缘叶植株授粉,若全缘叶为显性,另一全缘叶植株基因型为AA,或全缘叶植株均为隐性纯合子,子代均为全缘叶,不能判定植株甲为杂合子;③用植株甲给羽裂叶植株授粉,植株甲或羽裂叶植株肯定有一个为隐性纯合子,又子代中全缘叶与羽裂叶的比例为1:1,则显性个体一定是杂合子,但没有说全缘叶为显性,所以不能判定植株甲为杂合子;④用植株甲给另一全缘叶植株授粉,子代出现了性状分离,说明全缘叶为显性性状,又性状分离比为3:1,说明植株甲和另一植株均为杂合子。所以能判定植株甲为杂合子的实验是①④,B符合题意。
故答案为:B
【分析】1.纯合子、杂合子的判断方法
(1)自交法:待测个体自交,若后代无性状分离,则待测个体为纯合子,若后代有性状分离,则待测个体为杂合子。
(2)测交法:待测个体与隐性纯合子杂交,若后代无性状分离,则为纯合子;若后代有性状分离,则为杂合子。
2.由子代性状分离比推测亲代基因型
后代表现型 亲本基因型组合 亲本表现性
全显 AA×AA(或Aa或aa) 亲本中一定有一个是显性纯合子
全隐 Aa×aa 双亲均为隐性纯合子
显:隐=1:1 Aa×aa 亲本一方为显性杂合子,一方为隐性纯合子
显:隐=3:1 Aa×Aa 双亲均为显性杂合子
8.【答案】C
【知识点】伴性遗传
【解析】【解答】A、叶雄株基因型为XbY,窄叶雌株基因型应该为XbXb,根据题目意思,Xb的花粉不育,所有不可能出现窄叶雌株,不符合题意;
B、如果而亲代宽叶雌株是杂合体,则子代雄株既有宽叶,也有窄叶,不符合题意;
C、宽叶雌株基因型为XBX-,窄叶雄株基因型为XbY,含基因的X染色体的花粉不育,所以在子代中只有雄株出现,符合题意;
D、若亲本杂交后子代雄株均为宽叶,则亲本雌株只产生X B配子,一定是纯合子,不符合题意
故答案为:C
【分析】(1)主要考查伴性遗传和分离定律。根据题意分析可知:宽叶(B)对窄叶(b)是显性,等位基因位于X染色体上,属于伴性遗传。窄叶基因b会使花粉致死,后代没有雌性窄叶植株。若母方宽叶纯合父方宽叶则子代雌雄均有都为宽叶;若母方宽叶杂合父方宽叶则子代雌性均为宽叶,雄性宽叶窄叶都有比例相等;若母方宽叶纯合父方窄叶则子代只有雄性且均为宽叶;若母方宽叶杂合父方窄叶则子代只有雄性,且宽叶窄叶比例相等。
(2)伴性遗传规律:
①当同配性别的性染色体(如哺乳类等为XX为雌性,鸟类ZZ为雄性)传递纯合显性基因时,F1雌、雄个体都为显性性状。F2性状的分离呈3显性:1隐性;性别的分离呈1雌:1雄。其中隐性个体的性别与祖代隐性体一样,即1/2的外孙与其外祖父具有相同的表型特征。
②当同配性别的性染色体传递纯合体隐性基因时,F1表现为交叉遗传,即母亲的性状传递给儿子,父亲的性状传递给女儿,F2中,性状与性别的比例均表现为1:1。
③存在于Y染色体差别区段上的基因(特指哺乳类)所决定的性状,或由W染色体所携带的基因所决定的性状,仅仅由父亲(或母禽、母鸟)传递给其儿子(或雌禽、母鸟)。表现为特殊的Y连锁(或W连锁)遗传。
④伴X显性遗传疾病,女性患者多于男性患者;伴X隐性遗传疾病,男性患者多于女性患者。
9.【答案】D
【知识点】光合作用的发现史;肺炎链球菌转化实验;孟德尔遗传实验-分离定律
【解析】【解答】A、以豌豆为材料发现性状遗传规律的实验是奥地利科学家孟德尔,A不符合题意;
B、用小球藻发现光合作用暗反应途径的实验是美国科学家卡尔文,B不符合题意;
C、证明DNA是遗传物质的肺炎双球菌转化实验是美国的科学家艾弗里,C不符合题意;
D、首例具有生物活性的结晶牛胰岛素的人工合成是由中国的科学家完成的,D符合题意。
故答案为为:D。
【分析】本题考查对生物学做出过杰出贡献的科学家。
10.【答案】(1)白色:红色:紫色=2:3:3;AAbb、Aabb;1/2
(2)选用的亲本基因型为:AAbb;预期的实验结果及结论:若子代花色全为红花,则待测白花纯合体基因型为aabb;若子代花色全为紫花,则待测白花纯合体基因型为aaBB
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)由题意可知,紫花植株(基因型为AaBb)与红花杂合体植株(Aabb)杂交,子代植株的基因型及比例为AABb(紫花):AaBb(紫花):aaBb(白花):AAbb(红花):Aabb(红花):aabb(白花)=1:2:1:1:2:1,则植株表型及比例为紫花(AABb+AaBb):白花(aaBb+aabb):红花(AAbb+Aabb)=3:2:3。故子代植株表现型及其比例为紫花:白花:红花=3:2:3;子代中红花植株的基因型是AAbb、Aabb; 子代白花植株中纯合体占的比例为aabb/(aaBb+aabb)=1/2.
故答案为: 白色:红色:紫色=2:3:3 ; AAbb、Aabb ; 1/2 。
(2)由题意可知,aa_ _表现为白花,白花纯合体的基因型有aabb和aaBB2种。若要通过杂交实验(要求选用1种纯合体亲本与植株甲只进行1次杂交)来确定其基因型,则纯合亲本的基因型应该为AAbb(红花),若白花基因型为aabb,则杂交子代基因型为Aabb,全为红花,若白花基因型为aaBB,则杂交子代基因行为AaBb,全为紫花。
故答案为:选用的亲本基因型为:AAbb;预期的实验结果及结论:若子代花色全为红花,则待测白花纯合体基因型为aabb;若子代花色全为紫花,则待测白花纯合体基因型为aaBB。
【分析】1、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
2、由题意可知,Aa和Bb两对基因遵循自由组合定律,A_B_表现为紫花,A_bb表现为红花,aa_ _表现为白花。
11.【答案】(1)对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
(2)1/4;bbTT、bbTt;1/4
(3)糯性植株上全为糯性籽粒,非糯植株上既有糯性籽粒又有非糯籽粒;非糯性植株上只有非糯籽粒,糯性植株上既有糯性籽粒又有非糯籽粒
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)人工异花授粉的过程为:去雄(花蕾期将母本的雄蕊去掉,若雌雄异株或异花植物可省去此步骤)→套袋→人工异花授粉(待花粉成熟时,采集另一植株的花粉涂在去雄的花的雌蕊柱头上)→套袋。由题意可知,甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株,以甲为母本、丁为父本进行杂交育种,需进行人工传粉,由于母本为雌雄异花,则对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
故答案为: 对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
(2)由题意可知,玉米的性别受两对独立遗传的等位基因控制,雌花花序由显性基因B控制,雄花花序由显性基因T控制,基因型bbtt个体为雌株。现有甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株,且乙和丁杂交,F1全部表现为雌雄同株,则甲基因型为AATT,乙基因型为AAtt,丙基因型为bbtt,丁基因型为bbTT,则乙和丁杂交,F1全部表现为雌雄同株(BbTt), F1自交,F2中基因型为--tt的全为雌株,即雌株所占比例为1/4,F2中雄株的基因型为bbT-,即bbTT、bbTt;F2的雌株基因型为--tt,其中BBtt:Bbtt:bbtt=1:2:1,丙基因型为bbtt,与丙基因型相同的植株所占比例是1/4。
故答案为:1/4 ; bbTT、bbTt ; 1/4 。
(3)由题意可知,玉米籽粒的糯和非糯是由1对等位基因控制的相对性状。为了确定这对相对性状的显隐性,某研究人员将糯玉米纯合体与非糯玉米纯合体(两种玉米均为雌雄同株)间行种植进行实验,由于自然授粉过程中玉米即可能发生杂交也可能发生自交的情况,故若糯是显性,则糯性植株上无论是自交还是杂交产生的全为糯性籽粒,非糯植株上既有杂交产生的糯性籽粒又有自交产生的非糯籽粒;反之,若非糯是显性,则非糯性植株上无论是自交还是杂交产生的只有非糯籽粒,糯性植株上既自交产生的有糯性籽粒又有杂交产生的非糯籽粒。
故答案为:糯性植株上全为糯性籽粒,非糯植株上既有糯性籽粒又有非糯籽粒;非糯性植株上只有非糯籽粒,糯性植株上既有糯性籽粒又有非糯籽粒。
【分析】1、人工异花授粉的过程为:去雄(花蕾期将母本的雄蕊去掉,若雌雄异株植物可省去此步骤)→套袋→人工异花授粉(待花粉成熟时,采集另一植株的花粉涂在去雄的花的雌蕊柱头上)→套袋。
2、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
3、遗传上常用杂交方法的用途:
(1)鉴别一只动物是否为纯合子,可用测交法;(2)鉴别一棵植物是否为纯合子,可用测交法和自交法,其中自交法最简便;(3)鉴别一对相对性状的显性和隐性,可用杂交法和自交法(只能用于植物);(4)提高优良品种的纯度,常用自交法;(5)检验杂种F1的基因型采用测交法。
12.【答案】(1)无同源染色体,不能进行正常的减数分裂;42;营养物质含量高、茎秆粗壮
(2)秋水仙素处理
(3)甲、乙两个品种杂交,F1自交,选取F2中既抗病又抗倒伏、且自交后代不发生性状分离的植株
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)杂种一是一粒小麦和斯氏麦草杂交的产物,细胞内含有一粒小麦和斯氏麦草各一个染色体组,所以细胞内不含同源染色体,不能进行正常的减数分裂,因此高度不育;
普通小麦含有6个染色体组,每个染色体组有7条染色体,所以体细胞有42条染色体;
多倍体植株通常茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。(2)人工诱导植物细胞染色体加倍可以采用秋水仙素处理。(3)为获得稳定遗传的抗病抗倒伏的小麦,可以利用杂交育种,设计思路如下:
将甲和乙两品种杂交获得F1,将F1植株进行自交,选取F2中既抗病又抗倒伏的、且自交后代不发生性状分离的植株,即为稳定遗传的抗病又抗倒伏的植株。
【分析】图中是普通小麦育种的过程,一粒小麦和斯氏麦草杂交形成杂种一,经过加倍后形成拟二粒小麦AABB,在和滔氏麦草杂交获得杂种二ABD,然后加倍形成普通小麦AABBDD。
秋水仙素可以抑制纺锤丝的形成,导致细胞染色体数目加倍。
13.【答案】(1)板叶、紫叶、抗病
(2)AABBDD;AabbDd;aabbdd;aaBbdd
(3)花叶绿叶感病、 花叶紫叶感病
(4)AaBbdd
