资源简介 10.1.3 两角和与差的正切学习指导 核心素养1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明. 数学运算、逻辑推理:两角和与差的正切公式及其应用.两角和与差的正切公式名称 公式 简记符号 条件两角和的正切 tan (α+β) = T(α+β) α,β,α+β≠kπ+(k∈Z)两角差的正切 tan (α-β) = T(α-β) α,β,α-β≠kπ+(k∈Z)你能借助两角和与差的正、余弦公式推导tan (α+β)与tan (α-β)吗?提示:tan (α+β)====.tan (α-β)====.运用两角和与差的正切公式应注意的问题(1)两角和与差的正切公式中,α,β,α+β,α-β均不等于kπ+(k∈Z),这是由正切函数的定义域决定的.(2)当tan α,tan β,tan (α+β)或tan (α-β)中任意一个的值不存在时,则不能使用两角和或差的正切公式解决问题,但可改用诱导公式或其他方法解题.1.判断正误(正确的打“√”,错误的打“×”)(1)tan 能用公式tan (α+β)展开.( )(2)存在α,β∈R,使tan (α+β)=tan α+tan β成立.( )(3)对任意α,β∈R,tan (α+β)=都成立.( )答案:(1)× (2)√ (3)×2.已知tan α=2,则tan =( )A.-3 B.3C.-4 D.4答案:A3.tan 255°=( )A.-2- B.-2+C.2- D.2+答案:D4.=( )A. B.-C. D.-答案:A探究点1 正切公式的活用求值:(1)tan 105°;(2);(3)tan 23°+tan 37°+tan 23°tan 37°.【解】 (1)tan 105°=tan (45°+60°)===-2-.(2)原式==tan (60°-15°)=tan 45°=1.(3)因为tan 60°==,所以tan 23°+tan 37°=-tan 23°tan 37°,所以tan 23°+tan 37°+tan 23°tan 37°=.公式T(α±β)的逆用及变形应用的解题策略(1)“1”的代换:在T(α±β)中,如果分子中出现“1”常利用1=tan 来代换,以达到化简求值的目的,如=tan ;=tan .(2)整体意识:若化简的式子中出现了“tan α±tan β”及“tan α·tan β”两个整体,常考虑tan (α±β)的变形公式. =________.解析:原式=tan (75°-15°)=tan 60°=.答案:探究点2 给值求角(值)已知tan α=2,tan β=-,其中0<α<,<β<π.(1)求tan (α-β);(2)求α+β的值.【解】 (1)因为tan α=2,tan β=-,所以tan (α-β)===7.(2)因为tan (α+β)===1,又因为0<α<,<β<π,所以<α+β<,在与之间,只有的正切值为1.所以α+β=.解决给值求角(值)问题的常用策略(1)关于求值问题,利用角的代换,将所求角转化为已知角的和与差,再根据公式求解.(2)关于求角问题,先确定该角的某个三角函数值,再根据角的取值范围确定该角的大小.已知tan (α+β)=,tan =,求tan .解:tan =tan===.探究点3 三角恒等式的证明证明下列恒等式.(1)tan (45°+θ)=;(2)tan (x+y)tan (x-y)=.【证明】 (1)左边====右边.(2)左边=·==右边.对于三角恒等式的证明主要是观察等式的特点,可以由等式的一边证到另一边,也可以由两边证明得到同一结果. 已知sin β=m sin (2α+β),求证:tan (α+β)=tan α.证明:由sin β=m sin (2α+β) sin (α+β-α)=m sin (α+β+α),故sin (α+β)cos α-cos (α+β)sin α=m[sin (α+β)cos α+cos (α+β)sin α],合并同类项有(1-m)sin (α+β)cos α=(1+m)cos (α+β)sin α,所以=,左边上下同除以cos (α+β)cos α有=,即tan (α+β)=tan α.1.若tan α=,tan β=-,则tan (α+β)=( )A.- B.C. D.-解析:选C.因为tan α=,tan β=-,则tan (α+β)===,故选C.2.tan 15°+tan 105°-tan 15°tan 105°=( )A. B.C.- D.-解析:选D.因为tan 15°+tan 105°=tan (15°+105°)(1-tan 15°tan 105°)=-(1-tan 15°tan 105°)=-+tan 15°tan 105°,所以tan 15°+tan 105°-tan 15°tan 105°=-,故选D.3.tan +tan +tan tan 的值为________.解析:tan +tan +tan tan=tan ·+tan tan=+tan tan =.答案:4.在斜三角形ABC中,求证:tan A+tan B+tan C=tan A·tan B tan C.证明:因为tan (A+B)=,所以tan A+tan B=tan (A+B)(1-tan A tan B),又tan (A+B)=tan (π-C)=-tan C,所以tan A+tan B+tan C=tan (A+B)(1-tan A tan B)+tan C=-tan C(1-tan A tan B)+tan C=-tan C+tan A tan B tan C+tan C=tan A tan B tan C.[A 基础达标]1.