2023年江苏高考 物理大一轮复习 第十五章 第3讲 热力学定律与能量守恒定律(学案+课时精练 word版含解析)

资源下载
  1. 二一教育资源

2023年江苏高考 物理大一轮复习 第十五章 第3讲 热力学定律与能量守恒定律(学案+课时精练 word版含解析)

资源简介

第3讲 热力学定律与能量守恒定律
目标要求 1.理解热力学第一定律,知道改变内能的两种方式,并能用热力学第一定律解决相关问题.2.理解热力学第二定律,知道热现象的方向性.3.知道第一类永动机和第二类永动机不可能制成.
考点一 热力学第一定律
1.改变物体内能的两种方式
(1)做功;(2)热传递.
2.热力学第一定律
(1)内容:一个热力学系统的内能变化量等于外界向它传递的热量与外界对它所做的功的和.
(2)表达式:ΔU=Q+W.
(3)表达式中的正、负号法则:
物理量 + -
W 外界对物体做功 物体对外界做功
Q 物体吸收热量 物体放出热量
ΔU 内能增加 内能减少
3.能量守恒定律
(1)内容
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.
(2)条件性
能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.
(3)第一类永动机是不可能制成的,它违背了能量守恒定律.
1.做功和热传递的实质是相同的.( × )
2.绝热过程中,外界压缩气体做功20 J,气体的内能一定减少20 J.( × )
3.物体吸收热量,同时对外做功,内能可能不变.( √ )
1.热力学第一定律的理解
(1)内能的变化都要用热力学第一定律进行综合分析.
(2)做功情况看气体的体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.
(3)与外界绝热,则不发生热传递,此时Q=0.
(4)如果研究对象是理想气体,因理想气体忽略分子势能,所以当它的内能变化时,体现在分子动能的变化上,从宏观上看就是温度发生了变化.
2.三种特殊情况
(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;
(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;
(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.
例1 (2021·江苏卷·13)如图所示,一定质量理想气体被活塞封闭在气缸中,活塞的面积为S,与气缸底部相距L,气缸和活塞绝热性能良好,气体的压强、热力学温度与外界大气相同,分别为p0和T0.现接通电热丝加热气体,一段时间后断开,活塞缓慢向右移动距离L后停止,活塞与气缸间的滑动摩擦力为f,最大静摩擦力等于滑动摩擦力,整个过程中气体吸收的热量为Q,求该过程中气体
(1)内能的增加量ΔU;
(2)最终温度T.
答案 (1)Q-(p0S+f)L (2)T0
解析 (1)活塞缓慢移动时受力平衡,
由平衡条件得p1S=p0S+f
气体对外界做功,W=-p1SL
根据热力学第一定律ΔU=Q+W
解得ΔU=Q-(p0S+f)L.
(2)由理想气体状态方程,有=,
解得T=T0.
考点二 热力学第二定律
1.热力学第二定律的两种表述
(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.
(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的”.
2.热力学第二定律的微观意义
一切自发过程总是沿着分子热运动的无序度增大的方向进行.
3.第二类永动机不可能制成的原因是违背了热力学第二定律.
1.可以从单一热源吸收热量,使之完全变成功.( √ )
2.热机中,燃气的内能可以全部变成机械能而不引起其他变化.( × )
3.热量不可能从低温物体传给高温物体.( × )
1.热力学第二定律的含义
(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.
(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.在产生其他影响的条件下内能可以全部转化为机械能.
2.热力学第二定律的实质
热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.
3.热力学过程的方向性实例
(1)高温物体低温物体.
(2)功热.
(3)气体体积V1气体体积V2(较大).
例2 下列说法正确的是(  )