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知显性性状为板叶、紫叶、抗病,甲为显性纯合子AABBDD。(2)已知显性性状为板叶、紫叶、抗病,再根据甲乙丙丁的表现型和杂交结果可推知,甲、乙、丙、丁的基因型分别为AABBDD、AabbDd、aabbdd、aaBbdd。(3)若丙aabbdd和丁aaBbdd杂交,根据自由组合定律,可知子代基因型和表现型为:aabbdd(花叶绿叶感病)和aaBbdd(花叶紫叶感病)。(4)已知杂合子自交分离比为3:1,测交比为1:1,故,X与乙杂交,叶形分离比为3:1,则为Aa×Aa杂交,叶色分离比为1:1,则为Bb×bb杂交,能否抗病分离比为1:1,则为Dd×dd杂交,由于乙的基因型为AabbDd,可知X的基因型为AaBbdd。
【分析】分析题意可知:甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知甲为显性纯合子AABBDD,丙为隐性纯合子aabbdd;乙板叶绿叶抗病与丁花叶紫叶感病杂交,后代出现8种表现型,且比例接近1:1:1:1:1:1:1:1,可推测三对等位基因应均为测交。
14.【答案】(1)显性性状
(2)答:思路及预期结果
①两种玉米分别自交,若某些玉米自交后,子代出现3∶1的性状分离比,则可验证分离定律。
②两种玉米分别自交,在子代中选择两种纯合子进行杂交,F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
③让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1都表现一种性状,则用F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
④让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1表现两种性状,且表现为1∶1的性状分离比,则可验证分离定律。
【知识点】基因的分离规律的实质及应用
【解析】【解答】(1)显性性状是指当两个具有相对性状的纯合亲本杂交时,子一代(即杂合子)出现的一个亲本性状。
(2)分离定律的实质就是杂合子中控制一对相对性状的的等位基因在形成配子时彼此分离,分别进入不同的配子中,结果一半的配子带有一种等位基因,另一半的配子带有另一种等位基因。即杂合子在产生配子时,可以形成两种分别含有显性基因、隐性基因的配子,其比例为1:1,所以只要验证这一点就可以证实分离定律。那么按照孟德尔的假设,测交就是用这个杂合子和隐性的纯合子交配,因为隐性纯合子只会产生一种隐性配子,故它与任何配子结合形成等位基因都会表现出配子的基因型,杂合子测交子代表现出显性:隐性=1:1,分离定律得以证实。同理,杂合子自交子代表现出显性:隐性=3:1,分离定律也会得以证实。
故答案为:(1)显性性状
(2)思路及预期结果
①两种玉米分别自交,若某些玉米自交后,子代出现3∶1的性状分离比,则可验证分离定律。
②两种玉米分别自交,在子代中选择两种纯合子进行杂交,F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
③让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1都表现一种性状,则用F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
④让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1表现两种性状,且表现为1∶1的性状分离比,则可验证分离定律。
【分析】主要考查基因的分离定律。显性性状是具有一对相对性状的亲本进行杂交,子一代为杂合体,相应的等位基因中其中一个对表现出的性状有明显影响,另个则暂时不表现,表现出的那个亲本的性状为显性性状。基因分离定律的实质:在杂合子的细胞中,位于同一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着同源染色体的分开而分离,分别进入到两个配子中,独立的随配子遗传给后代,即杂合子在产生配子时,可以形成两种分别含有显性基因、隐性基因的配子,其比例为1:1,据此答题。
15.【答案】(1)ZAZA、ZaW;ZAW和ZAZa、均为正常眼;1/2
(2)杂交组合:豁眼雄禽(ZaZa)×正常眼雌禽(ZAW)
预期结果:子代雌禽为豁眼(ZaW),雄禽为正常眼(ZAZa)
(3)ZaWmm;ZaZamm、ZaZaMm
【知识点】伴性遗传
【解析】【解答】(1)该家禽的性别决定方式为ZW型,雌性的性染色体是ZW,雄性的是ZZ。豁眼性状由Z染色体上的隐性基因a控制,又正常眼雄禽为纯合体,则其基因型为ZAZA,豁眼雌禽基因型为ZaW。ZAZA产生的配子为ZA,ZaW产生的配子为Za 、W,所以子代基因型为ZAW和ZAZa,根据基因型可知子代均为正常眼。
( 2 )
( 3 )若两只表现型均为正常眼的亲本交配。其子代中出现豁眼雄禽则该雄禽的控制眼型基因型为ZaZa,一个Za配子来自亲本雌禽,则其亲本雌禽控制眼型基因型为ZaW,又因为亲本均表现为正常眼,则亲本雌禽另一基因基因型为mm,则亲本雌禽基因型为ZaWmm,子代中豁眼雄禽控制眼型的基因型为ZaZa,又因其亲本雌禽基因型为ZaWmm,可将一个m传递给豁眼雄禽所以子代豁眼雄禽基因型为ZaZamm、ZaZaMm
【分析】ZW型:该性别决定的生物,雌性的性染色体是ZW,雄性的是ZZ。据题意可知,正常眼雄禽的基因型为ZAZA,豁眼雌禽的基因型为ZaW。
16.【答案】(1)不能;无眼;只有当无眼为显性时子代雌雄个体中才都会出现有眼与无眼性状的分离
(2)杂交组合:无眼ⅹ无眼
预期结果:若子代中无眼:有眼=3:1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状
(3)8;隐性
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)题干中,两亲本分别为无眼和有眼,子代中有眼:无眼=1:1,且没有与性别相关联,所以不能判断出控制有眼,无眼性状的基因是位于X染色体,还是常染色体上。假设有眼为显性(用基因A表示),XaXa × XAY→XAXa 、 XaY很明显不符合题意。(2)题干要求设计实验确定无眼性状在常染色体上的显隐性,以杂交子代果蝇为材料。最简捷的方法是可以选择雌雄果蝇均为无眼的性状进行杂交实验,若子代中无眼:有眼=3:1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状。(3)依据表中灰体长翅:灰体残翅:黑檀体长翅:黑檀体残翅=9:3:3:1,可知显性性状为灰体(用基因A表示)和长翅(用基因B表示)。有眼和无眼不能确定显隐性(用基因C表示),灰体长翅有眼纯合体和黑檀体残翅无眼纯合体的基因型可写为AABB-- aabb--。可推出F1的基因型为AaBbCc,F1个体间相互交配,F2的表现型为2×2×2=8种。F2中黑檀体(Aa ×Aa=1/4)长翅(Bb× Bb=3/4)无眼所占比例为3/64时,可知无眼所占比例为1/4,则无眼为隐性性状。
【分析】本题以果蝇为实验材料考查了遗传的相关内容,难度较大。(1)根据杂交结果如何判断基因在常染色体还是X染色体上,及基因的显隐性问题。(2)如何设计实验验证基因的显隐性,以及预期的实验结果。(3)考查多对相对性状的自由组合出现表现型的种类。以及给出子代中某个体所占的概率,判断亲代未知性状的显隐性。
17.【答案】(1)基因型不同的两个亲本杂交,F1分别统计,缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,每对相对性状结果都符合测交的结果,说明这2对相对性状的遗传均符合分离定律;缺刻叶和齿皮
(2)甲和乙
(3)1/4
(4)果皮;F2中齿皮∶网皮=48∶16=3∶1,说明受一对等位基因控制
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】 (1)实验①中F1表现型进行逐一性状分析,分别统计两对相对性状的性状分离比,发现缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,发现每对相对性状结果都符合测交的结果,因而可判断这2对相对性状的遗传均符合分离定律;根据实验②,F1全为缺刻叶齿皮,F2出现不同于亲本F1的性状全缘叶和网皮,可以推测缺刻叶和齿皮对网皮为显性性状。
(2)某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮,实验①杂交的F1结果相当于测交结果;而实验②的F2出现9∶3∶3∶1,符合基因自由组合定律的特点,因而F1的基因型为双等位基因杂合子AaBb。分析可知,甲的基因型为Aabb,乙的基因型为aaBb,丙的基因型为AAbb,丁的基因型为aaBB,因而甲乙丙丁中属于杂合体的是甲和乙。
(3)实验②的F2中纯合体基因型为AABB,AAbb,aaBB,aabb,概率均为1/16。 所以实验②的F2中纯合体所占的总比例为1/4。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮=45∶15∶3∶1,逐一分析法分析每对相对性状的性状分离比,我们发现,缺刻叶∶全缘叶=60∶4=15∶1,可推测叶形受两对非同源染色体上的等位基因控制。齿皮∶网皮=48∶16=3∶1,可推测果皮受一对等位基因控制。
【分析】 由表格实验数据进行分析。表格里面有两对相对性状,所以需要进行逐一分析。利用注意分析法,分析每对相对性状的性状分离比,通过判断子代性状分离比是否符合自交、测交、杂交的结果,进行写出亲本的基因型。F1全为缺刻叶齿皮,F2出现全缘叶和网皮,可以推测缺刻叶对全缘叶为显性(控制该性状的基因用A和a表示),齿皮对网皮为显性(控制该性状的基因用B和b表示),且F2出现9∶3∶3∶1。
18.【答案】(1)
(2)3:1:3:1;3/16
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)解∶黄体雌果蝇(XaXa)的一个Xa,来自父本,另一个Xa来自母本。即需要亲本均有Xa,而亲本灰体纯合子雌果蝇(XAXA)没有Xa,所以需要先用灰体纯合子雌果蝇(XAXA)和黄体雄果蝇(XaY)杂交,得到F1代XAXa,再用F1代(XAXa)与亲本黄体雄果蝇(XaY)杂交,即可得到黄体雌果蝇(XaXa).
