【精品解析】高考生物五年真题汇编12——遗传的基本规律(2)

资源下载
  1. 二一教育资源

【精品解析】高考生物五年真题汇编12——遗传的基本规律(2)

资源简介

高考生物五年真题汇编12——遗传的基本规律(2)
一、单选题
1.(2021·浙江)某玉米植株产生的配子种类及比例为 YR∶ Yr∶yR∶yr=1∶1∶1∶1。若该个体自交,其F1中基因型为YyRR个体所占的比例为(  )
A.1/16 B.1/8 C.1/4 D.1/2
【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】用棋盘法解该题较为简单
  YR Yr yR yr
YR     YyRR  
Yr        
yR YrRR      
yr        
从表格中分析:YrRR所占比例为2/16,即1/8。
故答案为:B。
【分析】棋盘法较为明了,可通过棋盘中的基因型或表现型直接得出结论,适用于解决自由交配,存在致死现象的题目。
2.(2021·湖南)有些人的性染色体组成为XY,其外貌与正常女性一样,但无生育能力,原因是其X染色体上有一个隐性致病基因a,而Y染色体上没有相应的等位基因。某女性化患者的家系图谱如图所示。下列叙述错误的是(  )
A.Ⅱ-1的基因型为XaY
B.Ⅱ-2与正常男性婚后所生后代的患病概率为1/4
C.I-1的致病基因来自其父亲或母亲
D.人群中基因a的频率将会越来越低
【答案】C
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、据图可知Ⅱ-1是女性化患者,所以Ⅱ-1的基因型是XaY,A不符合题意;
B、Ⅱ-2是女性携带者,其基因型是XAXa,与正常男性XAY婚配后,后代基因型及比例为:XAXA:XAXa:XAY:XaY=1:1:1:1,则所生后代的患病概率是1/4,B不符合题意;
C、Ⅰ-1是女性携带者,基因型为XAXa,若致病基因来自父亲,则父亲基因型为XaY,由题干可知XaY为不育的女性化患者,因此,其致病基因只可能来自母亲,C符合题意;
D、XaY(女性化患者)无生育能力,会使人群中a的基因频率越来越低,A的基因频率逐渐增加,D不符合题意。
故答案为:C
【分析】根据题干可知女性化患者的性染色体组成是XY,且X染色体上有隐性治病基因a,Y染色体上没有相应的等位基因,则女性化患者的基因型为XaY,正常女性基因型为XAXA,女性携带者基因型为XAXa,正常男性基因型为XAY。
3.(2021·全国甲)果蝇的翅型、眼色和体色3个性状由3对独立遗传的基因控制,且控制眼色的基因位于X染色体上。让一群基因型相同的果蝇(果蝇M)与另一群基因型相同的果蝇(果蝇N)作为亲本进行杂交,分别统计子代果蝇不同性状的个体数量,结果如图所示。已知果蝇N表现为显性性状灰体红眼。下列推断错误的是(  )
A.果蝇M为红眼杂合体雌蝇 B.果蝇M体色表现为黑檀体
C.果蝇N为灰体红眼杂合体 D.亲本果蝇均为长翅杂合体
【答案】A
【知识点】伴性遗传
【解析】【解答】AB、M的基因型为Aa cc XbY或AaccXbXb,表现为长翅黑檀体白眼雄蝇或者长翅黑檀体白眼雌蝇,A错误,B正确;
C、N基因型为AaCcXBXb或AaCcXBY,三对等位基因均为杂合的, 果蝇N为灰体红眼杂合体,C正确;
D、由于亲本长翅的基因型均是Aa,为杂合体,D正确。
故答案为:A。
【分析】根据图意数据的性状分离比可知:果蝇M与果蝇N作为亲本进行杂交杂交,子代中长翅:残翅=3:1,说明长翅相对残翅为显性性状,所以亲本的基因型均为Aa(假设控制翅型的基因为A/a);子代红眼:白眼=1:1,由书本果蝇红眼为显性性状,且控制眼色的基因位于X染色体上,假设控制眼色的基因为B/b),所以亲本基因型为XBXb×XbY或XbXb×XBY;子代灰身:黑檀体=1:1,灰体相对檀体为显性性状,亲本基因型为Cc×cc(假设控制体色的基因为C/c);。3个性状由3对独立遗传的基因控制,所以遗传时遵循基因的自由组合定律。因为N表现为显性性状灰体红眼,故N基因型为AaCcXBXb或AaCcXBY,则M的基因型对应为Aa cc XbY或AaccXbXb 。
4.(2021·全国乙卷)某种二倍体植物的n个不同性状由n对独立遗传的基因控制(杂合子表现显性性状)。已知植株A的n对基因均杂合。理论上,下列说法错误的是(  )
A.植株A的测交子代会出现2n种不同表现型的个体
B.n越大,植株A测交子代中不同表现型个体数目彼此之间的差异越大
C.植株A测交子代中n对基因均杂合的个体数和纯合子的个体数相等
D.n≥2时,植株A的测交子代中杂合子的个体数多于纯合子的个体数
【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、n对基因均杂合的植株A进行测交,后代表现型种类有2n种,A正确;
B、n越大,植株A测交子代中不同表现型个体数目彼此之间的差异相同,B错误;
C、植株A测交子代中n对基因均杂合的概率为1/2n,纯合子的概率为1/2n,这两种个体概率相等,C正确;
D、植株A测交子代中纯合子的概率为1/2n,杂合子的概率为1-(1/2n),n≥2时,1-(1/2n)大于1/2n,一般而言,植株A的测交子代中杂合子的个体数多于纯合子的个体数,D正确;
故答案为:B.
【分析】 1、通过分析1对、2对、3对……等位基因均杂合的个体,进行测交,用数学归纳法归纳出后代的表现型种类有2n种,其中,子代n对基因均杂合的占1/2n,隐性纯合子占1/2n,n对基因全是显性纯合子占1/2n,杂合子占(1-1/2n)。
2、基因自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子自由组合。
5.(2021·浙江)小家鼠的某1个基因发生突变,正常尾变成弯曲尾。现有一系列杂交试验,结果如下表。第①组F1雄性个体与第③组亲本雌性个体随机交配获得F2。F2雌性弯曲尾个体中杂合子所占比例为(  )
杂交 P F1
组合 雌 雄 雌 雄
① 弯曲尾 正常尾 1/2弯曲尾,1/2正常尾 1/2弯曲尾,1/2正常尾
② 弯曲尾 弯曲尾 全部弯曲尾 1/2弯曲尾,1/2正常尾
③ 弯曲尾 正常尾 4/5弯曲尾,1/5正常尾 4/5弯曲尾,1/5正常尾
注:F1中雌雄个体数相同
A.4/7 B.5/9 C.5/18 D.10/19
【答案】B
【知识点】基因的分离规律的实质及应用;伴性遗传
【解析】【解答】依据以上分析,由第①组中弯曲尾与正常尾杂交,F1中雌雄个体均为弯曲尾∶正常尾=1∶1,可推测第①组亲本基因型为XAXa×XaY,则产生的F1中雄性个体基因型及比例为XAY:XaY=1∶1;第③组中弯曲尾与正常尾(XaY)杂交,F1中雌雄个体均为弯曲尾∶正常尾=4∶1,由于亲本雄性正常尾(XaY)产生的配子类型及比例为Xa∶Y=1∶1,根据F1比例可推得亲本雌性弯曲尾产生的配子类型及比例为XA∶Xa=4∶1。
若第①组F1雄性个体与第③组亲本雌性个体随机交配产生F2,已知第①组F1雄性个体中XAY:XaY=1∶1,产生的配子类型及比例为XA∶Xa∶Y=1∶1∶2,而第③组亲本雌性个体产生的配子类型及比例为XA∶Xa=4∶1,则F2中雌性弯曲尾(XAXA、XAXa)个体所占比例为1/4×4/5+1/4×1/5+1/4×4/5=9/20,F2中雌性弯曲尾杂合子(XAXa)所占比例为1/4×1/5+1/4×4/5=5/20,综上,F2雌性弯曲尾个体中杂合子所占比例为5/20÷9/20=5/9。因此B正确,ACD错误。
故答案为:B。
【分析】分析表格,由第②组中弯曲尾与弯曲尾杂交,F1的雌雄个体表现不同,说明该性状的遗传与性别相关联,相关基因位于性染色体上,又由F1中雌性全为弯曲尾,雄性中弯曲尾∶正常尾=1∶1,可推测控制尾形的基因位于X染色体上,且弯曲尾对正常尾为显性,该小家鼠发生的突变类型为显性突变。设相关基因为A、a,则正常尾个体的基因型为XaY、XaXa,弯曲尾个体的基因型为XAXA、XAXa、XAY,据此分析。