A.冰箱能使热量从低温物体传递到高温物体,因此不遵循热力学第二定律
B.自发的热传导是可逆的
C.可以通过给物体加热而使它运动起来,但不产生其他影响
D.气体向真空膨胀具有方向性
答案 D
解析 有外界的帮助和影响,热量可以从低温物体传递到高温物体,仍遵循热力学第二定律,A错误;据热力学第二定律可知,自发的热传导是不可逆的,B错误,不可能通过给物体加热而使它运动起来但不产生其他影响,这违背了热力学第二定律,C错误;气体可自发地向真空容器膨胀,具有方向性,D正确.
考点三 热力学第一定律与图像的综合应用
1.气体的状态变化可由图像直接判断或结合理想气体状态方程=C分析.
2.气体的做功情况、内能变化及吸放热关系可由热力学第一定律分析.
(1)由体积变化分析气体做功的情况:体积膨胀,气体对外做功;气体被压缩,外界对气体做功.
(2)由温度变化判断气体内能变化:温度升高,气体内能增大;温度降低,气体内能减小.
(3)由热力学第一定律ΔU=W+Q判断气体是吸热还是放热.
(4)在p-V图像中,图像与横轴所围面积表示对外或外界对气体整个过程中所做的功.
例3 (2018·江苏卷·12A(3)) 如图所示,一定质量的理想气体在状态A时压强为2.0×105 Pa,经历A→B→C→A的过程,整个过程中对外界放出61.4 J的热量.求该气体在A→B过程中对外界所做的功.
答案 138.6 J
解析 整个过程中,外界对气体做功W=WAB+WCA,
且WCA=pA(VC-VA)
由热力学第一定律ΔU=Q+W,得WAB=-(Q+WCA)
代入数据得WAB=-138.6 J
即气体在A→B过程中对外界做的功为138.6 J.
例4 (2021·江苏省1月适应性考试·9) 某汽车的四冲程内燃机利用奥托循环进行工作.该循环由两个绝热过程和两个等容过程组成.如图所示为一定质量的理想气体所经历的奥托循环,则该气体(  )
A.在状态a和c时的内能可能相等
B.在a→b过程中,外界对其做的功全部用于增加内能
C.b→c过程中增加的内能小于d→a过程中减少的内能
D.在一次循环过程中吸收的热量小于放出的热量
答案 B
解析 根据热力学第一定律有ΔU=W+Q,c→d为绝热过程,则Q=0,V增大,W<0,则ΔU<0,故Tc>Td;d→a为等容过程,根据查理定律有=C,知Td>Ta,则Tc>Ta,故状态c的内能较大,A错误;a→b为绝热过程,Q=0,外界对气体做功W>0,ΔU=W,B正确;c→d气体对外界做功W1,大小等于cd曲线与V轴围成的面积,a→b外界对气体做功W2,大小等于ab曲线与V轴围成的面积,可知W1>W2,d→a、b→c为等容过程W′=0,故全过程,气体对外界做功,大小等于bcda围成的面积,在一次循环过程中,根据热力学第一定律ΔU=W+Q,W<0,ΔU=0,可知Q>0,故一次循环过程中吸收的热量大于放出的热量;由上面分析可知,c→d内能减少量大于a→b内能的增加量,故b→c内能的增加量应大于d→a内能的减少量,C、D错误.
考点四 热力学第一定律与气体实验定律的综合应用
解决热力学第一定律与气体实验定律的综合问题的思维流程
例5 如图所示,水平放置的汽缸内封闭一定质量的理想气体,活塞的质量m=10 kg,横截面积S=100 cm2,活塞可沿汽缸壁无摩擦滑动且不漏气,活塞到汽缸底部的距离L1=11 cm,到汽缸口的距离L2=4 cm.现将汽缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与汽缸口相平.已知g=10 m/s2,外界气温为27 ℃,大气压强为1.0×105 Pa,活塞厚度不计,则:
(1)活塞上表面刚好与汽缸口相平时缸内气体的温度是多少?
(2)在对缸内气体加热的过程中,气体膨胀对外做功,同时吸收Q=350 J的热量,则气体增加的内能ΔU多大?
答案 (1)450 K(或177 ℃) (2)295 J
解析 (1)当汽缸水平放置时,p0=1.0×105 Pa,V0=L1S,T0=(273+27) K=300 K.
当汽缸口朝上,活塞上表面刚好与汽缸口相平时,活塞受力分析如图所示,
根据平衡条件有p1S=p0S+mg
V1=(L1+L2)S
由理想气体状态方程得=
解得T1=450 K(或177 ℃)
(2)当汽缸口向上稳定后,未加热时,由玻意耳定律得
p0L1S=p1LS
加热后,气体做等压变化,气体对外界做功
则W=-p1(L1+L2-L)S
根据热力学第一定律ΔU=W+Q
解得ΔU=295 J.
例6 如图所示,体积为V、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞,汽缸内密封有温度为2.4T0、压强为1.2p0的理想气体,p0和T0分别为外界大气的压强和温度.已知气体内能U与温度T的关系为U=aT,a为正的常量,容器内气体的所有变化过程都是缓慢的,求:
(1)缸内气体与大气达到平衡时的体积V1;
(2)在活塞下降过程中,汽缸内气体放出的热量.
答案 (1)0.5V (2)p0V+aT0
解析 (1)在气体压强由1.2p0下降到p0的过程中,气体体积不变,温度由2.4T0变为T1,由查理定律得=
解得T1=2T0
在气体温度由T1变为T0的过程中,气体体积由V减小到V1,气体压强不变,由盖—吕萨克定律得=,
解得V1=0.5V.
(2)活塞下降过程中,外界对气体做的功为
W=p0(V-V1)
在这一过程中,气体内能的变化量为ΔU=a(T0-T1)
由热力学第一定律得,Q=ΔU-W=-aT0-p0V,
故汽缸内气体放出的热量为p0V+aT0.
课时精练
1.如图,一开口向上的导热汽缸内,用活塞封闭了一定质量的理想气体,活塞与汽缸壁间无摩擦.现用外力作用在活塞上,使其缓慢下降.环境温度保持不变,系统始终处于平衡状态.在活塞下降过程中(  )
A.气体体积逐渐减小,内能增加
B.气体压强逐渐增大,内能不变
C.气体压强逐渐增大,吸收热量
D.外界对气体做功,气体内能增加
答案 B
解析 温度不变,理想气体的内能不变,故A错误;根据玻意耳定律,体积减小,压强增大,故B正确;根据ΔU=W+Q,内能不变,外界对气体做功,气体放出热量,故C、D错误.
2.关于热力学定律,下列说法错误的是(  )
A.气体吸热后温度一定升高
B.对气体做功可以改变其内能
C.热量不可能自发地从低温物体传到高温物体
D.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡
答案 A
3.(2020·全国卷Ⅱ·33(1))下列关于能量转换过程的叙述,违背热力学第一定律的有________,不违背热力学第一定律、但违背热力学第二定律的有________.(填正确答案标号)
A.汽车通过燃烧汽油获得动力并向空气中散热
B.冷水倒入保温杯后,冷水和杯子的温度都变得更低
C.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响
D.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内
答案 B C
解析 A项符合热力学第一、第二定律.冷水和杯子温度不可能都变低,只能是一个升高一个降低,或温度都不变,B项描述违背了热力学第一定律.C项描述虽然不违背热力学第一定律,但违背了热力学第二定律.D项中冰箱消耗电能从而可以从低温环境中提取热量散发到温度较高的室内,不违背热力学第一、第二定律.
4.(2020·天津卷·5)水枪是孩子们喜爱的玩具,常见的气压式水枪储水罐示意图如图.从储水罐充气口充入气体,达到一定压强后,关闭充气口.扣动扳机将阀门M打开,水即从枪口喷出.若水在不断喷出的过程中,罐内气体温度始终保持不变,则气体(  )
A.压强变大 B.对外界做功
C.对外界放热 D.分子平均动能变大
答案 B
解析 储水罐中封闭的气体可看作理想气体,温度不变,体积增大,由pV=CT可知,压强变小,故A错误;气体体积增大,对外界做功,故B正确;由于一定质量的某种理想气体的内能只与温度有关,温度不变,故内能也不变,即ΔU=0,由于气体对外界做功,即W<0,由热力学第一定律ΔU=W+Q可知,Q>0,因此气体从外界吸热,故C错误;温度不变,分子平均动能不变,故D错误.
5.(2021·天津卷·6改编)列车运行的平稳性与车厢的振动密切相关,车厢底部安装的空气弹簧可以有效减振,空气弹簧主要由活塞、气缸及内封的一定质量的气体构成.上下乘客及剧烈颠簸均能引起车厢振动,上下乘客时气缸内气体的体积变化缓慢,气体与外界有充分的热交换;剧烈颠簸时气缸内气体的体积变化较快,气体与外界来不及热交换.若气缸内气体视为理想气体,在气体压缩的过程中(  )
A.上下乘客时,气体的内能变大
B.上下乘客时,气体从外界吸热
C.剧烈颠簸时,外界对气体做功
D.剧烈颠簸时,气体的温度不变
答案 C
6. (2021·山东卷·2)如图所示,密封的矿泉水瓶中,距瓶口越近水的温度越高.一开口向下、导热良好的小瓶置于矿泉水瓶中,小瓶中封闭一段空气.挤压矿泉水瓶,小瓶下沉到底部;松开后,小瓶缓慢上浮,上浮过程中,小瓶内气体(  )
A.内能减少
B.对外界做正功
C.增加的内能大于吸收的热量
D.增加的内能等于吸收的热量
答案 B
解析 由于越接近矿泉水瓶口,水的温度越高,因此小瓶上浮的过程中,小瓶内气体的温度升高,内能增加,A错误;