遗传图解如下:
(2)用黄体残翅雌果蝇与灰体长翅雄果蜂(XAYBB)作为亲本杂交得到F1的过程如下:
让F1相互交配得到F2的过程可以用拆分组合法进行快速计算:
XAXa×XaY→有1/2的概率产生灰体果蝇,有1/2的概率产生黄体果蝇
Bb×Bb→有3/4的概率产生长翅果蝇,有1/4的概率产生残翅果蝇
灰体长翅=1/2×3/4=3/8:灰体残翅=1/2×1/4=1/8;黄体长翅=1/2×3/4=3/8;黄体残翅=1/2×1/4=1/8。
所以,灰体长翅:灰体残翅:黄体长翅:黄体残翅=3:1:3:1。其中灰体长翅的概率为3/8。
在灰体长翅的表现型中,有1/2的个体是雌性,所以F2中灰体长翅雌蝇出现的概率为3/8×1/2=3/16。
【分析】 1、先确定亲本基因型为:XAXA 和XaY,F1由亲本的雌雄配子随机结合产生。所以F1基因型为: XAXa 和 XAY,由于子代杂交不能直接得到黄体雌果蝇(XaXa),两条X染色体一条来自父方,一条来自母方),所以可以考虑回交法。
2、 杂交得到F1的基因型为BbXAXa和BbXaY。逐一分析法算出子二代灰体长翅:灰体残翅:黄体长翅:黄体残翅=(3:1)(1:1)=多少 ,F2中“灰体”“长翅”“雌蝇”出现的概率为多少。
19.【答案】(1)绿色;aabb
(2)AaBb;4
(3)Aabb、aaBb;AABB、AAbb、aaBB、AaBB、AABb;AABB
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据题意甘蓝的叶色受2对独立遗传的基因控制,且只含隐性基因的个体表现隐性性状,又根据实验②绿叶甘蓝(甲植株)和紫叶甘蓝(乙植株)必定有一个为隐性纯合子,又子代出现性状分离,则另外一个为杂合子,二者杂交为测交,又因为子代个体中绿叶:紫叶=1:3,则形状分离比为1的为隐性性状,即甘蓝叶色中隐性性状是绿色,又因为只含隐性基因的个体表现隐性性状,则甲植株的基因型为aabb。
(2)据分析乙植株为杂合子,显示显性性状的杂合子包括AaBB、AABb、aaBb、Aabb、AaBb,其中基因型为AaBB、AABb的植株与甲植株(aabb)杂交子代均为紫色,不符合题意;基因型为aaBb、Aabb的植株与甲植株(aabb)杂交子代形状分离比为1:1,不符合题意;基因型为AaBb的的植株与甲植株(aabb)杂交子代形状分离比为1:3,符合题意,故实验②中乙植株的基因型为AaBb。甲植株(aabb)与乙植株(AaBb)杂交,其中aa与Aa杂交子代有2种基因型,bb与Bb杂交子代中也有2种基因型,则甲植株(aabb)与乙植株(AaBb)杂交子代中共有2×2=4种基因型。
(3)用另一紫叶甘蓝丙与甲植株(aabb)杂交,若杂交子代中紫叶和绿叶的分离比为1:1,则说明丙植株为杂合子,能与甲植株杂交产生形状分离比为1:1的杂合子基因型为aaBb、Aabb,所以丙植株可能的基因型为aaBb、Aabb;若杂交子代均为紫叶,则丙植株可能是纯合子(AABB、Aabb、aaBB)或杂合子(AaBB、AABb);若杂交子代均为紫叶,该子代自交,自交子代中紫叶与绿叶的分离比为15:1,说明杂交子代基因型为AaBb,则与甲植株杂交的丙植株基因型为AABB。
故答案为:(1)绿色 aabb。(2)AaBb 4 (3)aaBb、Aabb AABB、Aabb、aaBB、AaBB、AABb AABB。
【分析】自由组合定律的变形原因及基因型组成情况:
AaBb自交后代形状分离比 原因分析 测交后代性状分离比
9:7 当双显性基因同时出现时表现一种表现性,其余基因型都表现一种表现型:
(9A B ):(3A bb+3aaB +1aabb) 1:3
9:3:4 一对等位基因中隐性基因制约其他基因:
(9A B ):(3A bb):(3aaB +1aabb) 1:1:2
9:6:1 双显、单显、双隐三种表现型:
(9A B ):(3A bb+3aaB):(1aabb) 1:2:1
15:1 只要有显性基因其表现型就一致,其余为另一种表现型:
(9A B +3A bb+3aaB):(1aabb) 3:1
1:4:6:4:1 A与B的作用效果相同,且显性基因越多,其作用效果越强:
1(AABB):4(AaBB+AABb):6(AaBb+Aabb+aaBB):4(Aabb+aaBb):1(aabb) 1:2:1
13:3 一种显性基因抑制另一种显性基因的作用,使后者的作用不能显示出来:
(9A B +3A bb+1aabb):(3aaB ) 3:1
20.【答案】(1)3/16;紫眼基因
(2)0;1/2
(3)红眼灰体;红眼灰体∶红眼黑檀体∶白眼灰体∶白眼黑檀体=9∶3∶3∶1;红眼/白眼;红眼雌蝇∶红眼雄蝇∶白眼雄蝇=2∶1∶1
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)翅外展粗糙眼果蝇(dpdprara)与野生型(正常翅正常眼)纯合子果蝇(DPDPRARA)杂交,F1应为正常翅正常眼(DPdpRAra),且两对基因均为杂合子,所以F2中出现翅外展正常眼的概率为.自由组合定律适用于两对基因位于不同的染色体上,而紫眼与翅外展位于同一条染色体上,所以不能与翅外展基因进行自由组合的是紫眼。
(2)由图可知,白眼基因和焦刚毛基因在同一条染色体上,所以焦刚毛白眼雄蝇(XsnwY)与野生型即直刚毛红眼纯合子雌蝇(XSNWXSNW)进行杂交,子代雄蝇应该从亲代雄蝇处获取Y染色体,从母方获取X染色体,所以子代雄蝇一定为直刚毛红眼,即出现焦刚毛的概率为0,。反交:焦刚毛白眼雌蝇(XsnwXsnw)与野生型直刚毛红眼纯合子雄蝇(XSNWY)杂交,子代若为雄性,则一定从父方处获取Y染色体,从母方获取X染色体,所以应为焦刚毛白眼,若子代为雌性,则从父母双方各获得一条X染色体,所以一定为直刚毛红眼。故子代为白眼的概率为.(3)遗传图解如下,
由以上遗传图解可知,验证自由组合定律的F1表现型是红眼灰体,F2表现型及其分离比是红眼灰体(E-XW):红眼黑檀体(eeXW-):白眼灰体(E-XwY):白眼黑檀体(eeXWY)=9:3:3:1。根据题目所提供图可知红白眼基因位于性染色体上,验证伴性遗传的F2表现型及其分离比是红眼雌性:红眼雄性:白眼雄性=2:1:1。
故答案为:(1) 翅外展基因(2)0 【分析】1.自由组合定律定义:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
2. 实质
(1)位于非同源染色体上的非等位基因的分离或组合是互不干扰的。
(2)在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
3.适用条件
(1)有性生殖的真核生物。
(2)细胞核内染色体上的基因。
(3)两对或两对以上位于非同源染色体上的非等位基因。
5.应用
(1)指导杂交育种,把优良性状重组在一起。
(2)为遗传病的预测和诊断提供理沦依据。
21.【答案】(1)非同源染色体;F2中两对相对性状表现型的分离比符合9∶3∶3∶1;一对;F2中每对相对性状表现型的分离比都符合3∶1,而两对相对性状表现型的分离比不符合9∶3∶3∶1
(2)1∶1∶1∶1
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲组中,F2表现型及比值为:红二:红多:黄二:黄多=9∶3∶3∶1,说明控制红果(红)与黄果(黄),子房二室(二)与多室(多)两对相对性状的基因位于两对同源染色体上,符合基因的自由组合定律。乙组中,F2表现型及比值为:圆:长=3:1,单:复=3:1,但是圆单:圆复:长单:长复≠9∶3∶3∶1,符合基因的分离定律。控制圆形果(圆)与长形果(长),单一花序(单)与复状花序(复)两对相对性状的基因位于一对同源染色体上。(2)结合(1)的结论,某同学若用“长复”分别与乙组的两个F1进行杂交,子代表现型的比值应为1:1。
【分析】本题考查了通过对表现型比值的分析,来判断基因在染色体上的分布情况。
判断基因是否位于不同对同源染色体上:以AaBb为例,若两对等位基因分别位于两对同源染色体上,则产生四种类型的配子。在此基础上进行测交或自交时会出现特定的性状分离比,如1∶1∶1∶1或9∶3∶3∶1(或9∶7等变式),也会出现致死背景下特殊的性状分离比,如4∶2∶2∶1、6∶3∶2∶1。在涉及两对等位基因遗传时,若出现上述性状分离比,可考虑基因位于两对同源染色体上。
1 / 1高考生物历年全国卷真题汇编6——遗传规律和变异与进化
一、单选题
1.(2022·全国乙卷)依据鸡的某些遗传性状可以在早期区分雌雄,提高养鸡场的经济效益。已知鸡的羽毛性状芦花和非芦花受1对等位基因控制。芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡。下列分析及推断错误的是(  )
A.正交亲本中雌鸡为芦花鸡,雄鸡为非芦花鸡
B.正交子代和反交子代中的芦花雄鸡均为杂合体
C.反交子代芦花鸡相互交配,所产雌鸡均为芦花鸡
D.仅根据羽毛性状芦花和非芦花即可区分正交子代性别
【答案】C
【知识点】伴性遗传
【解析】【解答】A、由题意可知, 芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则芦花为显性性状,非芦花为隐性性状,正反交结果不相同,说明该对等位基因位于性染色体上,鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,正交子代中芦花鸡和非芦花鸡数目相同,即正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZA、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZA、ZAW,且全为芦花鸡,A正确;
B、鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZa、ZAW,且全为芦花鸡,则正交子代和反交子代中的芦花雄鸡均为杂合体ZAZa,B正确;