6.(2021·浙江)某种小鼠的毛色受AY(黄色)、A(鼠色)、a(黑色)3个基因控制,三者互为等位基因,AY对A、a为完全显性,A对a为完全显性,并且基因型AYAY胚胎致死(不计入个体数)。下列叙述错误的是(  )
A.若AYa个体与AYA个体杂交,则F1有3种基因型
B.若AYa个体与Aa个体杂交,则F1有3种表现型
C.若1只黄色雄鼠与若干只黑色雌鼠杂交,则F1可同时出现鼠色个体与黑色个体
D.若1只黄色雄鼠与若干只纯合鼠色雌鼠杂交,则F1可同时出现黄色个体与鼠色个体
【答案】C
【知识点】基因的分离规律的实质及应用
【解析】【解答】A、若AYa个体与AYA个体杂交,由于基因型AYAY胚胎致死,则F1有AYA、AYa、Aa共3种基因型,A正确;
B、若AYa个体与Aa个体杂交,产生的F1的基因型及表现型有AYA(黄色)、AYa(黄色)、Aa(鼠色)、aa(黑色),即有3种表现型,B正确;
C、若1只黄色雄鼠(AYA或AYa)与若干只黑色雌鼠(aa)杂交,产生的F1的基因型为AYa(黄色)、Aa(鼠色),或AYa(黄色)、aa(黑色),不会同时出现鼠色个体与黑色个体,C错误;
D、若1只黄色雄鼠(AYA或AYa)与若干只纯合鼠色雌鼠(AA)杂交,产生的F1的基因型为AYA(黄色)、AA(鼠色),或AYA(黄色)、Aa(鼠色),则F1可同时出现黄色个体与鼠色个体,D正确。
故答案为:C。
【分析】由题干信息可知,AY对A、a为完全显性,A对a为完全显性,AYAY胚胎致死,因此小鼠的基因型及对应毛色表型有AYA(黄色)、AYa(黄色)、AA(鼠色)、Aa(鼠色)、aa(黑色),据此分析。
7.(2021·浙江)下列关于遗传学发展史上4个经典实验的叙述,正确的是(  )
A.孟德尔的单因子杂交实验证明了遗传因子位于染色体上
B.摩尔根的果蝇伴性遗传实验证明了基因自由组合定律
C.T2噬菌体侵染细菌实验证明了DNA是大肠杆菌的遗传物质
D.肺炎双球菌离体转化实验证明了DNA是肺炎双球菌的遗传物质
【答案】D
【知识点】肺炎链球菌转化实验;噬菌体侵染细菌实验;基因在染色体上的实验证据;孟德尔遗传实验-分离定律
【解析】【解答】A、孟德尔的单因子杂交实验没有证明遗传因子位于染色体上,当时人们还没有认识染色体,A错误;
B、摩尔根的果蝇伴性遗传实验只研究了一对等位基因,不能证明基因自由组合定律,B错误;
C、T2噬菌体侵染细菌实验证明了DNA是噬菌体的遗传物质,C错误;
D、肺炎双球菌离体转化实验证明了DNA是转化因子,即DNA是肺炎双球菌的遗传物质,D正确。
故答案为:D。
【分析】1、肺炎双球菌转化实验包括活体细菌转化实验和离体细菌转化实验,其中活体细菌转化实验证明S型细菌中存在某种“转化因子”,能将R型细菌转化为S型细菌;离体细菌转化实验证明DNA是遗传物质。2、T2噬菌体侵染细菌的实验步骤:标记噬菌体→标记的噬菌体与大肠杆菌混合培养→在搅拌器中搅拌,然后离心,检测上清液和沉淀物中的放射性物质。该实验证明DNA是遗传物质。3、萨顿提出基因在染色体上的假说,摩尔根通过果蝇伴性遗传实验证明了基因位于染色体上。
8.(2020·海南)直翅果蝇经紫外线照射后出现一种突变体,表现型为翻翅,已知直翅和翻翅这对相对性状完全显性,其控制基因位于常染色体上,且翻翅基因纯合致死(胚胎期)。选择翻翅个体进行交配,F1中翻翅和直翅个体的数量比为2∶1。下列有关叙述错误的是(  )
A.紫外线照射使果蝇的直翅基因结构发生了改变
B.果蝇的翻翅对直翅为显性
C.F1中翻翅基因频率为1/3
D.F1果蝇自由交配,F2中直翅个体所占比例为4/9
【答案】D
【知识点】基因的分离规律的实质及应用;基因频率的概念与变化
【解析】【解答】A、紫外线照射使果蝇基因基构发生了改变,产生了新的等位基因,A正确;
B、由分析知,翻翅为显性基因,B正确;
C、F1中Aa占2/3,aa占1/3,A的基因频率为: ,C正确;
D、F1中Aa占2/3,aa占1/3,则产生A配子的概率为2/3×1/2=1/3,a配子概率为2/3,F2中aa为:2/3×2/3=4/9,Aa为:1/3×2/3×2=4/9,AA为:1/3×1/3=1/9(死亡),因此直翅所占比例为1/2,D错误;
故答案为:D。
【分析】翻翅个体交配,F1出现了性状分离,说明翻翅为显性性状,直翅为隐性性状,设定A为显性基因,a为隐性基因,翻翅纯合致死,则AA致死,亲本的翻翅个体基因型为Aa,杂交后产生子代为Aa:aa=2:1。
9.(2020·北京)如图是雄性哺乳动物体内处于分裂某时期的一个细胞的染色体示意图。相关叙述不正确的是(  )
A.该个体的基因型为AaBbDd
B.该细胞正在进行减数分裂
C.该细胞分裂完成后只产生2种基因型的精子
D.A,a和D,d基因的遗传遵循自由组合定律
【答案】C
【知识点】减数第一、二次分裂过程中染色体的行为变化;基因的自由组合规律的实质及应用
【解析】【解答】A、根据细胞图示中的基因分布可以发现,该个体的基因型应该为AaBbDd,A正确;
B、图中显示同源染色体正在联会,且下方的一对同源染色体正在发生交叉互换,可判定该细胞正在进行减数分裂,B正确;
C、图中细胞发生了同源染色体非姐妹染色单体之间的交叉互换,由此可知该细胞分裂完成后可以产生4种配子,C错误;
D、A、a和D、d基因位于非同源染色体上,因此遵循自由组合定律,D正确;
故答案为:C。
【分析】本题主要考查细胞分裂,图示中可观察到正在发生同源染色体的联会,AB和ab所在的同源染色体之间正在发生交叉互换,因此可判定细胞正在进行减数分裂。
10.(2020·北京)甲型血友病(HA)是由位于X染色体上的A基因突变为a所致。下列关于HA的叙述不正确的是(  )
A.HA是一种伴性遗传病 B.HA患者中男性多于女性
C.XAXa个体不是HA患者 D.男患者的女儿一定患HA
【答案】D
【知识点】伴性遗传;人类遗传病的类型及危害
【解析】【解答】A、甲型血友病(HA)是由位于X染色体上的A基因突变为a所致,是一种伴X隐性遗传病,A正确;
B、男性存在Xa即表现患病,女性需同时存在XaXa时才表现为患病,故HA患者中男性多于女性,B正确;
C、XAXa个体不是HA患者,属于携带者,C正确;
D、男患者XaY,若婚配对象为XAXA,则女儿(XAXa)不会患病,D错误。
故答案为:D。
【分析】据题可知,甲型血友病(HA)属于伴X隐性遗传病;伴X隐性遗传病的特点是隔代交叉遗传。
11.(2020·浙江选考)若某哺乳动物毛发颜色由基因De(褐色)、Df(灰色)、d(白色)控制,其中De和Df分别对d完全显性。毛发形状由基因H(卷毛)、h(直毛)控制。控制两种性状的等位基因均位于常染色体上且独立遗传。基因型为DedHh和DfdHh的雌雄个体交配。下列说法正确的是(  )
A.若De对Df共显性、H对h完全显性,则F1有6种表现型
B.若De对Df共显性、H对h不完全显性,则F1有12种表现型
C.若De对Df不完全显性、H对h完全显性,则F1有9种表现型
D.若De对Df完全显性、H对h不完全显性,则F1有8种表现型
【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、若De对Df共显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型2种,则F1有4×2=8种表现型,A错误;
B、若De对Df共显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型3种,则F1有4×3=12种表现型,B正确;
C、若De对Df不完全显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型2种,则F1有4×2=8种表现型,C错误;
D、若De对Df完全显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型3种,毛发形状基因型有HH、Hh和hh三种,表现型3种,则F1有3×3=9种表现型,D错误。
故答案为:B。
故答案为:B。
【分析】1、基因分离定律和自由组合定律定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合。