已知cos =2cos (π-α),则tan =( )A.-4 B.4C.- D.解析:选C.因为cos =2cos (π-α),所以-sin α=-2cos α tan α=2.所以tan ==-.2.=( )A.- B.C.- D.解析:选A.原式====-=-=-.故选A.3.若tan (α-β)=,tan (α+β)=,则tan 2β=( )A. B.C.- D.-解析:选C.tan 2β=tan [(α+β)-(α-β)]===-,故选C.4.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC,ED,则sin ∠CED=( )A. B.C. D.解析:选B.由题可知∠DEA=,tan ∠CEB=,所以有tan ∠CED=tan (∠DEA-∠CEB)=tan ==,再根据同角三角函数关系式,可求出sin ∠CED=,选B.5.(多选)下列式子结果为的是( )A.tan 25°+tan 35°+tan 25°tan 35°B.2(sin 35°cos 25°+cos 35°cos 65°)C.D.解析:选ABC.对于选项A,利用正切的变形公式可得原式=;对于选项B,原式可化为2(sin 35°cos 25°+cos 35°·sin 25°)=2sin 60°=.对于选项C,原式==tan 60°=.对于选项D,原式==,故选ABC.6.已知A,B都是锐角,且tan A=,sin B=,则A+B=________.解析:因为B为锐角,sin B=,所以cos B=,所以tan B=,所以tan (A+B)===1.因为0答案:7.已知α+β=,则(1+tan α)(1+tan β)的值是________.解析:因为α+β=,可得tan (α+β)=tan =1,又由tan (α+β)==1,可得tan α+tan β=1-tan αtan β,即tan α+tan β+tan αtan β=1,所以(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β=2.答案:28.如图,某书中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断尖端落在地上,竹尖与竹根的距离为三尺,问折断处离地面的高为多少尺?现假设折断的竹子与地面的夹角(锐角)为θ,则tan =________.解析:由题意,设折断处离地面的高为x尺,则由勾股定理得x2+32=(10-x)2,化简得20x=91,解得x=4.55.所以tan θ==,所以tan ==-.答案:-9.已知tan α=,tan (β-α)=-2,且<β<π,求β.解:tan β=tan [α+(β-α)]===-1.又因为<β<π,所以β=.10.已知α,β∈,且sin (α+2β)=sin α.(1)求证:tan (α+β)=6tan β;(2)若tan α=3tan β,求α的值.解:(1)证明:由sin (α+2β)=sin α,得sin [(α+β)+β]=sin [(α+β)-β],整理得6cos (α+β)sin β=sin (α+β)cos β.又α,β∈,所以tan (α+β)=6tan β.(2)由(1)知=6tan β,又tan α=3tan β,所以=2tanα.又α∈,所以tan α=1,所以α=.[B 能力提升]11.(多选)在△ABC中,C=120°,tan A+tan B=,下列各式正确的是( )A.tan (A+B)=- B.tan A=tan BC.cos B=sin A D.tan A tan B=解析:选BCD.因为∠C=120°,所以A+B=60°.所以2(A+B)=C,所以tan (A+B)==.所以A错.因为tan A+tan B=(1-tan A tan B)=,所以tan A tan B=①,所以D正确.又因为tan A+tan B=②,由①②联立解得tan A=tan B=,所以cos B=sin A.故B,C正确.综上,B,C,D正确.故选BCD.12.三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若小正方形面积为1,大正方形面积为25,直角三角形中较大的锐角为θ,则tan =( )A.2 B.C. D.解析:选D.如图,设BC=x,AC=y(y>x),则,解得.所以tan θ=.所以tan ===.故选D.13.已知tan (α+β)=,tan =,则的值为( )A. B.C. D.解析:选B.tan =tan====,故选B.14.在△ABC中,tan B+tan C+tan B tan C=,且tan A+tan B+1=tan A tan B,试判断△ABC的形状.解:tan A=tan [π-(B+C)]=-tan (B+C)===-,而0°tan C=tan [π-(A+B)]=-tan (A+B)===,而0°所以B=180°-120°-30°=30°.所以△ABC是顶角为120°的等腰三角形.[C 拓展探究]15.已知tan α,tan β是方程x2+p(x+1)+1=0的两个根,α+β∈(0,π).(1)求α+β;(2)若cos (θ-α-β)=,θ∈,求sin θ.解:(1)由根与系数的关系得tan α+tan β=-p,tan α·tan β=p+1,所以tan (α+β)===1.因为α+β∈(0,π),所以α+β=.(2)cos (θ-α-β)=cos =,由θ∈,得θ-∈,所以sin =.sin θ=sin =sin cos +cos sin =×=. 展开更多...... 收起↑ 资源预览