C、鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ,芦花鸡和非芦花鸡进行杂交,正交子代中芦花鸡和非芦花鸡数目相同,反交子代均为芦花鸡,则正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,芦花鸟和非芦花鸡数目相同,反交为ZAZA×ZaW,子代为ZAZa、ZAW,且全为芦花鸡,反交子代芦花鸡相互交配,即ZAW(芦花鸡)×ZAZa(芦花鸡),所产雌鸡为(芦花鸡)和ZaW(非芦花雄鸡),C错误;
D、由题意可知,正交为ZaZa(非芦花雄鸡)×ZAW(芦花鸡),子代为ZAZa、ZaW,子代中雌性全为非芦花,雄性全为芦花,仅根据羽毛性状芦花和非芦花即可区分性别,D正确。
故答案为:C。
【分析】鸡的性别决定方式属于ZW型,雌鸡的性染色体组成是ZW,雄鸡的性染色体组成是ZZ。鸡的芦花与非芦花性状的基因分别是B和b,位于Z染色体上,所以母鸡基因型为:ZBW(芦花)、ZbW(非芦花);公鸡基因型为:ZBZB(芦花)、ZBZb(芦花)、ZbZb(非芦花)。若想尽快确定小鸡的性别,则应将小鸡的花色和性别联系,则应选择芦花母鸡与非芦花公鸡交配,子代小鸡芦花的均为公鸡,非芦花的均为母鸡。
2.(2022·全国甲卷)某种自花传粉植物的等位基因A/a和B/b位于非同源染色体上。A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育。B/b控制花色,红花对白花为显性。若基因型为AaBb的亲本进行自交,则下列叙述错误的是()
A.子一代中红花植株数是白花植株数的3倍
B.子一代中基因型为aabb的个体所占比例是1/12
C.亲本产生的可育雄配子数是不育雄配子数的3倍
D.亲本产生的含B的可育雄配子数与含b的可育雄配子数相等
【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、基因型为AaBb的亲本进行自交,由于等位基因A/a和B/b位于非同源染色体上,含a的花粉育性不影响B和b基因的遗传,则基因型为AaBb的亲本进行自交时,子一代中红花植株数(BB+Bb):白花植株数(bb)=3,A正确;
B、由题意可知,A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育,B/b控制花色,红花对白花为显性。基因型为AaBb的亲本进行自交,则雌配子基因型及比例为AB:Ab:aB:ab=1:1:1:1,雄配子中含A的花粉都可育,含a的花粉50%可育、50%不育,则可育的配子之比为A=2a,即雄配子基因型及比例为AB:Ab:aB:ab=2:2:1:1,则子一代中基因型为aabb的个体所占比例是1/4×1/6=1/24,B错误;
C、由题意可知,A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育,基因型为AaBb的亲本进行自交,则可育的配子之比为A=2a,即可育雄配子数(A+1/2a)是不育雄配子数的3倍,C正确;
D、基因型为AaBb的亲本进行自交,由于等位基因A/a和B/b位于非同源染色体上,含a的花粉育性不影响B和b基因的遗传,则基因型为AaBb的亲本进行自交时,B和b基因遵循分离定律,产生的含B的可育雄配子数与含b的可育雄配子数相等,D正确。
故答案为:B。
【分析】1、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
2、等位基因A/a和B/b位于非同源染色体上,遵循自由组合定律。
3.(2021·全国甲)果蝇的翅型、眼色和体色3个性状由3对独立遗传的基因控制,且控制眼色的基因位于X染色体上。让一群基因型相同的果蝇(果蝇M)与另一群基因型相同的果蝇(果蝇N)作为亲本进行杂交,分别统计子代果蝇不同性状的个体数量,结果如图所示。已知果蝇N表现为显性性状灰体红眼。下列推断错误的是(  )
A.果蝇M为红眼杂合体雌蝇 B.果蝇M体色表现为黑檀体
C.果蝇N为灰体红眼杂合体 D.亲本果蝇均为长翅杂合体
【答案】A
【知识点】伴性遗传
【解析】【解答】AB、M的基因型为Aa cc XbY或AaccXbXb,表现为长翅黑檀体白眼雄蝇或者长翅黑檀体白眼雌蝇,A错误,B正确;
C、N基因型为AaCcXBXb或AaCcXBY,三对等位基因均为杂合的, 果蝇N为灰体红眼杂合体,C正确;
D、由于亲本长翅的基因型均是Aa,为杂合体,D正确。
故答案为:A。
【分析】根据图意数据的性状分离比可知:果蝇M与果蝇N作为亲本进行杂交杂交,子代中长翅:残翅=3:1,说明长翅相对残翅为显性性状,所以亲本的基因型均为Aa(假设控制翅型的基因为A/a);子代红眼:白眼=1:1,由书本果蝇红眼为显性性状,且控制眼色的基因位于X染色体上,假设控制眼色的基因为B/b),所以亲本基因型为XBXb×XbY或XbXb×XBY;子代灰身:黑檀体=1:1,灰体相对檀体为显性性状,亲本基因型为Cc×cc(假设控制体色的基因为C/c);。3个性状由3对独立遗传的基因控制,所以遗传时遵循基因的自由组合定律。因为N表现为显性性状灰体红眼,故N基因型为AaCcXBXb或AaCcXBY,则M的基因型对应为Aa cc XbY或AaccXbXb 。
4.(2021·全国乙卷)某种二倍体植物的n个不同性状由n对独立遗传的基因控制(杂合子表现显性性状)。已知植株A的n对基因均杂合。理论上,下列说法错误的是(  )
A.植株A的测交子代会出现2n种不同表现型的个体
B.n越大,植株A测交子代中不同表现型个体数目彼此之间的差异越大
C.植株A测交子代中n对基因均杂合的个体数和纯合子的个体数相等
D.n≥2时,植株A的测交子代中杂合子的个体数多于纯合子的个体数
【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、n对基因均杂合的植株A进行测交,后代表现型种类有2n种,A正确;
B、n越大,植株A测交子代中不同表现型个体数目彼此之间的差异相同,B错误;
C、植株A测交子代中n对基因均杂合的概率为1/2n,纯合子的概率为1/2n,这两种个体概率相等,C正确;
D、植株A测交子代中纯合子的概率为1/2n,杂合子的概率为1-(1/2n),n≥2时,1-(1/2n)大于1/2n,一般而言,植株A的测交子代中杂合子的个体数多于纯合子的个体数,D正确;
故答案为:B.
【分析】 1、通过分析1对、2对、3对……等位基因均杂合的个体,进行测交,用数学归纳法归纳出后代的表现型种类有2n种,其中,子代n对基因均杂合的占1/2n,隐性纯合子占1/2n,n对基因全是显性纯合子占1/2n,杂合子占(1-1/2n)。
2、基因自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子自由组合。
5.(2020·全国Ⅰ)已知果蝇的长翅和截翅由一对等位基因控制。多只长翅果蝇进行单对交配(每个瓶中有1只雌果蝇和1只雄果蝇),子代果蝇中长翅∶截翅=3∶1。据此无法判断的是(  )
A.长翅是显性性状还是隐性性状
B.亲代雌蝇是杂合子还是纯合子
C.该等位基因位于常染色体还是X染色体上
D.该等位基因在雌蝇体细胞中是否成对存在
【答案】C
【知识点】伴性遗传
【解析】【解答】A、根据截翅为无中生有可知,截翅为隐性性状,长翅为显性性状,A不符合题意;
B、根据杂交的后代发生性状分离可知,亲本雌蝇一定为杂合子,B不符合题意;
C、无论控制翅形的基因位于X染色体上还是常染色体上,后代中均会出现长翅:截翅=3:1的分离比,C符合题意;
D、根据后代中长翅:截翅=3:1可知,控制翅形的基因符合基因的分离定律,故可推测该等位基因在雌蝇体细胞中是成对存在的,D不符合题意。
故答案为:C。
【分析】假设控制相对性状的基因用A/a来表示,当翅形的基因位于X染色体时,XAXa和XAY后代为XAXA、XAXa、XAY、XaY,长翅:截翅=3:1的分离比,当翅形的基因位于常染色体时,Aa和Aa后代为AA、2Aa、aa,长翅:截翅=3:1的分离比,所以无法确定该等位基因位于常染色体还是X染色体上。
6.(2019·全国Ⅲ卷)假设在特定环境中,某种动物基因型为BB和Bb的受精卵均可发育成个体,基因型为bb的受精卵全部死亡。现有基因型均为Bb的该动物1 000对(每对含有1个父本和1个母本),在这种环境中,若每对亲本只形成一个受精卵,则理论上该群体的子一代中BB、Bb、bb个体的数目依次为(  )
A.250、500、0 B.250、500、250
C.500、250、0 D.750、250、0
【答案】A
【知识点】基因的分离规律的实质及应用
【解析】【解答】亲本基因型均为Bb,产生配子的比例B占1/2,b占1/2,子一代群体中BB、Bb、bb各占1/4、1/2、1/4,因该动物共1 000对(每对含有1个父本和1个母本),每对亲本只形成一个受精卵,则理论上产生后代1 000只,BB、Bb、bb个体的数目依次为250、500、250。由于基因型为bb的受精卵全部死亡。则理论上该群体的子一代中BB、Bb、bb个体的数目依次为250、500、0。
故答案为:A
【分析】主要考查基因的分离定律。由于亲本基因型均为Bb,产生配子的比例B占1/2,b占1/2,子一代群体中BB占1/2×1/2=1/4、Bb占1/2×1/2×2=1/2、bb占1/2×1/2=1/4,该动物1 000对(每对含有1个父本和1个母本),若每对亲本只形成一个受精卵,则子一代受精卵个数理论上是1000,即BB有1/4×1000=250、Bb有1/2×1000=500、bb有1/4×1000=250。因为基因型为bb的受精卵全部死亡。所以子一代存活个体中BB、Bb、bb个体的数目依次为250、500、0。
7.(2019·全国Ⅱ卷)某种植物的羽裂叶和全缘叶是一对相对性状。某同学用全缘叶植株(植株甲)进行了下列四个实验。
①植株甲进行自花传粉,子代出现性状分离
②用植株甲给另一全缘叶植株授粉,子代均为全缘叶
③用植株甲给羽裂叶植株授粉,子代中全缘叶与羽裂叶的比例为1∶1
④用植株甲给另一全缘叶植株授粉,子代中全缘叶与羽裂叶的比例为3∶1
其中能够判定植株甲为杂合子的实验是(  )