2、 相对性状:一种生物的同一性状的不同表现类型。共显性:如果双亲的性状同时在F1个体上表现出来,这种显性表现称为共显性,或叫并显性。不完全显性:具有相对性状的纯合亲本杂交后,F1显现中间类型的现象。完全显性:具有相对性状的纯合体亲本杂交后,F1只表现一个亲本性状的现象,即外显率为100%。
12.(2020·浙江选考)某植物的野生型(AABBcc)有成分R,通过诱变等技术获得3个无成分R的稳定遗传突变体(甲、乙和丙)。突变体之间相互杂交,F1均无成分R。然后选其中一组杂交的F1(AaBbCc)作为亲本,分别与3个突变体进行杂交,结果见下表:
杂交编号 杂交组合 子代表现型(株数)
Ⅰ F1×甲 有(199),无(602)
Ⅱ F1×乙 有(101),无(699)
Ⅲ F1×丙 无(795)
注:“有”表示有成分R,“无”表示无成分R
用杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株杂交,理论上其后代中有成分R植株所占比例为(  )
A.21/32 B.9/16 C.3/8 D.3/4
【答案】A
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】杂交Ⅰ子代中有成分R植株基因型为AABbcc和AaBbcc,比例为1:1,或(基因型为AaBBcc和AaBbcc,比例为1:1,)杂交Ⅱ子代中有成分R植株基因型为AaBbcc,故杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株相互杂交,后代中有成分R所占比例为:1/2×1×3/4×1+1/2×3/4×3/4×1=21/32,A正确。
故答案为:A。
【分析】分析题意可知:基因型为AABBcc的个体表现为有成分R,又知无成分R的纯合子甲、乙、丙之间相互杂交,其中一组杂交的F1基因型为AaBbCc且无成分R,推测同时含有A、B基因才表现为有成分R,C基因的存在可能抑制A、B基因的表达,即基因型为A_B_cc的个体表现为有成分R,其余基因型均表现为无成分R。根据F1与甲杂交,后代有成分R:无成分R≈1:3,有成分R所占比例为1/4,可以将1/4分解为1/2×1/2,则可推知甲的基因型可能为AAbbcc或aaBBcc;F1与乙杂交,后代有成分R:无成分R≈1:7,可以将1/4分解为1/2×1/2×1/2,则可推知乙的基因型为aabbcc;F1与丙杂交,后代均无成分R,可推知丙的基因型可能为AABBCC或AAbbCC或aaBBCC。
13.(2020·江苏)有一观赏鱼品系体色为桔红带黑斑,野生型为橄榄绿带黄斑,该性状由一对等位基因控制。某养殖者在繁殖桔红带黑斑品系时发现,后代中2/3为桔红带黑斑,1/3为野生型性状,下列叙述错误的是(  )
A.桔红带黑斑品系的后代中出现性状分离,说明该品系为杂合子
B.突变形成的桔红带黑斑基因具有纯合致死效应
C.自然繁育条件下,桔红带黑斑性状容易被淘汰
D.通过多次回交,可获得性状不再分离的桔红带黑斑品系
【答案】D
【知识点】基因的分离规律的实质及应用
【解析】【解答】A、由桔红带黑斑品系的后代出现性状分离,说明该品系均为杂合子,A正确;
B、由分析可知,桔红带黑斑为显性性状,则突变形成的桔红带黑斑基因为显性基因,杂合桔红带黑斑鱼(Aa)相互交配,子代表现型比例为2∶1,可推得基因型为AA的个体死亡,即桔红带黑斑基因具有纯合致死效应,B正确;
C、由于桔红带黑斑基因具有纯合致死效应,自然繁育条件下,该显性基因的频率会逐渐下降,则桔红带黑斑性状容易被淘汰,C正确;
D、桔红带黑斑基因显性纯合致死,则无论回交多少次,所得桔红带黑斑品系均为杂合子,D错误。
故答案为:D。
【分析】已知该鱼体色受一对等位基因控制,设为A、a,繁殖桔红带黑斑品系时,后代出现的表现型比例为桔红带黑斑∶橄榄绿带黄斑=2∶1,说明桔红带黑斑为显性性状,且后代存在显性纯合致死情况。
14.(2020·全国Ⅰ)已知果蝇的长翅和截翅由一对等位基因控制。多只长翅果蝇进行单对交配(每个瓶中有1只雌果蝇和1只雄果蝇),子代果蝇中长翅∶截翅=3∶1。据此无法判断的是(  )
A.长翅是显性性状还是隐性性状
B.亲代雌蝇是杂合子还是纯合子
C.该等位基因位于常染色体还是X染色体上
D.该等位基因在雌蝇体细胞中是否成对存在
【答案】C
【知识点】伴性遗传
【解析】【解答】A、根据截翅为无中生有可知,截翅为隐性性状,长翅为显性性状,A不符合题意;
B、根据杂交的后代发生性状分离可知,亲本雌蝇一定为杂合子,B不符合题意;
C、无论控制翅形的基因位于X染色体上还是常染色体上,后代中均会出现长翅:截翅=3:1的分离比,C符合题意;
D、根据后代中长翅:截翅=3:1可知,控制翅形的基因符合基因的分离定律,故可推测该等位基因在雌蝇体细胞中是成对存在的,D不符合题意。
故答案为:C。
【分析】假设控制相对性状的基因用A/a来表示,当翅形的基因位于X染色体时,XAXa和XAY后代为XAXA、XAXa、XAY、XaY,长翅:截翅=3:1的分离比,当翅形的基因位于常染色体时,Aa和Aa后代为AA、2Aa、aa,长翅:截翅=3:1的分离比,所以无法确定该等位基因位于常染色体还是X染色体上。
15.(2020·浙江选考)下图为甲、乙两种单基因遗传病的遗传家系图,其中一种遗传病为伴性遗传。人群中乙病的发病率为1/256。
下列叙述正确的是(  )
A.甲病是伴X染色体隐性遗传病
B. 和 的基因型不同
C.若 与某正常男性结婚,所生正常孩子的概率为25/51
D.若 和 再生一个孩子,同时患两种病的概率为1/17
【答案】C
【知识点】基因的分离规律的实质及应用;基因的自由组合规律的实质及应用;伴性遗传;人类遗传病的类型及危害
【解析】【解答】A、根据分析可知,甲病为伴X染色体显性遗传病,A错误;
B、根据Ⅲ3同时患甲病和乙病可知,Ⅱ3的基因型为AaXbXb,根据Ⅱ4患乙病可知,Ⅲ6为AaXbXb,二者基因型相同,B错误;
C、根据Ⅲ3同时患甲病和乙病可知,Ⅱ2和Ⅱ3的基因型分别为AaXBY、AaXbXb,则Ⅲ1为1/3AAXBXb或2/3AaXBXb,正常男性XbY乙病的基因型为Aa的概率为30/256÷(30/256+225/256)=2/17,二者婚配的后代患乙病的概率为2/3×2/17×1/4=1/51,不患乙病的概率为1-1/51=50/51,后代不患甲病的概率为1/2,故后代正常的概率为50/51×1/2=25/51,C正确;
D、Ⅲ3的基因型为aaXBXb,Ⅲ4甲病的基因型为XbY,乙病相关的基因型为Aa的概率为30/256÷(30/256+225/256)=2/17,为AA的概率为1-2/17=15/17,后代患乙病的概率为2/17×1/2=1/17,患甲病的概率为1/2,再生一个孩子同时患两种病的概率为1/17×1/2=1/34,D错误。
故答案为:C。
【分析】根据Ⅱ2×Ⅱ3→Ⅲ3可知,乙病为常染色体隐性遗传病,设相关的基因为A/a;根据题意可知,甲病为伴性遗传病,由于甲病有女患者,故为伴X遗传病,又因为Ⅲ3患甲病,而Ⅳ1正常,故可以确定甲病为伴X显性遗传病,设相关的基因为B/b。根据人群中乙病的发病率为1/256,可知a基因概率为1/16,A基因频率为15/16,则AA=15/16×15/16=225/256,Aa=2×1/16×15/16=30/256。
二、多选题
16.(2021·河北)杜氏肌营养不良(DMD)是由单基因突变引起的伴X隐性遗传病,男性中发病率约为1/4000.甲、乙家系中两患者的外祖父均表现正常,家系乙Ⅱ-2还患有红绿色盲。两家系部分成员DMD基因测序结果(显示部分序列,其他未显示序列均正常)如图。下列叙述错误的是(  )
A.家系甲Ⅱ-1和家系乙Ⅱ-2分别遗传其母亲的DMD致病基因
B.若家系乙Ⅰ-1和Ⅰ-2再生育一个儿子,儿子患两种病的概率比患一种病的概率低
C.不考虑其他突变,家系甲Ⅱ-2和家系乙Ⅱ-1婚后生出患DMD儿子的概率为1/8
D.人群中女性DMD患者频率远低于男性,女性中携带者的频率约为1/4000
【答案】A,B,D