在小瓶上升的过程中,小瓶内气体的温度逐渐升高,压强逐渐减小,根据理想气体状态方程=C,气体体积膨胀,对外界做正功,B正确;由A、B分析,小瓶上升时,小瓶内气体内能增加,气体对外做功,根据热力学第一定律ΔU=W+Q,由于气体对外做功,因此吸收的热量大于增加的内能,C、D错误.
7.(2021·河北卷·15(1))两个内壁光滑、完全相同的绝热汽缸A、B,汽缸内用轻质绝热活塞封闭完全相同的理想气体,如图甲所示.现向活塞上表面缓慢倒入细沙,若A中细沙的质量大于B中细沙的质量,重新平衡后,汽缸A内气体的内能________(填“大于”“小于”或“等于”)汽缸B内气体的内能,图乙为重新平衡后A、B汽缸中气体分子速率分布图像,其中曲线________(填图像中曲线标号)表示汽缸B中气体分子的速率分布规律.
答案 大于 ①
解析 对活塞受力分析有p=
因为A中细沙的质量大于B中细沙的质量,故稳定后有pA>pB;
所以在达到平衡过程中外界对封闭气体做的功有WA>WB
则根据ΔU=W+Q
因为汽缸和活塞都是绝热的,即Q=0,故有ΔUA>ΔUB
即重新平衡后汽缸A内气体的内能大于汽缸B内气体的内能;
由题图乙中曲线可知曲线②中分子速率大的分子数占总分子数百分比较大,即曲线②的温度较高,由前面分析可知汽缸B温度较低,故曲线①表示汽缸B中气体分子的速率分布规律.
8. (2020·江苏卷·13(3))一定质量的理想气体从状态A经状态B变化到状态C,其p-图像如图所示,求该过程中气体吸收的热量Q.
答案 2×105 J
解析 气体由A→B为等压变化过程,则外界对气体做的功W1=p(VA-VB)
气体由B→C为等容变化过程,则W2=0
根据热力学第一定律得ΔU=(W1+W2)+Q
A和C的温度相等ΔU=0
代入数据解得Q=2×105 J.
9. 如图所示描述了一定质量的理想气体状态变化过程中的四个状态,图中ab的延长线过原点,则下列说法正确的是(  )
A.气体从状态a到b的过程,气体体积增大
B.气体从状态b到c的过程,一定向外界放出热量
C.气体从状态c到d的过程,外界对气体做功
D.气体从状态d到a的过程,气体的内能减小
答案 D
解析 从状态a到b,气体发生的是等容变化,气体的体积不变,故A错误;从状态b到c,温度升高,压强不变,根据理想气体状态方程=C,体积增大,气体对外做功,温度升高说明内能增加,根据热力学第一定律ΔU=W+Q,得Q>0,即气体吸收热量,故B错误;从状态c到d,温度不变,压强减小,则体积增大,气体对外做功,故C错误;从状态d到a,温度降低,内能减小,故D正确.
10.(2020·山东卷·6)一定质量的理想气体从状态a开始,经a→b、b→c、c→a三个过程后回到初始状态a,其p-V图像如图所示.已知三个状态的坐标分别为a(V0,2p0)、b(2V0,p0)、c(3V0,2p0).以下判断正确的是(  )
A.气体在a→b过程中对外界做的功小于在b→c过程中对外界做的功
B.气体在a→b过程中从外界吸收的热量大于在b→c过程中从外界吸收的热量
C.在c→a过程中,外界对气体做的功小于气体向外界放出的热量
D.气体在c→a过程中内能的减少量大于b→c过程中内能的增加量
答案 C
解析 p-V图线与V轴所围面积表示气体状态变化所做的功,由题图知,a→b和b→c过程中,气体对外界做的功相等,故A错误.由=C知,a、b两状态温度相等,内能相同,ΔU=0,由ΔU=W+Q知,Qab=-W;由=C知,c状态的温度高于b状态的温度,则b→c过程中,ΔU>0,据ΔU=W+Q知,Qbc>|W|,即Qbc>Qab,故B错误.由=C知,c状态温度高于a状态温度,则c→a过程内能减少,ΔU<0,外界对气体做正功,W>0,属于放热过程,由ΔU=Q+W知,W<|Q|,故C正确.由于a、b状态内能相等,故c→a过程中内能的减少量等于b→c过程中内能的增加量,故D错误.
11. (2021·重庆市1月适应性测试·15(2))如图所示,密闭导热容器A、B的体积均为V0,A、B浸在盛水容器中,达到热平衡后,A中压强为p0,温度为T0,B内为真空,将A中的气体视为理想气体.打开活栓C,A中部分气体进入B.
(1)若再次达到平衡时,水温未发生变化,求此时气体的压强;
(2)若密闭气体的内能与温度的关系为ΔU=k(T2-T1)(k为大于0的已知常量,T1、T2分别为气体始末状态的温度),在(1)所述状态的基础上,将水温升至1.2T0,重新达到平衡时,求气体的压强及所吸收的热量.
答案 (1)p0 (2)0.6p0 0.2kT0
解析 (1)容器内的理想气体从打开C到再次平衡时,发生等温变化,根据玻意耳定律得
p0V0=p·2V0
解得此时气体压强
p=p0.
(2)升高温度,理想气体发生等容变化,根据查理定律得