A.①或② B.①或④ C.②或③ D.③或④
【答案】B
【知识点】基因的分离规律的实质及应用
【解析】【解答】①植株甲进行自花传粉,子代出现性状分离,说明全缘叶为显性性状,子代出现羽裂叶,羽裂叶为隐性性状,羽裂叶植株为隐性纯合子,则植株甲一定为杂合子;②用植株甲给另一全缘叶植株授粉,若全缘叶为显性,另一全缘叶植株基因型为AA,或全缘叶植株均为隐性纯合子,子代均为全缘叶,不能判定植株甲为杂合子;③用植株甲给羽裂叶植株授粉,植株甲或羽裂叶植株肯定有一个为隐性纯合子,又子代中全缘叶与羽裂叶的比例为1:1,则显性个体一定是杂合子,但没有说全缘叶为显性,所以不能判定植株甲为杂合子;④用植株甲给另一全缘叶植株授粉,子代出现了性状分离,说明全缘叶为显性性状,又性状分离比为3:1,说明植株甲和另一植株均为杂合子。所以能判定植株甲为杂合子的实验是①④,B符合题意。
故答案为:B
【分析】1.纯合子、杂合子的判断方法
(1)自交法:待测个体自交,若后代无性状分离,则待测个体为纯合子,若后代有性状分离,则待测个体为杂合子。
(2)测交法:待测个体与隐性纯合子杂交,若后代无性状分离,则为纯合子;若后代有性状分离,则为杂合子。
2.由子代性状分离比推测亲代基因型
后代表现型 亲本基因型组合 亲本表现性
全显 AA×AA(或Aa或aa) 亲本中一定有一个是显性纯合子
全隐 Aa×aa 双亲均为隐性纯合子
显:隐=1:1 Aa×aa 亲本一方为显性杂合子,一方为隐性纯合子
显:隐=3:1 Aa×Aa 双亲均为显性杂合子
8.(2019·全国Ⅰ卷)某种二倍体高等植物的性别决定类型为XY型。该植物有宽叶和窄叶两种叶形,宽叶对窄叶为显性。控制这对相对性状的基因(B/b)位于X染色体上,含有基因b的花粉不育。下列叙述错误的是(  )
A.窄叶性状只能出现在雄株中,不可能出现在雌株中
B.宽叶雌株与宽叶雄株杂交,子代中可能出现窄叶雄株
C.宽叶雌株与窄叶雄株杂交,子代中既有雌株又有雄株
D.若亲本杂交后子代雄株均为宽叶,则亲本雌株是纯合子
【答案】C
【知识点】伴性遗传
【解析】【解答】A、叶雄株基因型为XbY,窄叶雌株基因型应该为XbXb,根据题目意思,Xb的花粉不育,所有不可能出现窄叶雌株,不符合题意;
B、如果而亲代宽叶雌株是杂合体,则子代雄株既有宽叶,也有窄叶,不符合题意;
C、宽叶雌株基因型为XBX-,窄叶雄株基因型为XbY,含基因的X染色体的花粉不育,所以在子代中只有雄株出现,符合题意;
D、若亲本杂交后子代雄株均为宽叶,则亲本雌株只产生X B配子,一定是纯合子,不符合题意
故答案为:C
【分析】(1)主要考查伴性遗传和分离定律。根据题意分析可知:宽叶(B)对窄叶(b)是显性,等位基因位于X染色体上,属于伴性遗传。窄叶基因b会使花粉致死,后代没有雌性窄叶植株。若母方宽叶纯合父方宽叶则子代雌雄均有都为宽叶;若母方宽叶杂合父方宽叶则子代雌性均为宽叶,雄性宽叶窄叶都有比例相等;若母方宽叶纯合父方窄叶则子代只有雄性且均为宽叶;若母方宽叶杂合父方窄叶则子代只有雄性,且宽叶窄叶比例相等。
(2)伴性遗传规律:
①当同配性别的性染色体(如哺乳类等为XX为雌性,鸟类ZZ为雄性)传递纯合显性基因时,F1雌、雄个体都为显性性状。F2性状的分离呈3显性:1隐性;性别的分离呈1雌:1雄。其中隐性个体的性别与祖代隐性体一样,即1/2的外孙与其外祖父具有相同的表型特征。
②当同配性别的性染色体传递纯合体隐性基因时,F1表现为交叉遗传,即母亲的性状传递给儿子,父亲的性状传递给女儿,F2中,性状与性别的比例均表现为1:1。
③存在于Y染色体差别区段上的基因(特指哺乳类)所决定的性状,或由W染色体所携带的基因所决定的性状,仅仅由父亲(或母禽、母鸟)传递给其儿子(或雌禽、母鸟)。表现为特殊的Y连锁(或W连锁)遗传。
④伴X显性遗传疾病,女性患者多于男性患者;伴X隐性遗传疾病,男性患者多于女性患者。
9.(2018·全国Ⅲ卷)下列研究工作中由我国科学家完成的是(  )。
A.以豌豆为材料发现性状遗传规律的实验
B.用小球藻发现光合作用暗反应途径的实验
C.证明DNA是遗传物质的肺炎双球菌转化实验
D.首例具有生物活性的结晶牛胰岛素的人工合成
【答案】D
【知识点】光合作用的发现史;肺炎链球菌转化实验;孟德尔遗传实验-分离定律
【解析】【解答】A、以豌豆为材料发现性状遗传规律的实验是奥地利科学家孟德尔,A不符合题意;
B、用小球藻发现光合作用暗反应途径的实验是美国科学家卡尔文,B不符合题意;
C、证明DNA是遗传物质的肺炎双球菌转化实验是美国的科学家艾弗里,C不符合题意;
D、首例具有生物活性的结晶牛胰岛素的人工合成是由中国的科学家完成的,D符合题意。
故答案为为:D。
【分析】本题考查对生物学做出过杰出贡献的科学家。
二、综合题
10.(2022·全国乙卷)某种植物的花色有白、红和紫三种,花的颜色由花瓣中色素决定,色素的合成途径是:白色 红色 紫色。其中酶1的合成由基因A控制,酶2的合成由基因B控制,基因A和基因B位于非同源染色体上、回答下列问题。
(1)现有紫花植株(基因型为AaBb)与红花杂合体植株杂交,子代植株表现型及其比例为   ;子代中红花植株的基因型是   ;子代白花植株中纯合体占的比例为   。
(2)已知白花纯合体的基因型有2种。现有1株白花纯合体植株甲,若要通过杂交实验(要求选用1种纯合体亲本与植株甲只进行1次杂交)来确定其基因型,请写出选用的亲本基因型、预期实验结果和结论。
【答案】(1)白色:红色:紫色=2:3:3;AAbb、Aabb;1/2
(2)选用的亲本基因型为:AAbb;预期的实验结果及结论:若子代花色全为红花,则待测白花纯合体基因型为aabb;若子代花色全为紫花,则待测白花纯合体基因型为aaBB
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)由题意可知,紫花植株(基因型为AaBb)与红花杂合体植株(Aabb)杂交,子代植株的基因型及比例为AABb(紫花):AaBb(紫花):aaBb(白花):AAbb(红花):Aabb(红花):aabb(白花)=1:2:1:1:2:1,则植株表型及比例为紫花(AABb+AaBb):白花(aaBb+aabb):红花(AAbb+Aabb)=3:2:3。故子代植株表现型及其比例为紫花:白花:红花=3:2:3;子代中红花植株的基因型是AAbb、Aabb; 子代白花植株中纯合体占的比例为aabb/(aaBb+aabb)=1/2.
故答案为: 白色:红色:紫色=2:3:3 ; AAbb、Aabb ; 1/2 。
(2)由题意可知,aa_ _表现为白花,白花纯合体的基因型有aabb和aaBB2种。若要通过杂交实验(要求选用1种纯合体亲本与植株甲只进行1次杂交)来确定其基因型,则纯合亲本的基因型应该为AAbb(红花),若白花基因型为aabb,则杂交子代基因型为Aabb,全为红花,若白花基因型为aaBB,则杂交子代基因行为AaBb,全为紫花。
故答案为:选用的亲本基因型为:AAbb;预期的实验结果及结论:若子代花色全为红花,则待测白花纯合体基因型为aabb;若子代花色全为紫花,则待测白花纯合体基因型为aaBB。
【分析】1、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
2、由题意可知,Aa和Bb两对基因遵循自由组合定律,A_B_表现为紫花,A_bb表现为红花,aa_ _表现为白花。
11.(2022·全国甲卷)玉米是我国重要的粮食作物。玉米通常是雌雄同株异花植物(顶端长雄花序,叶腋长雌花序),但也有的是雌雄异株植物。玉米的性别受两对独立遗传的等位基因控制,雌花花序由显性基因B控制,雄花花序由显性基因T控制,基因型bbtt个体为雌株。现有甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株。回答下列问题。
(1)若以甲为母本、丁为父本进行杂交育种,需进行人工传粉,具体做法是   。
(2)乙和丁杂交,F1全部表现为雌雄同株;F1自交,F2中雌株所占比例为   ,F2中雄株的基因型是   ;在F2的雌株中,与丙基因型相同的植株所占比例是   。
(3)已知玉米籽粒的糯和非糯是由1对等位基因控制的相对性状。为了确定这对相对性状的显隐性,某研究人员将糯玉米纯合体与非糯玉米纯合体(两种玉米均为雌雄同株)间行种植进行实验,果穗成熟后依据果穗上籽粒的性状,可判断糯与非糯的显隐性。若糯是显性,则实验结果是   ;若非糯是显性,则实验结果是   。
【答案】(1)对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
(2)1/4;bbTT、bbTt;1/4
(3)糯性植株上全为糯性籽粒,非糯植株上既有糯性籽粒又有非糯籽粒;非糯性植株上只有非糯籽粒,糯性植株上既有糯性籽粒又有非糯籽粒
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)人工异花授粉的过程为:去雄(花蕾期将母本的雄蕊去掉,若雌雄异株或异花植物可省去此步骤)→套袋→人工异花授粉(待花粉成熟时,采集另一植株的花粉涂在去雄的花的雌蕊柱头上)→套袋。由题意可知,甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株,以甲为母本、丁为父本进行杂交育种,需进行人工传粉,由于母本为雌雄异花,则对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
故答案为: 对母本甲的雌花花序进行套袋,待雌蕊成熟时,采集丁的成熟花粉,撒在甲的雌蕊柱头上,再套上纸袋。
(2)由题意可知,玉米的性别受两对独立遗传的等位基因控制,雌花花序由显性基因B控制,雄花花序由显性基因T控制,基因型bbtt个体为雌株。现有甲(雌雄同株)、乙(雌株)、丙(雌株)、丁(雄株)4种纯合体玉米植株,且乙和丁杂交,F1全部表现为雌雄同株,则甲基因型为AATT,乙基因型为AAtt,丙基因型为bbtt,丁基因型为bbTT,则乙和丁杂交,F1全部表现为雌雄同株(BbTt), F1自交,F2中基因型为--tt的全为雌株,即雌株所占比例为1/4,F2中雄株的基因型为bbT-,即bbTT、bbTt;F2的雌株基因型为--tt,其中BBtt:Bbtt:bbtt=1:2:1,丙基因型为bbtt,与丙基因型相同的植株所占比例是1/4。