【知识点】伴性遗传;人类遗传病的类型及危害
【解析】【解答】A.从测序结果分析,家系甲Ⅱ-1的致病基因不来自母亲,可能来自基因突变,家系乙Ⅱ-2遗传其母亲的DMD致病基因,A说法错误;
B.由于ab基因连锁,交叉互换的概率较低,家系乙Ⅰ-1(XABY)和Ⅰ-2(XABXab)再生育一个儿子,儿子患两种病的概率高于患一种病的概率,B说法错误;
C.不考虑其他变异,家系甲Ⅱ-2(XBY),家系乙中Ⅱ-2(1/2XBXb、1/2XBXB)生出患DMD儿子的概率为1/2×1/2×1/2=1/8,C说法正确;
D.DMD是由单基因突变引起的伴X隐性遗传病,人群中女性DMD患者频率远低于男性,男性中发病率约为1/4000,即Xb=1/4000,则XB=3999/4000,女性中携带者的频率约为2×1/4000×3999/4000≈1/2000,D说法错误;
故答案为:ABD。
【分析】1、杜氏肌营养不良(DMD)和红绿色盲均是由单基因突变引起的伴X隐性遗传病,这两种病均位于X染色体上,属于连锁遗传。
2、根据家系甲部分成员DMD基因测序结果可知,Ⅰ-2个体基因序列正常,Ⅱ-1个体基因序列异常,假设DMD的致病基因用b表示,则Ⅰ-2的基因型为XBXB,Ⅱ-1的基因型为XbY,则Ⅱ-1患病的原因可能母亲产生配子时发生了基因突变。
三、综合题
17.(2021·浙江)利用转基因技术,将抗除草剂基因转入纯合不抗除草剂水稻(2n)(甲),获得转基因植株若干。从转基因后代中选育出纯合矮秆抗除草剂水稻(乙)和纯合高秆抗除草剂水稻(丙)。用甲、乙、丙进行杂交,F2结果如下表。转基因过程中,可发生基因突变,外源基因可插入到不同的染色体上。高秆(矮秆)基因和抗除草剂基因独立遗传,高秆和矮秆由等位基因 A(a)控制。有抗除草剂基因用B+表示、无抗除草剂基因用 B-表示
杂交组合 F2的表现形式及数量(株)
矮秆抗除草剂 矮秆不抗除草剂 高秆抗除草剂 高秆不抗除草剂
甲×乙 513 167 0 0
甲×丙 109 37 313 104
乙×丙 178 12 537 36
回答下列问题:
(1)矮秆对高秆为   性状,甲×乙得到的F1产生   种配子。
(2)为了分析抗除草剂基因在水稻乙、丙叶片中的表达情况,分别提取乙、丙叶片中的RNA并分离出   ,逆转录后进行PCR扩增。为了除去提取 RNA中出现的DNA污染,可采用的方法是   。
(3)乙×丙的 F2中,形成抗除草剂与不抗除草剂表现型比例的原因是   。
(4)甲与丙杂交得到F1,F1再与甲杂交,利用获得的材料进行后续育种。写出F1与甲杂交的遗传图解。
【答案】(1)隐性;2
(2)mRNA;用 DNA 酶处理提取的 RNA
(3)乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律
(4)
【知识点】DNA分子的结构;基因的自由组合规律的实质及应用;RNA分子的组成和种类
【解析】【解答】(1)甲与乙(纯合矮杆)杂交组合F2没有高杆,其他组合F2高杆:矮杆=3:1,所以矮杆为隐性性状。F1产生两种配子。
故答案为:隐性;2。
(2) 抗除草剂基因在水稻乙、丙叶片中的表达情况,可通过mRNA的情况得到反映,所以可分别提取乙、丙叶片中的RNA并分离出mRNA,逆转录后DNA进行PCR扩增。纯化RNA中出现的DNA污染,可加入DNA酶,将其中的DNA进行降解。
故答案为:mRNA;用 DNA 酶处理提取的 RNA。
(3) 转基因过程中,外源基因可插入到不同的染色体上,乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律。
故答案为:乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律。
(4) 甲(aaB-B-)与丙(AAB+B+)杂交得到F1(AaB+B-),F1再与甲(aaB-B-)杂交的遗传图解如下。
故答案为:
【分析】①显性性状和隐性性状判断:一对相同性状亲本杂交 → 子代分离比为3:1 →分离比为3的为显性性状。
②自由组合定律:控制不同性状的遗传因子的分离和组合是互不相干的,在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
18.(2021·广东)果蝇众多的突变品系为研究基因与性状的关系提供了重要的材料。摩尔根等人选育出M-5品系并创立了基于该品系的突变检测技术,可通过观察F1和F2代的性状及比例,检测出未知基因突变的类型(如显/隐性、是否致死等),确定该突变基因与可见性状的关系及其所在的染色体。回答下列问题:
(1)果蝇的棒眼(B)对圆眼(b)为显性、红眼(R)对杏红眼(r)为显性,控制这2对相对性状的基因均位于X染色体上,其遗传总是和性别相关联,这种现象称为   。
(2)如图示基于M-5品系的突变检测技术路线,在F1代中挑出1只雌蝇,与1只M-5雄蝇交配,若得到的F2代没有野生型雄蝇。雌蝇数目是雄蝇的两倍,F2代中雌蝇的两种表现型分别是棒眼杏红眼和   ,此结果说明诱变产生了伴X染色体   基因突变。该突变的基因保存在表现型为   果蝇的细胞内。
(3)上述突变基因可能对应图中的突变   (从突变①、②、③中选一项),分析其原因可能是   ,使胚胎死亡。
密码子序号 1…4…19 20…540 密码子表(部分):
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG AUG:甲硫氨酸,起始密码子
  突变①↓
 
突变后核苷酸序列 AUG…AAC…ACC
UUA…UAG AAC:天冬酰胺
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG ACU、ACC:苏氨酸
  突变②↓
 
突变后核苷酸序列 AUG…AAA…ACU
UUA…UAG UUA:亮氨酸
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG AAA:赖氨酸
  突变③↓ UAG、UGA:终止密码子
突变后核苷酸序列 AUG…AAC…ACU
UGA…UAG …表示省略的、没有变化的碱基
(4)图所示的突变检测技术,具有的①优点是除能检测上述基因突变外,还能检测出果蝇   基因突变;②缺点是不能检测出果蝇   基因突变。(①、②选答1项,且仅答1点即可)
【答案】(1)伴性遗传
(2)棒眼红眼;隐性完全致死;雌
(3)③;突变为终止密码子,蛋白质停止表达
(4)X染色体上的可见(或X染色体上的显性);常染色体(或常染色体显性或常染色体隐性)
【知识点】伴性遗传;基因突变的特点及意义;遗传信息的翻译
【解析】【解答】(1)伴性遗传现象可以理解为由于位于性染色体上的基因,在遗传过程中通常和性别相关联的现象。
(2)由分析可知,F2雌蝇(含有两条X染色体,一条来自父方,一条来自母方)基因型为:XBrXBr、XBrXbR,因此F2代中雌蝇的两种表现型应该是棒眼杏红眼和棒眼红眼;然而由于F2代没有野生型雄蝇,雌蝇数目是雄蝇的两倍,此结果说明诱变产生了伴X染色体隐性完全致死基因突变,该突变的基因保存在表现型为雌果蝇的杂合子细胞内。
(3)突变①19号密码子ACU→ACC,突变前后翻译的氨基酸都是苏氨酸,蛋白质未发生改变;突变②4号密码子AAC→AAA,由天冬酰胺变为赖氨酸,蛋白质仅替换一个氨基酸;突变③20号密码子UUA→UGA,由亮氨酸突变为终止翻译,翻译产生的多肽如果不剪切,含有500多个氨基酸。因此上述突变基因可能对应图中的突变③,多肽链明显变短,使胚胎死亡。
(4)染色体上的基因有显性和隐性基因之分。图所示的突变检测技术①优点是除能检测上述伴X染色体隐性完全致死基因突变外,还能检测出果蝇X染色体上的可见基因突变,即X染色体上的显性基因突变以及隐性基因突变;该技术检测的结果需要通过性别进行区分,不能检测出果蝇常染色体上的基因突变,包括常染色体上隐性基因突变和显性基因突变。
【分析】(1)由基于M-5品系的突变检测技术路线可知:
(2)密码子
①密码子:mRNA上3个相邻的碱基决定1个氨基酸。每3个这样的碱基又称为1个密码子.