解得压强为p′=1.2p=0.6p0
温度改变,理想气体的体积不变,则外界既不对理想气体做功,理想气体也不对外界做功,所以W=0;升高温度,内能增量为
ΔU=k(1.2T0-T0)=0.2kT0
根据热力学第一定律ΔU=Q+W可知气体吸收的热量为Q=ΔU=0.2kT0.
12.绝热的活塞与汽缸之间封闭一定质量的理想气体,汽缸开口向上置于水平面上,活塞与汽缸壁之间无摩擦,缸内气体的内能UP=72 J,如图甲所示.已知活塞面积S=5×10-4 m2,其质量为m=1 kg,大气压强p0=1.0×105 Pa,重力加速度g=10 m/s2,如果通过电热丝给封闭气体缓慢加热,活塞由原来的P位置移动到Q位置,此过程封闭气体的V-T图像如图乙所示,且知气体内能与热力学温度成正比.求:
(1)封闭气体最后的体积;
(2)封闭气体吸收的热量.
答案 (1)6×10-4 m3 (2)60 J
解析 (1)以气体为研究对象,由于压强不变,根据盖—吕萨克定律,有

解得VQ=6×10-4 m3
(2)由气体的内能与热力学温度成正比=
解得UQ=108 J
活塞从P位置缓慢移到Q位置,活塞受力平衡,气体为等压变化,以活塞为研究对象有
pS=p0S+mg
解得p=p0+=1.2×105 Pa
外界对气体做功W=-p(VQ-VP)=-24 J
由热力学第一定律UQ-UP=Q+W
得气体吸收的总热量为Q=60 J.
13. 如图所示装置中两玻璃泡的容积均为V0=0.5 L,玻璃管的容积忽略不计,开始时阀门K关闭,将上面玻璃泡抽成真空,下面玻璃泡中有一定质量的理想气体,外界大气压强为p0=1.0×105 Pa,温度为t0=27 ℃时,玻璃管中水银面高出水银槽内水银面h=12 cm,水银密度(假设不随温度改变)为13.6×103 kg/m3,重力加速度g=10 m/s2.
(1)如果外界大气压强保持不变,玻璃管中水银面上升2 cm,则环境温度改变了多少摄氏度;
(2)如果在环境温度急剧升高到t=40 ℃的过程中,打开阀门,改变外界大气压使玻璃管中的水银面高度几乎不发生变化,则玻璃泡中气体的压强变为多少?在此过程中吸收了200 J热量,则气体的内能增加了多少?
答案 (1)9.7 ℃ (2)4.37×104 Pa 200 J
解析 (1)设玻璃泡中气体初态压强为p1,有
p0=p1+ρ水银gh
解得p1≈8.37×104 Pa
温度T1=t0+273 K=300 K
设末态压强为p2,则p0=p2+ρ水银g(h+Δh)
故p2≈8.10×104 Pa
根据查理定律有=
代入数据解得T2≈290.3 K
则环境温度降低了Δt=T1-T2=9.7 ℃
(2)打开阀门前有p1=8.37×104 Pa,V1=V0=0.5 L,T1=300 K
打开阀门后有V2=2V0=1.0 L,T2′=t+273 K=313 K
根据理想气体状态方程有=
代入数据解得p2′≈4.37×104 Pa
根据题设条件,由于上部容器原来是真空,气体发生自由膨胀,故气体膨胀过程对外做的功为零,即W=0
根据热力学第一定律有ΔU=W+Q
故ΔU=0+200 J=200 J.

展开更多......

收起↑

资源预览