故答案为:1/4 ; bbTT、bbTt ; 1/4 。
(3)由题意可知,玉米籽粒的糯和非糯是由1对等位基因控制的相对性状。为了确定这对相对性状的显隐性,某研究人员将糯玉米纯合体与非糯玉米纯合体(两种玉米均为雌雄同株)间行种植进行实验,由于自然授粉过程中玉米即可能发生杂交也可能发生自交的情况,故若糯是显性,则糯性植株上无论是自交还是杂交产生的全为糯性籽粒,非糯植株上既有杂交产生的糯性籽粒又有自交产生的非糯籽粒;反之,若非糯是显性,则非糯性植株上无论是自交还是杂交产生的只有非糯籽粒,糯性植株上既自交产生的有糯性籽粒又有杂交产生的非糯籽粒。
故答案为:糯性植株上全为糯性籽粒,非糯植株上既有糯性籽粒又有非糯籽粒;非糯性植株上只有非糯籽粒,糯性植株上既有糯性籽粒又有非糯籽粒。
【分析】1、人工异花授粉的过程为:去雄(花蕾期将母本的雄蕊去掉,若雌雄异株植物可省去此步骤)→套袋→人工异花授粉(待花粉成熟时,采集另一植株的花粉涂在去雄的花的雌蕊柱头上)→套袋。
2、基因分离定律和自由组合定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合,由于自由组合定律同时也遵循分离定律,因此可以将自由组合问题转化成分离定律问题进行解决。
3、遗传上常用杂交方法的用途:
(1)鉴别一只动物是否为纯合子,可用测交法;(2)鉴别一棵植物是否为纯合子,可用测交法和自交法,其中自交法最简便;(3)鉴别一对相对性状的显性和隐性,可用杂交法和自交法(只能用于植物);(4)提高优良品种的纯度,常用自交法;(5)检验杂种F1的基因型采用测交法。
12.(2020·全国Ⅲ)普通小麦是目前世界各地栽培的重要粮食作物。普通小麦的形成包括不同物种杂交和染色体加倍过程,如图所示(其中A、B、D分别代表不同物种的一个染色体组,每个染色体组均含7条染色体)。在此基础上,人们又通过杂交育种培育出许多优良品种。回答下列问题:
(1)在普通小麦的形成过程中,杂种一是高度不育的,原因是   。已知普通小麦是杂种二染色体加倍形成的多倍体,普通小麦体细胞中有   条染色体。一般来说,与二倍体相比,多倍体的优点是   (答出2点即可)。
(2)若要用人工方法使植物细胞染色体加倍,可采用的方法有   (答出1点即可)。
(3)现有甲、乙两个普通小麦品种(纯合体),甲的表现型是抗病易倒伏,乙的表现型是易感病抗倒伏。若要以甲、乙为实验材料设计实验获得抗病抗倒伏且稳定遗传的新品种,请简要写出实验思路   。
【答案】(1)无同源染色体,不能进行正常的减数分裂;42;营养物质含量高、茎秆粗壮
(2)秋水仙素处理
(3)甲、乙两个品种杂交,F1自交,选取F2中既抗病又抗倒伏、且自交后代不发生性状分离的植株
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)杂种一是一粒小麦和斯氏麦草杂交的产物,细胞内含有一粒小麦和斯氏麦草各一个染色体组,所以细胞内不含同源染色体,不能进行正常的减数分裂,因此高度不育;
普通小麦含有6个染色体组,每个染色体组有7条染色体,所以体细胞有42条染色体;
多倍体植株通常茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。(2)人工诱导植物细胞染色体加倍可以采用秋水仙素处理。(3)为获得稳定遗传的抗病抗倒伏的小麦,可以利用杂交育种,设计思路如下:
将甲和乙两品种杂交获得F1,将F1植株进行自交,选取F2中既抗病又抗倒伏的、且自交后代不发生性状分离的植株,即为稳定遗传的抗病又抗倒伏的植株。
【分析】图中是普通小麦育种的过程,一粒小麦和斯氏麦草杂交形成杂种一,经过加倍后形成拟二粒小麦AABB,在和滔氏麦草杂交获得杂种二ABD,然后加倍形成普通小麦AABBDD。
秋水仙素可以抑制纺锤丝的形成,导致细胞染色体数目加倍。
13.(2020·全国Ⅱ)控制某种植物叶形、叶色和能否抗霜霉病3个性状的基因分别用A/a、B/b、D/d表示,且位于3对同源染色体上。现有表现型不同的4种植株:板叶紫叶抗病(甲)、板叶绿叶抗病(乙)、花叶绿叶感病(丙)和花叶紫叶感病(丁)。甲和丙杂交,子代表现型均与甲相同;乙和丁杂交,子代出现个体数相近的8种不同表现型。回答下列问题:
(1)根据甲和丙的杂交结果,可知这3对相对性状的显性性状分别是   。
(2)根据甲和丙、乙和丁的杂交结果,可以推断甲、乙、丙和丁植株的基因型分别为   、   、   和   。
(3)若丙和丁杂交,则子代的表现型为   。
(4)选择某一未知基因型的植株X与乙进行杂交,统计子代个体性状。若发现叶形的分离比为3∶1、叶色的分离比为1∶1、能否抗病性状的分离比为1∶1,则植株X的基因型为   。
【答案】(1)板叶、紫叶、抗病
(2)AABBDD;AabbDd;aabbdd;aaBbdd
(3)花叶绿叶感病、 花叶紫叶感病
(4)AaBbdd
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知显性性状为板叶、紫叶、抗病,甲为显性纯合子AABBDD。(2)已知显性性状为板叶、紫叶、抗病,再根据甲乙丙丁的表现型和杂交结果可推知,甲、乙、丙、丁的基因型分别为AABBDD、AabbDd、aabbdd、aaBbdd。(3)若丙aabbdd和丁aaBbdd杂交,根据自由组合定律,可知子代基因型和表现型为:aabbdd(花叶绿叶感病)和aaBbdd(花叶紫叶感病)。(4)已知杂合子自交分离比为3:1,测交比为1:1,故,X与乙杂交,叶形分离比为3:1,则为Aa×Aa杂交,叶色分离比为1:1,则为Bb×bb杂交,能否抗病分离比为1:1,则为Dd×dd杂交,由于乙的基因型为AabbDd,可知X的基因型为AaBbdd。
【分析】分析题意可知:甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知甲为显性纯合子AABBDD,丙为隐性纯合子aabbdd;乙板叶绿叶抗病与丁花叶紫叶感病杂交,后代出现8种表现型,且比例接近1:1:1:1:1:1:1:1,可推测三对等位基因应均为测交。
14.(2019·全国Ⅲ卷)玉米是一种二倍体异花传粉作物,可作为研究遗传规律的实验材料。玉米子粒的饱满与凹陷是一对相对性状,受一对等位基因控制。回答下列问题。
(1)在一对等位基因控制的相对性状中,杂合子通常表现的性状是   。
(2)现有在自然条件下获得的一些饱满的玉米子粒和一些凹陷的玉米子粒,若要用这两种玉米子粒为材料验证分离定律。写出两种验证思路及预期结果。
【答案】(1)显性性状
(2)答:思路及预期结果
①两种玉米分别自交,若某些玉米自交后,子代出现3∶1的性状分离比,则可验证分离定律。
②两种玉米分别自交,在子代中选择两种纯合子进行杂交,F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
③让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1都表现一种性状,则用F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
④让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1表现两种性状,且表现为1∶1的性状分离比,则可验证分离定律。
【知识点】基因的分离规律的实质及应用
【解析】【解答】(1)显性性状是指当两个具有相对性状的纯合亲本杂交时,子一代(即杂合子)出现的一个亲本性状。
(2)分离定律的实质就是杂合子中控制一对相对性状的的等位基因在形成配子时彼此分离,分别进入不同的配子中,结果一半的配子带有一种等位基因,另一半的配子带有另一种等位基因。即杂合子在产生配子时,可以形成两种分别含有显性基因、隐性基因的配子,其比例为1:1,所以只要验证这一点就可以证实分离定律。那么按照孟德尔的假设,测交就是用这个杂合子和隐性的纯合子交配,因为隐性纯合子只会产生一种隐性配子,故它与任何配子结合形成等位基因都会表现出配子的基因型,杂合子测交子代表现出显性:隐性=1:1,分离定律得以证实。同理,杂合子自交子代表现出显性:隐性=3:1,分离定律也会得以证实。
故答案为:(1)显性性状
(2)思路及预期结果
①两种玉米分别自交,若某些玉米自交后,子代出现3∶1的性状分离比,则可验证分离定律。
②两种玉米分别自交,在子代中选择两种纯合子进行杂交,F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
③让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1都表现一种性状,则用F1自交,得到F2,若F2中出现3∶1的性状分离比,则可验证分离定律。
④让子粒饱满的玉米和子粒凹陷的玉米杂交,如果F1表现两种性状,且表现为1∶1的性状分离比,则可验证分离定律。
【分析】主要考查基因的分离定律。显性性状是具有一对相对性状的亲本进行杂交,子一代为杂合体,相应的等位基因中其中一个对表现出的性状有明显影响,另个则暂时不表现,表现出的那个亲本的性状为显性性状。基因分离定律的实质:在杂合子的细胞中,位于同一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着同源染色体的分开而分离,分别进入到两个配子中,独立的随配子遗传给后代,即杂合子在产生配子时,可以形成两种分别含有显性基因、隐性基因的配子,其比例为1:1,据此答题。
15.(2018·全国Ⅱ卷)某种家禽的豁眼和正常眼是一对相对性状,豁眼雌禽产蛋能力强。已知这种家禽的性别决定方式与鸡相同,豁眼性状由Z染色体上的隐性基因a控制,且在W染色体上没有其等位基因
问答下列问题:
(1)用纯合体正常眼雄禽与豁眼雌禽杂交,杂交亲本的基因型为   ;理论上,F1个体的基因型和表现型为   .F2雌禽中豁眼禽所占的比例为   .