②特点:专一性
简并性:一种氨基酸对应多个密码子
通用性:生物界公用一套密码子
注: 关于密码子的要点:
①密码子共有64种,终止密码有3种,决定氨基酸的密码子有61种。
②除色氨酸外,其余氨基酸都不止一种密码子。
③AUG既可是起始密码,又能决定甲硫氨酸。
④“一种密码子只能决定一种氨基酸,反之,一种氨基酸可以有一种或多种密码子(密码子的简并性)”。
⑤地球上的所有生物全部共用这套密码子。
19.(2021·浙江)水稻雌雄同株,从高秆不抗病植株(核型2n=24)(甲)选育出矮秆不抗病植株(乙)和高秆抗病植株(丙)。甲和乙杂交、甲和丙杂交获得的F1均为高秆不抗病,乙和丙杂交获得的F1为高秆不抗病和高秆抗病。高秆和矮秆、不抗病和抗病两对相对性状独立遗传,分别由等位基因A(a)、B(b)控制,基因B(b)位于11号染色体上,某对染色体缺少1条或2条的植株能正常存活。甲、乙和丙均未发生染色体结构变异,甲、乙和丙体细胞的染色体DNA相对含量如图所示(甲的染色体DNA相对含量记为1.0)。
回答下列问题:
(1)为分析乙的核型,取乙植株根尖,经固定、酶解处理、染色和压片等过程,显微观察分裂中期细胞的染色体。其中酶解处理所用的酶是   ,乙的核型为   。
(2)甲和乙杂交获得F1,F1自交获得F2。F1基因型有   种,F2中核型为2n-2=22的植株所占的比例为   。
(3)利用乙和丙通过杂交育种可培育纯合的矮秆抗病水稻,育种过程是   。
(4)甲和丙杂交获得F1,F1自交获得F2。写出F1自交获得F2的遗传图解。   
【答案】(1)果胶酶;2n-1=23
(2)2;1/8
(3)
(4)乙和丙杂交获得F1,取F1中高秆不抗病的植株进行自交,从F2代中选取矮秆抗病植株
【知识点】观察细胞的有丝分裂;基因的分离规律的实质及应用;基因的自由组合规律的实质及应用;杂交育种
【解析】【解答】(1)植物细胞壁的成分为纤维素和果胶,故酶解处理时所用酶为果胶酶;该水稻核型为2n=24,则题图可分为12组染色体,每组含有2条,分析题图可知,乙的11号染色体减少一半,推测其11号染色体少了一条,故的核型为2n-1=23。(2)结合分析可知:甲基因型为AABB,乙缺失一条11号染色体,且表现为矮秆不抗病植株,故其基因型为aaBO,则甲(AABB)与乙(aaBO)杂交,F1基因型为AaBB、AaBO,共2种;F1自交,其中AaBB自交,子代核型均为2n=24,1/2AaBO(产生配子为AB、AO、aB、aO),子代2n-2=22的植株(即缺失两条染色体的植株)所占比例为1/2×1/4(4/16)=1/8。(3)若想让乙aaBO(矮秆不抗病植株)与丙AAbb(高秆抗病植株)通过杂交育种可培育纯合的矮秆抗病水稻(aabb),可通过以下步骤实现:乙和丙杂交获得F1(AaBb),取F1中高秆不抗病的植株进行自交,从F2代中选取矮秆抗病植株(aabb),即为所选育类型。(4)甲植株基因型为AABB,丙植株基因型为AAbb,两者杂交,F1基因型为AABb,F1自交获得F2的遗传图解如下: 。
【分析】分析题图信息可知:甲(高秆不抗病植株)和乙(矮秆不抗病植株)杂交、甲(高秆不抗病植株)和丙(高秆抗病植株)杂交获得的F1均为高秆不抗病,说明高杆对矮杆为显性,不抗病对抗病为显性,据此分析作答。
20.(2020·北京)遗传组成不同的两个亲本杂交所产生的杂种一代,产量等多个性状常优于双亲,这种现象称为杂种优势。获得具有杂种优势的杂合种子是提高水稻产量的重要途径。
(1)中国是最早种植水稻的国家,已有七千年以上历史。我国南方主要种植籼稻北方主要种植粳稻。籼稻和粳稻是由共同的祖先在不同生态环境中,经过长期的   ,进化形成的。
(2)将多个不同的籼稻、粳稻品种间进行两两杂交,获得三种类型F1(分别表示为籼-仙,籼-粳,粳-粳)。统计F1的小花数、干重等性状的平均优势(数值越大,杂种优势越明显),结果如图1。可知籼-粳具有更强的杂种优势,说明两个杂交亲本的   差异越大,以上性状的杂种优势越明显。
(3)尽管籼-粳具有更强的杂种优势,但由部分配子不育,导致结实率低,从而制约籼-粳杂种优势的应用。研究发现,这种不育机制与位于非同源染色体上的两对基因(A1、A2和B1、B2)有关。通常情况下,籼稻的基因型为A1A1B1B1粳稻为A2A2B2B2。A1A2杂合子所产生的含A2的雌配子不育;B1B2杂合子所产生的含B2的雄配子不育。
①根据上述机制,补充籼稻×粳稻产生F1及F1自交获得F2的示意图,用以解释F结实率低的原因   。
②为克服粗-粳杂种部分不育,研究者通过杂交、连续多代回交和筛选,培育出育性正常的籼-粳杂交种,过程如图2。通过图中虚线框内的连续多代回交,得到基因型A1A1B1B1的粳稻。若籼稻作为连续回交的亲本,则不能得到基因型A2A2B2B2的籼稻,原因是F1(A1A2B1B2)产生基因型为   的配子不育。
③在产量低的甲品系水稻中发现了A、B基因的等位基因A3、B3(广亲和基因),含有广亲和基因的杂合子,雌雄配子均可育。请写出利用甲品系培育出育性正常的籼-粳杂交稻的流程   。(用文字或图示作答均可)
【答案】(1)自然选择
(2)亲缘关系
(3);A2B2;让甲品系(A3A3B3B3)×籼稻(A1A1B1B1)以及甲品系(A3A3B3B3)×粳稻(A2A2B2B2)分别为亲本,得到的F1再杂交A1A3B1B3×A2A3B2B3,筛选出适合的育性正常的籼-粳杂交稻
【知识点】基因的自由组合规律的实质及应用;现代生物进化理论的主要内容
【解析】【解答】(1)籼稻和粳稻是由共同的祖先在不同生态环境中,经过长期的自然选择,进化形成的。(2)籼-粳具有更强的杂种优势,说明两个杂交亲本的亲缘关系差异越大,以上性状的杂种优势越明显。(3)①F1产生的雌雄配子只有一半可育,因此结实率低,如图 。
②由题可知,不能得到基因型A2A2B2B2的籼稻,原因是F1(A1A2B1B2)产生基因型为A2B2的配子不育。
③让甲品系(A3A3B3B3)×籼稻(A1A1B1B1)以及甲品系(A3A3B3B3)×粳稻(A2A2B2B2)分别为亲本,得到的F1再杂交A1A3B1B3×A2A3B2B3,筛选出适合的育性正常的籼-粳杂交稻。
【分析】现代进化理论的基本内容是:①进化是以种群为基本单位,进化的实质是种群的基因频率的改变。②突变和基因重组产生进化的原材料。③自然选择决定生物进化的方向。④隔离导致物种形成。
21.(2020·浙江选考)某昆虫灰体和黑体、红眼和白眼分别由等位基因A(a)和B(b)控制,两对基因均不位于Y染色体上。为研究其遗传机制,进行了杂交实验,结果见下表:
杂交编号及亲体 子代表现型及比例
Ⅰ(红眼♀×白眼♂) F1 1红眼♂∶1红眼♀∶1白眼♂∶1白眼♀
Ⅱ(黑体红眼♀×灰体白眼♂) F1 1灰体红眼♂∶1灰体红眼♀∶1灰体白眼♂∶1灰体白眼♀
F2 6灰体红眼♂∶12灰体红眼♀∶18灰体白眼♂∶9 灰体白眼♀∶2黑体红眼♂∶4黑体红眼♀∶6黑体白眼♂∶3黑体白眼♀
注:F2由杂交Ⅱ中的F1随机交配产生
回答下列问题:
(1)从杂交Ⅰ的F1中选择红眼雌雄个体杂交,子代的表现型及比例为红眼♂∶红眼♀∶白眼♂=1:1:1。该子代红眼与白眼的比例不为3:1的原因是   ,同时也可推知白眼由   染色体上的隐性基因控制。
(2)杂交Ⅱ中的雌性亲本基因型为   。若F2灰体红眼雌雄个体随机交配,产生的F3有   种表现型,F3中灰体红眼个体所占的比例为   。
(3)从杂交Ⅱ的F2中选择合适个体,用简便方法验证杂交Ⅱ的F1中的灰体红眼雄性个体的基因型,用遗传图解表示   。
【答案】(1)红眼雌性个体中B基因纯合致死;X
(2)aaXBXb;6;16/27
(3)
【知识点】伴性遗传
【解析】【解答】(1)由以上分析可知,红眼、白眼基因(B、b)位于X染色体上。杂交Ⅱ的亲本为红眼♀(XBXb)和白眼♂(XbY)。F1雌性为1/2XBXb、1/2XbXb,雌配子为1/4XB、3/4Xb,雄性为1/2XBY、1/2XbY,雄配子为1/4XB、1/4Xb、1/2Y,F2雌性中红眼∶白眼=4∶3,雄性中红眼∶白眼=1∶3,可知红眼中XBXB致死。因此杂交Ⅰ(XBXb、XbY)的F1中选择红眼雌雄(XBXb、XBY)交配,后代比例为红眼♀(XBXb)∶红眼♂(XBY)∶白眼♂(XbY)=1∶1∶1,红眼∶白眼为2∶1,不是3∶1。(2)据分析可知,杂交Ⅱ的亲本为黑体红眼♀(aaXBXb)和灰体白眼♂(AAXbY),雌性亲本基因型为aaXBXb。若F2灰体红眼雌雄果蝇随机交配,随机交配的亲本为A_XBXb×A_XBY,A_中有1/3AA、2/3Aa,产生的F3表现型有2×3=6种。随机交配的母本为1/3AAXBXb、2/3AaXBXb,雌配子为2/6AXB、2/6AXb、1/6aXB、1/6aXb,随机交配的父本为1/3AAXBY、2/3AaXBY,雄配子为2/6AXB、1/6aXB、2/6AY、1/6aY,利用棋盘法计算,由于XBXB致死,因此F3中灰体红眼的比例为(4+2+4+2+2+2)/(6×6-4-2-2-1)=16/27。(3)用简便方法验证杂交Ⅱ的F1中的灰体红眼雌雄性个体(AaXBY)的基因型,通常采用将待测个体与隐性个体杂交,即让F1与黑体白眼雌果蝇(aaXbXb)进行杂交。遗传图解的书写要注意:亲本的基因型及表现型、子代的基因型和表现型、配子及各种符号、子代表现型比例,注表现型中应有性别。正确的遗传图解书写如下。
【分析】某昆虫灰体和黑体(A、a)、红眼和白眼(B、b)分别由两对等位基因控制,且两对等位基因均不位于Y染色体上,因此,不用考虑同源区段。从杂交Ⅱ的亲本为黑体♀和灰体♂,F1全为灰体,F2无论雌雄灰体∶黑体=3∶1,可知灰体为显性,且A、a位于常染色体(若位于X的非同源区段,则F1雄性全为黑体,不符合题意)。杂交Ⅱ的亲本为黑体♀(aa)和灰体♂(AA)。同理,根据组合Ⅱ的F2可知,雌性中红眼∶白眼=4∶3,雄性中红眼∶白眼=1∶3,可知控制该对性状的基因位于X染色体上,且杂交Ⅱ的亲本为红眼♀和白眼♂,F1雄性中红眼∶白眼=1∶1,可知红眼为显性,且杂交Ⅱ的亲本为红眼♀(XBXb)和白眼♂(XbY)。
22.(2020·天津)小麦的面筋强度是影响面制品质量的重要因素之一,如制作优质面包需强筋面粉,制作优质饼干需弱筋面粉等。小麦有三对等位基因(A/a,B1/B2,D1/D2)分别位于三对同源染色体上,控制合成不同类型的高分子量麦谷蛋白(HMW),从而影响面筋强度。科研人员以两种纯合小麦品种为亲本杂交得F1,F1自交得F2,以期选育不同面筋强度的小麦品种。相关信息见下表。
基因 基因的表达 产物(HMW) 亲本 F1 育种目标
小偃6号 安农91168 强筋小麦 弱筋小麦
A 甲 + + + + -
B1 乙 - + + - +
B2 丙 + - + + -
D1 丁 + - + - +
D2 戊 - + + + -
注:“+”表示有相应表达产物;“-”表示无相应表达产物
据表回答:
(1)三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制   来控制生物体的性状。
(2)在F1植株上所结的F2种子中,符合强筋小麦育种目标的种子所占比例为   ,符合弱筋小麦育种目标的种子所占比例为   。
(3)为获得纯合弱筋小麦品种,可选择F2中只含   产物的种子,采用   等育种手段,选育符合弱筋小麦育种目标的纯合品种。
【答案】(1)蛋白质的结构
(2)1/16;0
(3)甲、乙、丁;诱变、基因工程、将其与不含甲产物的小麦品种进行杂交
【知识点】基因的自由组合规律的实质及应用;基因、蛋白质、环境与性状的关系;育种方法综合
【解析】【解答】(1)由题意“控制合成不同类型的高分子量麦谷蛋白,从而影响面筋强度”可知,三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制蛋白质的结构直接控制生物体的性状。(2)由分析可知,亲本小偃6号基因型为AAB2B2D1D1,安农91168的基因型为AAB1B1D2D2,则F1的基因型为AAB1B2D1D2,而育种目标中强筋小麦基因型为AAB2B2D2D2,弱筋小麦基因型为AAB1B1D1D1,根据自由组合定律可得出,F2中符合强筋小麦育种目标的种子占1×1/4×1/4=1/16,符合弱筋小麦育种目标的种子占0。(3)为获得纯合弱筋小麦品种(aaB1B1D1D1),能从F2中选择的只能是AAB1B1D1D1,即含有甲、乙和丁产物的小麦种子。由于小麦AAB1B1D1D1没有a基因,要想获得aaB1B1D1D1,则需要通过诱变或基因工程使其获得a基因,或通过将其与不含甲产物的小麦品种进行杂交以获得aa的个体。
【分析】本题联系基因的自由组合定律和育种的相关知识综合考查遗传学相关规律的应用。由题意分析得知,亲本小偃6号基因型为AAB2B2D1D1,安农91168的基因型为AAB1B1D2D2,育种目标中强筋小麦基因型为AAB2B2D2D2,弱筋小麦基因型为aaB1B1D1D1,由此再结合自由组合定律解题即可。
23.(2020·全国Ⅲ)普通小麦是目前世界各地栽培的重要粮食作物。普通小麦的形成包括不同物种杂交和染色体加倍过程,如图所示(其中A、B、D分别代表不同物种的一个染色体组,每个染色体组均含7条染色体)。在此基础上,人们又通过杂交育种培育出许多优良品种。回答下列问题:
(1)在普通小麦的形成过程中,杂种一是高度不育的,原因是   。已知普通小麦是杂种二染色体加倍形成的多倍体,普通小麦体细胞中有   条染色体。一般来说,与二倍体相比,多倍体的优点是   (答出2点即可)。
(2)若要用人工方法使植物细胞染色体加倍,可采用的方法有   (答出1点即可)。
(3)现有甲、乙两个普通小麦品种(纯合体),甲的表现型是抗病易倒伏,乙的表现型是易感病抗倒伏。若要以甲、乙为实验材料设计实验获得抗病抗倒伏且稳定遗传的新品种,请简要写出实验思路   。
【答案】(1)无同源染色体,不能进行正常的减数分裂;42;营养物质含量高、茎秆粗壮
(2)秋水仙素处理
(3)甲、乙两个品种杂交,F1自交,选取F2中既抗病又抗倒伏、且自交后代不发生性状分离的植株
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)杂种一是一粒小麦和斯氏麦草杂交的产物,细胞内含有一粒小麦和斯氏麦草各一个染色体组,所以细胞内不含同源染色体,不能进行正常的减数分裂,因此高度不育;
普通小麦含有6个染色体组,每个染色体组有7条染色体,所以体细胞有42条染色体;
多倍体植株通常茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。(2)人工诱导植物细胞染色体加倍可以采用秋水仙素处理。(3)为获得稳定遗传的抗病抗倒伏的小麦,可以利用杂交育种,设计思路如下:
将甲和乙两品种杂交获得F1,将F1植株进行自交,选取F2中既抗病又抗倒伏的、且自交后代不发生性状分离的植株,即为稳定遗传的抗病又抗倒伏的植株。
【分析】图中是普通小麦育种的过程,一粒小麦和斯氏麦草杂交形成杂种一,经过加倍后形成拟二粒小麦AABB,在和滔氏麦草杂交获得杂种二ABD,然后加倍形成普通小麦AABBDD。
秋水仙素可以抑制纺锤丝的形成,导致细胞染色体数目加倍。
24.(2020·全国Ⅱ)控制某种植物叶形、叶色和能否抗霜霉病3个性状的基因分别用A/a、B/b、D/d表示,且位于3对同源染色体上。现有表现型不同的4种植株:板叶紫叶抗病(甲)、板叶绿叶抗病(乙)、花叶绿叶感病(丙)和花叶紫叶感病(丁)。甲和丙杂交,子代表现型均与甲相同;乙和丁杂交,子代出现个体数相近的8种不同表现型。回答下列问题:
(1)根据甲和丙的杂交结果,可知这3对相对性状的显性性状分别是   。
(2)根据甲和丙、乙和丁的杂交结果,可以推断甲、乙、丙和丁植株的基因型分别为   、   、   和   。
(3)若丙和丁杂交,则子代的表现型为   。