(2)为了给饲养场提供产蛋能力强的该种家禽,请确定一个合适的杂交组合,使其子代中雌禽均为豁眼,雄禽均为正常眼。写出杂交组合和预期结果,要求标明亲本和子代的表现型,基因型。
(3)假设M/m基因位于染色体上,m基因纯合时可使部分应表现为豁眼的个体表现为正常眼,而MM和Mm对个体眼的表现无影响。以此推测,在考虑M/m基因的情况下,若两只表现型均为正常眼的亲本交配。其子代中出现豁眼雄禽,则亲本雌禽的基因为   ,子代中豁眼雄禽可能的基因型包括   。
【答案】(1)ZAZA、ZaW;ZAW和ZAZa、均为正常眼;1/2
(2)杂交组合:豁眼雄禽(ZaZa)×正常眼雌禽(ZAW)
预期结果:子代雌禽为豁眼(ZaW),雄禽为正常眼(ZAZa)
(3)ZaWmm;ZaZamm、ZaZaMm
【知识点】伴性遗传
【解析】【解答】(1)该家禽的性别决定方式为ZW型,雌性的性染色体是ZW,雄性的是ZZ。豁眼性状由Z染色体上的隐性基因a控制,又正常眼雄禽为纯合体,则其基因型为ZAZA,豁眼雌禽基因型为ZaW。ZAZA产生的配子为ZA,ZaW产生的配子为Za 、W,所以子代基因型为ZAW和ZAZa,根据基因型可知子代均为正常眼。
( 2 )
( 3 )若两只表现型均为正常眼的亲本交配。其子代中出现豁眼雄禽则该雄禽的控制眼型基因型为ZaZa,一个Za配子来自亲本雌禽,则其亲本雌禽控制眼型基因型为ZaW,又因为亲本均表现为正常眼,则亲本雌禽另一基因基因型为mm,则亲本雌禽基因型为ZaWmm,子代中豁眼雄禽控制眼型的基因型为ZaZa,又因其亲本雌禽基因型为ZaWmm,可将一个m传递给豁眼雄禽所以子代豁眼雄禽基因型为ZaZamm、ZaZaMm
【分析】ZW型:该性别决定的生物,雌性的性染色体是ZW,雄性的是ZZ。据题意可知,正常眼雄禽的基因型为ZAZA,豁眼雌禽的基因型为ZaW。
16.(2018·全国Ⅰ卷)果蝇体细胞有4对染色体,其中2、3、4号为常染色体,已知控制长翅/残翅性状的基因位于2号染色体上,控制灰体/黑檀体性状的基因位于3号染色体上,某小组用一只无眼灰体长翅雌蝇与一只有眼灰体长翅雄蝇杂交,杂交子代的表现型及其比例如下:
眼 性别 灰体长翅:灰体残翅:黑檀体长翅:黑檀体残翅
1/2有眼 1/2雌 9:3:3:1
1/2雄 9:3:3:1
1/2无眼 1/2雌 9:3:3:1
1/2雄 9:3:3:1
回答下列问题:
(1)根据杂交结果,   (填“能”或“不能”)判断控制果蝇有眼/无眼性状的基因是位于X染色体还是常染色体上,若控制有眼/无眼性状的基因位于X染色体上,根据上述亲本杂交组合和杂交结果判断,显性性状是   ,判断依据是    。
(2)若控制有眼/无眼性状的基因位于常染色体上,请用上表中杂交子代果蝇为材料设计一个杂交实验来确定无眼性状的显隐性(要求:写出杂交组合和预期结果)。
(3)若控制有影/无眼性状的基因位于4号染色体上,用灰体长翅有眼纯合体和黑檀体残翅无眼纯合体果蝇杂交,F1相互交配后,F2中雌雄均有    种表现型,其中黑檀体长翅无眼所占比例为3/64时,则说明无眼性状为   (填”显性”或”隐性”)
【答案】(1)不能;无眼;只有当无眼为显性时子代雌雄个体中才都会出现有眼与无眼性状的分离
(2)杂交组合:无眼ⅹ无眼
预期结果:若子代中无眼:有眼=3:1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状
(3)8;隐性
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)题干中,两亲本分别为无眼和有眼,子代中有眼:无眼=1:1,且没有与性别相关联,所以不能判断出控制有眼,无眼性状的基因是位于X染色体,还是常染色体上。假设有眼为显性(用基因A表示),XaXa × XAY→XAXa 、 XaY很明显不符合题意。(2)题干要求设计实验确定无眼性状在常染色体上的显隐性,以杂交子代果蝇为材料。最简捷的方法是可以选择雌雄果蝇均为无眼的性状进行杂交实验,若子代中无眼:有眼=3:1,则无眼为显性性状;若子代全部为无眼,则无眼为隐性性状。(3)依据表中灰体长翅:灰体残翅:黑檀体长翅:黑檀体残翅=9:3:3:1,可知显性性状为灰体(用基因A表示)和长翅(用基因B表示)。有眼和无眼不能确定显隐性(用基因C表示),灰体长翅有眼纯合体和黑檀体残翅无眼纯合体的基因型可写为AABB-- aabb--。可推出F1的基因型为AaBbCc,F1个体间相互交配,F2的表现型为2×2×2=8种。F2中黑檀体(Aa ×Aa=1/4)长翅(Bb× Bb=3/4)无眼所占比例为3/64时,可知无眼所占比例为1/4,则无眼为隐性性状。
【分析】本题以果蝇为实验材料考查了遗传的相关内容,难度较大。(1)根据杂交结果如何判断基因在常染色体还是X染色体上,及基因的显隐性问题。(2)如何设计实验验证基因的显隐性,以及预期的实验结果。(3)考查多对相对性状的自由组合出现表现型的种类。以及给出子代中某个体所占的概率,判断亲代未知性状的显隐性。
三、实验探究题
17.(2021·全国甲)植物的性状有的由1对基因控制,有的由多对基因控制。一种二倍体甜瓜的叶形有缺刻叶和全缘叶,果皮有齿皮和网皮。为了研究叶形和果皮这两个性状的遗传特点,某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮。杂交实验及结果见下表(实验②中F1自交得F2)。
实验 亲本 F1 F2
① 甲×乙 1/4缺刻叶齿皮,1/4缺刻叶网皮 1/4全缘叶齿皮,1/4全缘叶网皮 /
② 丙×丁 缺刻叶齿皮 9/16缺刻叶齿皮,3/16缺刻叶网皮 3/16全缘叶齿皮,1/16全缘叶网皮
回答下列问题:
(1)根据实验①可判断这2对相对性状的遗传均符合分离定律,判断的依据是   。根据实验②,可判断这2对相对性状中的显性性状是   。
(2)甲乙丙丁中属于杂合体的是   。
(3)实验②的F2中纯合体所占的比例为   。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮不是9∶3∶3∶1,而是45∶15∶3∶1,则叶形和果皮这两个性状中由1对等位基因控制的是   ,判断的依据是   。
【答案】(1)基因型不同的两个亲本杂交,F1分别统计,缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,每对相对性状结果都符合测交的结果,说明这2对相对性状的遗传均符合分离定律;缺刻叶和齿皮
(2)甲和乙
(3)1/4
(4)果皮;F2中齿皮∶网皮=48∶16=3∶1,说明受一对等位基因控制
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】 (1)实验①中F1表现型进行逐一性状分析,分别统计两对相对性状的性状分离比,发现缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,发现每对相对性状结果都符合测交的结果,因而可判断这2对相对性状的遗传均符合分离定律;根据实验②,F1全为缺刻叶齿皮,F2出现不同于亲本F1的性状全缘叶和网皮,可以推测缺刻叶和齿皮对网皮为显性性状。
(2)某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮,实验①杂交的F1结果相当于测交结果;而实验②的F2出现9∶3∶3∶1,符合基因自由组合定律的特点,因而F1的基因型为双等位基因杂合子AaBb。分析可知,甲的基因型为Aabb,乙的基因型为aaBb,丙的基因型为AAbb,丁的基因型为aaBB,因而甲乙丙丁中属于杂合体的是甲和乙。
(3)实验②的F2中纯合体基因型为AABB,AAbb,aaBB,aabb,概率均为1/16。 所以实验②的F2中纯合体所占的总比例为1/4。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮=45∶15∶3∶1,逐一分析法分析每对相对性状的性状分离比,我们发现,缺刻叶∶全缘叶=60∶4=15∶1,可推测叶形受两对非同源染色体上的等位基因控制。齿皮∶网皮=48∶16=3∶1,可推测果皮受一对等位基因控制。
【分析】 由表格实验数据进行分析。表格里面有两对相对性状,所以需要进行逐一分析。利用注意分析法,分析每对相对性状的性状分离比,通过判断子代性状分离比是否符合自交、测交、杂交的结果,进行写出亲本的基因型。F1全为缺刻叶齿皮,F2出现全缘叶和网皮,可以推测缺刻叶对全缘叶为显性(控制该性状的基因用A和a表示),齿皮对网皮为显性(控制该性状的基因用B和b表示),且F2出现9∶3∶3∶1。
18.(2021·全国乙卷)果蝇的灰体对黄体是显性性状,由X染色体上的1对等位基因(用A/a表示)控制:长翅对残翅是显性性状,由常染色体上的1对等位基因(用B/b表示)控制。回答下列问题:
(1)请用灰体纯合子雌果蝇和黄体雄果蝇为实验材料,设计杂交实验以获得黄体雌果蝇。(要求:用遗传图解表示杂交过程。)
(2)若用黄体残翅雌果蝇与灰体长翅雄果蝇(XAYBB)作为亲本杂交得到F1,F1相互交配得F2,则F2中灰体长翅:灰体残翅:黄体长翅:黄体残翅=   , F2中灰体长翅雌蝇出现的概率为   。
【答案】(1)
(2)3:1:3:1;3/16
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)解∶黄体雌果蝇(XaXa)的一个Xa,来自父本,另一个Xa来自母本。即需要亲本均有Xa,而亲本灰体纯合子雌果蝇(XAXA)没有Xa,所以需要先用灰体纯合子雌果蝇(XAXA)和黄体雄果蝇(XaY)杂交,得到F1代XAXa,再用F1代(XAXa)与亲本黄体雄果蝇(XaY)杂交,即可得到黄体雌果蝇(XaXa).