(4)选择某一未知基因型的植株X与乙进行杂交,统计子代个体性状。若发现叶形的分离比为3∶1、叶色的分离比为1∶1、能否抗病性状的分离比为1∶1,则植株X的基因型为   。
【答案】(1)板叶、紫叶、抗病
(2)AABBDD;AabbDd;aabbdd;aaBbdd
(3)花叶绿叶感病、 花叶紫叶感病
(4)AaBbdd
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知显性性状为板叶、紫叶、抗病,甲为显性纯合子AABBDD。(2)已知显性性状为板叶、紫叶、抗病,再根据甲乙丙丁的表现型和杂交结果可推知,甲、乙、丙、丁的基因型分别为AABBDD、AabbDd、aabbdd、aaBbdd。(3)若丙aabbdd和丁aaBbdd杂交,根据自由组合定律,可知子代基因型和表现型为:aabbdd(花叶绿叶感病)和aaBbdd(花叶紫叶感病)。(4)已知杂合子自交分离比为3:1,测交比为1:1,故,X与乙杂交,叶形分离比为3:1,则为Aa×Aa杂交,叶色分离比为1:1,则为Bb×bb杂交,能否抗病分离比为1:1,则为Dd×dd杂交,由于乙的基因型为AabbDd,可知X的基因型为AaBbdd。
【分析】分析题意可知:甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知甲为显性纯合子AABBDD,丙为隐性纯合子aabbdd;乙板叶绿叶抗病与丁花叶紫叶感病杂交,后代出现8种表现型,且比例接近1:1:1:1:1:1:1:1,可推测三对等位基因应均为测交。
四、实验探究题
25.(2021·湖南)油菜是我国重要的油料作物,油菜株高适当的降低对抗倒伏及机械化收割均有重要意义。某研究小组利用纯种高秆甘蓝型油菜Z,通过诱变培育出一个纯种半矮秆突变体S。为了阐明半矮秆突变体S是由几对基因控制、显隐性等遗传机制,研究人员进行了相关试验,如图所示。
回答下列问题:
(1)根据F2表现型及数据分析,油菜半矮杆突变体S的遗传机制是   ,杂交组合①的F1产生各种类型的配子比例相等,自交时雌雄配子有   种结合方式,且每种结合方式机率相等。F1产生各种类型配子比例相等的细胞遗传学基础是   。
(2)将杂交组合①的F2所有高轩植株自交,分别统计单株自交后代的表现型及比例,分为三种类型,全为高轩的记为F3-Ⅰ,高秆与半矮秆比例和杂交组合①、②的F2基本一致的记为F3-Ⅱ,高秆与半矮秆比例和杂交组合③的F2基本一致的记为F3-Ⅲ。产生F3-Ⅰ、F3-Ⅱ、F3-Ⅲ的高秆植株数量比为   。产生F3-Ⅲ的高秆植株基因型为   (用A、a;B、b;C、c……表示基因)。用产生F3-Ⅲ的高秆植株进行相互杂交试验,能否验证自由组合定律?   。
【答案】(1)由两对位于非同源染色体上的隐性基因控制;16;F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合
(2)7∶4∶4;Aabb、aaBb;不能
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据分析可推测,半矮秆突变体S是双隐性纯合子,其遗传机制是由两对位于非同源染色体上的隐性基因控制。杂交组合①的F1为双杂合子,减数分裂可以产生雌雄配子各4种,且比例相等,雌雄配子结合的方式有4×4=16种。F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合。
(2)杂交组合①的F2所有高秆植株基因型及比例分别为1AABB:2AABb:2AaBB:4AaBb:1AAbb:2Aabb:1aaBB:2aaBb,所有高秆植株自交,其中含有一对纯合显性基因的高杆植株1AABB、2AABb、2AaBB、1AAbb、1aaBB,占高杆植株的比例为7/15,其后代全为高秆,记为F3-Ⅰ;AaBb占高杆植株的比例为4/15,自交后代高秆与半矮秆比例≈15∶1 ,和杂交组合①、②的F2基本一致,记为F3-Ⅱ;2Aabb、2aaBb占高杆植株的比例为4/15,自交后代高秆与半矮秆比例和杂交组合③的F2基本一致,记为 F3-Ⅲ,产生F3-Ⅰ、F3-Ⅱ、F3-Ⅲ的高秆植株数量比为7∶4∶4。用产生F3-Ⅲ的高秆植株进行相互杂交试验,不论两对基因位于一对同源染色体上,还是两对同源染色体上,亲本均产生两种数量相等的雌雄配子,子代均出现高杆∶半矮杆=3∶1,因此不能验证基因的自由组合定律。
故答案为:(1) 由两对位于非同源染色体上的隐性基因控制 ; 16 ; F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合 (2) 7∶4∶4 ; Aabb、aaBb ; 不能
【分析】根据实验①和②,正交反交结果相同,说明控制高杆和半矮杆的基因不在性染色体上。又根据实验①②中F2出现高杆∶半矮杆≈15∶1,可知该性状受两对等位基因控制,且两对等位基因不连锁,且半矮杆占F2植株的1/16,应该是双隐性纯合子。
26.(2021·河北)我国科学家利用栽培稻(H)与野生稻(D)为亲本,通过杂交育种方法并辅以分子检测技术,选育出了L12和L7两个水稻新品系。L12的12号染色体上带有D的染色体片段(含有耐缺氮基因TD),L7的7号染色体上带有D的染色体片段(含有基因SD),两个品系的其他染色体均来自于H(图1)。H的12号和7号染色体相应片段上分别含有基因TH和SH。现将两个品系分别与H杂交,利用分子检测技术对实验一亲本及部分F2的TD/TH基因进行检测,对实验二亲本及部分F2的SD/SH基因进行检测,检测结果以带型表示(图2)。
回答下列问题:
(1)为建立水稻基因组数据库,科学家完成了水稻   条染色体的DNA测序。
(2)实验一F2中基因型TDTD对应的是带型   。理论上,F2中产生带型Ⅰ、Ⅱ和Ⅲ的个体数量比为   。
(3)实验二F2中产生带型α、β和γ的个体数量分别为12、120和108,表明F2群体的基因型比例偏离   定律。进一步研究发现,F1的雌配子均正常,但部分花粉无活性。已知只有一种基因型的花粉异常,推测无活性的花粉带有   (填“SD”或“SH”)基因。
(4)以L7和L12为材料,选育同时带有来自D的7号和12号染色体片段的纯合品系X(图3)。主要实验步骤包括:①   ;②对最终获得的所有植株进行分子检测,同时具有带型   的植株即为目的植株。
(5)利用X和H杂交得到F1,若F1产生的无活性花粉所占比例与实验二结果相同,雌配子均有活性,则F2中与X基因型相同的个体所占比例为   。
【答案】(1)12
(2)Ⅲ;1∶2∶1
(3)(基因)分离;SD
(4)将L7和L12杂交,获得F1后自交;α和Ⅲ
(5)1/80
【知识点】基因的分离规律的实质及应用;基因的自由组合规律的实质及应用
【解析】【解答】(1)据题图可知,水稻为雌雄同株的植物,含有12对同源染色体,故需要对水稻的12条染色体的DNA进行基因测序。
故答案为:12。
(2)实验一:亲本为L12(基因型TDTD)与H(基因型THTH)杂交,故F1的基因型为TDTH,F2的基因型分别为TDTD∶TDTH∶THTH=1∶2∶1,TDTD与亲本L12对应的条带相同,即条带Ⅲ,理论上,F2中产生带型Ⅰ∶Ⅱ∶Ⅲ的个体数量比为1∶2∶1。
故答案为:Ⅲ;1∶2∶1。
(3)实验二:亲本为L7(基因型SDSD)与H(基因型SHSH)杂交,故F1的基因型为SDSH,F2的基因型分别为SDSD∶SDSH∶SHSH=1∶2∶1,理论上,F2中产生带型α:β:γ的个体数量比为1∶2∶1。实际上F2中产生带型α、β、γ的个体数量分别为12、120和108,约为1∶10∶9,带型α即SDSD的个体数量很少,结合题干,可推测无活性的花粉带有SD基因。
故答案为:(基因)分离;SD。
(4)TD/TH、SD/SH分别位于7号和12号染色体上,遵循自由组合定律,故可以设计以下实验:将L7(SDSDTHTH)和L12(SHSHTDTD)杂交,获得F1(SDSHTDTH)后自交,对最终获得的所有F2植株进行分子检测,同时具有带型α和Ⅲ的植株即为目的植株。