遗传图解如下:
(2)用黄体残翅雌果蝇与灰体长翅雄果蜂(XAYBB)作为亲本杂交得到F1的过程如下:
让F1相互交配得到F2的过程可以用拆分组合法进行快速计算:
XAXa×XaY→有1/2的概率产生灰体果蝇,有1/2的概率产生黄体果蝇
Bb×Bb→有3/4的概率产生长翅果蝇,有1/4的概率产生残翅果蝇
灰体长翅=1/2×3/4=3/8:灰体残翅=1/2×1/4=1/8;黄体长翅=1/2×3/4=3/8;黄体残翅=1/2×1/4=1/8。
所以,灰体长翅:灰体残翅:黄体长翅:黄体残翅=3:1:3:1。其中灰体长翅的概率为3/8。
在灰体长翅的表现型中,有1/2的个体是雌性,所以F2中灰体长翅雌蝇出现的概率为3/8×1/2=3/16。
【分析】 1、先确定亲本基因型为:XAXA 和XaY,F1由亲本的雌雄配子随机结合产生。所以F1基因型为: XAXa 和 XAY,由于子代杂交不能直接得到黄体雌果蝇(XaXa),两条X染色体一条来自父方,一条来自母方),所以可以考虑回交法。
2、 杂交得到F1的基因型为BbXAXa和BbXaY。逐一分析法算出子二代灰体长翅:灰体残翅:黄体长翅:黄体残翅=(3:1)(1:1)=多少 ,F2中“灰体”“长翅”“雌蝇”出现的概率为多少。
19.(2019·全国Ⅱ卷) 某种甘蓝的叶色有绿色和紫色。已知叶色受2对独立遗传的基因A/a和B/b控制,只含隐性基因的个体表现隐性性状,其他基因型的个体均表现显性性状。某小组用绿叶甘蓝和紫叶甘蓝进行了一系列实验。
实验①:让绿叶甘蓝(甲)的植株进行自交,子代都是绿叶
实验②:让甲植株与紫叶甘蓝(乙)植株进行杂交,子代个体中绿叶∶紫叶=1∶3
回答下列问题。
(1)甘蓝叶色中隐性性状是   ,实验①中甲植株的基因型为   。
(2)实验②中乙植株的基因型为   ,子代中有   种基因型。
(3)用另一紫叶甘蓝(丙)植株与甲植株杂交,若杂交子代中紫叶和绿叶的分离比为1∶1,则丙植株所有可能的基因型是   ;若杂交子代均为紫叶,则丙植株所有可能的基因型是   ;若杂交子代均为紫叶,且让该子代自交,自交子代中紫叶与绿叶的分离比为15∶1,则丙植株的基因型为   。
【答案】(1)绿色;aabb
(2)AaBb;4
(3)Aabb、aaBb;AABB、AAbb、aaBB、AaBB、AABb;AABB
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据题意甘蓝的叶色受2对独立遗传的基因控制,且只含隐性基因的个体表现隐性性状,又根据实验②绿叶甘蓝(甲植株)和紫叶甘蓝(乙植株)必定有一个为隐性纯合子,又子代出现性状分离,则另外一个为杂合子,二者杂交为测交,又因为子代个体中绿叶:紫叶=1:3,则形状分离比为1的为隐性性状,即甘蓝叶色中隐性性状是绿色,又因为只含隐性基因的个体表现隐性性状,则甲植株的基因型为aabb。
(2)据分析乙植株为杂合子,显示显性性状的杂合子包括AaBB、AABb、aaBb、Aabb、AaBb,其中基因型为AaBB、AABb的植株与甲植株(aabb)杂交子代均为紫色,不符合题意;基因型为aaBb、Aabb的植株与甲植株(aabb)杂交子代形状分离比为1:1,不符合题意;基因型为AaBb的的植株与甲植株(aabb)杂交子代形状分离比为1:3,符合题意,故实验②中乙植株的基因型为AaBb。甲植株(aabb)与乙植株(AaBb)杂交,其中aa与Aa杂交子代有2种基因型,bb与Bb杂交子代中也有2种基因型,则甲植株(aabb)与乙植株(AaBb)杂交子代中共有2×2=4种基因型。
(3)用另一紫叶甘蓝丙与甲植株(aabb)杂交,若杂交子代中紫叶和绿叶的分离比为1:1,则说明丙植株为杂合子,能与甲植株杂交产生形状分离比为1:1的杂合子基因型为aaBb、Aabb,所以丙植株可能的基因型为aaBb、Aabb;若杂交子代均为紫叶,则丙植株可能是纯合子(AABB、Aabb、aaBB)或杂合子(AaBB、AABb);若杂交子代均为紫叶,该子代自交,自交子代中紫叶与绿叶的分离比为15:1,说明杂交子代基因型为AaBb,则与甲植株杂交的丙植株基因型为AABB。
故答案为:(1)绿色 aabb。(2)AaBb 4 (3)aaBb、Aabb AABB、Aabb、aaBB、AaBB、AABb AABB。
【分析】自由组合定律的变形原因及基因型组成情况:
AaBb自交后代形状分离比 原因分析 测交后代性状分离比
9:7 当双显性基因同时出现时表现一种表现性,其余基因型都表现一种表现型:
(9A B ):(3A bb+3aaB +1aabb) 1:3
9:3:4 一对等位基因中隐性基因制约其他基因:
(9A B ):(3A bb):(3aaB +1aabb) 1:1:2
9:6:1 双显、单显、双隐三种表现型:
(9A B ):(3A bb+3aaB):(1aabb) 1:2:1
15:1 只要有显性基因其表现型就一致,其余为另一种表现型:
(9A B +3A bb+3aaB):(1aabb) 3:1
1:4:6:4:1 A与B的作用效果相同,且显性基因越多,其作用效果越强:
1(AABB):4(AaBB+AABb):6(AaBb+Aabb+aaBB):4(Aabb+aaBb):1(aabb) 1:2:1
13:3 一种显性基因抑制另一种显性基因的作用,使后者的作用不能显示出来:
(9A B +3A bb+1aabb):(3aaB ) 3:1
20.(2019·全国Ⅰ卷)某实验室保存有野生型和一些突变型果蝇。果蝇的部分隐性突变基因及其在染色体上的位置如图所示。回答下列问题。
(1)同学甲用翅外展粗糙眼果蝇与野生型(正常翅正常眼)纯合子果蝇进行杂交,F2中翅外展正常眼个体出现的概率为   。图中所列基因中,不能与翅外展基因进行自由组合的是   。
(2)同学乙用焦刚毛白眼雄蝇与野生型(直刚毛红眼)纯合子雌蝇进行杂交(正交),则子代雄蝇中焦刚毛个体出现的概率为   ;若进行反交,子代中白跟个体出现的概率为   。
(3)为了验证遗传规律,同学丙让白眼黑檀体雄果蝇与野生型(红眼灰体)纯合子雌果蝇进行杂交得到F1,F1相互交配得到F2。那么,在所得实验结果中,能够验证自由组合定律的F1表现型是   ,F2表现型及其分离比是   ;验证伴性遗传时应分析的相对性状是   ,能够验证伴性遗传的F2表现型及其分离比是   。
【答案】(1)3/16;紫眼基因
(2)0;1/2
(3)红眼灰体;红眼灰体∶红眼黑檀体∶白眼灰体∶白眼黑檀体=9∶3∶3∶1;红眼/白眼;红眼雌蝇∶红眼雄蝇∶白眼雄蝇=2∶1∶1
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)翅外展粗糙眼果蝇(dpdprara)与野生型(正常翅正常眼)纯合子果蝇(DPDPRARA)杂交,F1应为正常翅正常眼(DPdpRAra),且两对基因均为杂合子,所以F2中出现翅外展正常眼的概率为.自由组合定律适用于两对基因位于不同的染色体上,而紫眼与翅外展位于同一条染色体上,所以不能与翅外展基因进行自由组合的是紫眼。
(2)由图可知,白眼基因和焦刚毛基因在同一条染色体上,所以焦刚毛白眼雄蝇(XsnwY)与野生型即直刚毛红眼纯合子雌蝇(XSNWXSNW)进行杂交,子代雄蝇应该从亲代雄蝇处获取Y染色体,从母方获取X染色体,所以子代雄蝇一定为直刚毛红眼,即出现焦刚毛的概率为0,。反交:焦刚毛白眼雌蝇(XsnwXsnw)与野生型直刚毛红眼纯合子雄蝇(XSNWY)杂交,子代若为雄性,则一定从父方处获取Y染色体,从母方获取X染色体,所以应为焦刚毛白眼,若子代为雌性,则从父母双方各获得一条X染色体,所以一定为直刚毛红眼。故子代为白眼的概率为.(3)遗传图解如下,
由以上遗传图解可知,验证自由组合定律的F1表现型是红眼灰体,F2表现型及其分离比是红眼灰体(E-XW):红眼黑檀体(eeXW-):白眼灰体(E-XwY):白眼黑檀体(eeXWY)=9:3:3:1。根据题目所提供图可知红白眼基因位于性染色体上,验证伴性遗传的F2表现型及其分离比是红眼雌性:红眼雄性:白眼雄性=2:1:1。
故答案为:(1) 翅外展基因(2)0 【分析】1.自由组合定律定义:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
2. 实质
(1)位于非同源染色体上的非等位基因的分离或组合是互不干扰的。
(2)在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
3.适用条件
(1)有性生殖的真核生物。
(2)细胞核内染色体上的基因。
(3)两对或两对以上位于非同源染色体上的非等位基因。
5.应用
(1)指导杂交育种,把优良性状重组在一起。
(2)为遗传病的预测和诊断提供理沦依据。
21.(2018·全国Ⅲ卷)某小组利用某二倍体自花传粉植物进行两组杂交实验,杂交涉及的四对相对性状分别是:红果(红)与黄果(黄),子房二室(二)与多室(多),圆形果(圆)与长形果(长),单一花序(单)与复状花序(复)。实验数据如下表:
组别 杂交组合 F1表现型 F2表现型及个体数
甲 红二×黄多 红二 450红二、160红多、150黄二、50黄多
红多×黄二 红二 460红二、150红多、160黄二、50黄多
乙 圆单×长复 圆单 660圆单、90圆复、90长单、160长复
圆复×长单 圆单 510圆单、240圆复、240长单、10长复
回答下列问题:
(1)根据表中数据可得出的结论是:控制甲组两对相对性状的基因位于   上,依据是   ;控制乙组两对相对性状的基因位于   (填“一对”或“两对”)同源染色体上,依据是   。
(2)某同学若用“长复”分别与乙组的两个F1进行杂交,结合表中数据分析,其子代的统计结果不符合的   的比例。
【答案】(1)非同源染色体;F2中两对相对性状表现型的分离比符合9∶3∶3∶1;一对;F2中每对相对性状表现型的分离比都符合3∶1,而两对相对性状表现型的分离比不符合9∶3∶3∶1
(2)1∶1∶1∶1
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲组中,F2表现型及比值为:红二:红多:黄二:黄多=9∶3∶3∶1,说明控制红果(红)与黄果(黄),子房二室(二)与多室(多)两对相对性状的基因位于两对同源染色体上,符合基因的自由组合定律。乙组中,F2表现型及比值为:圆:长=3:1,单:复=3:1,但是圆单:圆复:长单:长复≠9∶3∶3∶1,符合基因的分离定律。控制圆形果(圆)与长形果(长),单一花序(单)与复状花序(复)两对相对性状的基因位于一对同源染色体上。(2)结合(1)的结论,某同学若用“长复”分别与乙组的两个F1进行杂交,子代表现型的比值应为1:1。
【分析】本题考查了通过对表现型比值的分析,来判断基因在染色体上的分布情况。
判断基因是否位于不同对同源染色体上:以AaBb为例,若两对等位基因分别位于两对同源染色体上,则产生四种类型的配子。在此基础上进行测交或自交时会出现特定的性状分离比,如1∶1∶1∶1或9∶3∶3∶1(或9∶7等变式),也会出现致死背景下特殊的性状分离比,如4∶2∶2∶1、6∶3∶2∶1。在涉及两对等位基因遗传时,若出现上述性状分离比,可考虑基因位于两对同源染色体上。
1 / 1

展开更多......

收起↑

资源列表