故答案为:将L7和L12杂交,获得F1后自交;α和Ⅲ。
(5)实验二中SDSD∶SDSH∶SHSH=12∶120∶108=1∶10∶9,可知花粉中可存活SD=1/9,利用X(基因型为SDSDTDTD)和H(基因型为SHSHTHTH)杂交得到F1,基因型为SDSHTDTH,若F1产生的SD花粉无活性,所占比例与实验二结果相同,雌配子均有活性,F1得到F2,利用棋盘法:
  SDTD SDTH SHTD SHTD
1/9SDTD 1/9 1/9 1/9 1/9
1/9SDTH 1/9 1/9 1/9 1/9
SHTD 1 1 1 1
SHTD 1 1 1 1
F2中基因型为SDSDTDTD的个体所占比例为1/9÷(1/9×8+1×8)=1/80。
故答案为:1/80。
【分析】1、在可存活配子比例计算时,可利用棋盘法,实验二中SDSD∶SDSH∶SHSH=12∶120∶108=1∶10∶9,计算花粉中可存活SD=x,
  SD SH
xSD x x
SH 1 1
则:存在x/2x+2=1/20,计算得到x=1/9,可知花粉中可存活SD=1/9。
2、等位基因遵循分离定律,非同源染色体上的非等位基因遵循自由组合定律,L12的12号染色体上含有耐缺氮基因TD,L7的7号染色体上含有基因SD,SD/SH与TD/TH遵循基因自由组合定律。
27.(2021·全国甲)植物的性状有的由1对基因控制,有的由多对基因控制。一种二倍体甜瓜的叶形有缺刻叶和全缘叶,果皮有齿皮和网皮。为了研究叶形和果皮这两个性状的遗传特点,某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮。杂交实验及结果见下表(实验②中F1自交得F2)。
实验 亲本 F1 F2
① 甲×乙 1/4缺刻叶齿皮,1/4缺刻叶网皮 1/4全缘叶齿皮,1/4全缘叶网皮 /
② 丙×丁 缺刻叶齿皮 9/16缺刻叶齿皮,3/16缺刻叶网皮 3/16全缘叶齿皮,1/16全缘叶网皮
回答下列问题:
(1)根据实验①可判断这2对相对性状的遗传均符合分离定律,判断的依据是   。根据实验②,可判断这2对相对性状中的显性性状是   。
(2)甲乙丙丁中属于杂合体的是   。
(3)实验②的F2中纯合体所占的比例为   。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮不是9∶3∶3∶1,而是45∶15∶3∶1,则叶形和果皮这两个性状中由1对等位基因控制的是   ,判断的依据是   。
【答案】(1)基因型不同的两个亲本杂交,F1分别统计,缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,每对相对性状结果都符合测交的结果,说明这2对相对性状的遗传均符合分离定律;缺刻叶和齿皮
(2)甲和乙
(3)1/4
(4)果皮;F2中齿皮∶网皮=48∶16=3∶1,说明受一对等位基因控制
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】 (1)实验①中F1表现型进行逐一性状分析,分别统计两对相对性状的性状分离比,发现缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,发现每对相对性状结果都符合测交的结果,因而可判断这2对相对性状的遗传均符合分离定律;根据实验②,F1全为缺刻叶齿皮,F2出现不同于亲本F1的性状全缘叶和网皮,可以推测缺刻叶和齿皮对网皮为显性性状。
(2)某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮,实验①杂交的F1结果相当于测交结果;而实验②的F2出现9∶3∶3∶1,符合基因自由组合定律的特点,因而F1的基因型为双等位基因杂合子AaBb。分析可知,甲的基因型为Aabb,乙的基因型为aaBb,丙的基因型为AAbb,丁的基因型为aaBB,因而甲乙丙丁中属于杂合体的是甲和乙。
(3)实验②的F2中纯合体基因型为AABB,AAbb,aaBB,aabb,概率均为1/16。 所以实验②的F2中纯合体所占的总比例为1/4。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮=45∶15∶3∶1,逐一分析法分析每对相对性状的性状分离比,我们发现,缺刻叶∶全缘叶=60∶4=15∶1,可推测叶形受两对非同源染色体上的等位基因控制。齿皮∶网皮=48∶16=3∶1,可推测果皮受一对等位基因控制。
【分析】 由表格实验数据进行分析。表格里面有两对相对性状,所以需要进行逐一分析。利用注意分析法,分析每对相对性状的性状分离比,通过判断子代性状分离比是否符合自交、测交、杂交的结果,进行写出亲本的基因型。F1全为缺刻叶齿皮,F2出现全缘叶和网皮,可以推测缺刻叶对全缘叶为显性(控制该性状的基因用A和a表示),齿皮对网皮为显性(控制该性状的基因用B和b表示),且F2出现9∶3∶3∶1。
28.(2021·全国乙卷)果蝇的灰体对黄体是显性性状,由X染色体上的1对等位基因(用A/a表示)控制:长翅对残翅是显性性状,由常染色体上的1对等位基因(用B/b表示)控制。回答下列问题:
(1)请用灰体纯合子雌果蝇和黄体雄果蝇为实验材料,设计杂交实验以获得黄体雌果蝇。(要求:用遗传图解表示杂交过程。)
(2)若用黄体残翅雌果蝇与灰体长翅雄果蝇(XAYBB)作为亲本杂交得到F1,F1相互交配得F2,则F2中灰体长翅:灰体残翅:黄体长翅:黄体残翅=   , F2中灰体长翅雌蝇出现的概率为   。
【答案】(1)
(2)3:1:3:1;3/16
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)解∶黄体雌果蝇(XaXa)的一个Xa,来自父本,另一个Xa来自母本。即需要亲本均有Xa,而亲本灰体纯合子雌果蝇(XAXA)没有Xa,所以需要先用灰体纯合子雌果蝇(XAXA)和黄体雄果蝇(XaY)杂交,得到F1代XAXa,再用F1代(XAXa)与亲本黄体雄果蝇(XaY)杂交,即可得到黄体雌果蝇(XaXa).
遗传图解如下:
(2)用黄体残翅雌果蝇与灰体长翅雄果蜂(XAYBB)作为亲本杂交得到F1的过程如下:
让F1相互交配得到F2的过程可以用拆分组合法进行快速计算:
XAXa×XaY→有1/2的概率产生灰体果蝇,有1/2的概率产生黄体果蝇
Bb×Bb→有3/4的概率产生长翅果蝇,有1/4的概率产生残翅果蝇
灰体长翅=1/2×3/4=3/8:灰体残翅=1/2×1/4=1/8;黄体长翅=1/2×3/4=3/8;黄体残翅=1/2×1/4=1/8。
所以,灰体长翅:灰体残翅:黄体长翅:黄体残翅=3:1:3:1。其中灰体长翅的概率为3/8。
在灰体长翅的表现型中,有1/2的个体是雌性,所以F2中灰体长翅雌蝇出现的概率为3/8×1/2=3/16。
【分析】 1、先确定亲本基因型为:XAXA 和XaY,F1由亲本的雌雄配子随机结合产生。所以F1基因型为: XAXa 和 XAY,由于子代杂交不能直接得到黄体雌果蝇(XaXa),两条X染色体一条来自父方,一条来自母方),所以可以考虑回交法。
2、 杂交得到F1的基因型为BbXAXa和BbXaY。逐一分析法算出子二代灰体长翅:灰体残翅:黄体长翅:黄体残翅=(3:1)(1:1)=多少 ,F2中“灰体”“长翅”“雌蝇”出现的概率为多少。
29.(2020·新高考I)玉米是雌雄同株异花植物,利用玉米纯合雌雄同株品系M培育出雌株突变品系,该突变品系的产生原因是2号染色体上的基因Ts突变为ts,Ts对ts为完全显性。将抗玉米螟的基因A转入该雌株品系中获得甲、乙两株具有玉米螟抗性的植株,但由于A基因插入的位置不同,甲植株的株高表现正常,乙植株矮小。为研究A基因的插入位置及其产生的影响,进行了以下实验:
实验一:品系M(TsTs)×甲(Atsts)→F1中抗螟∶非抗螟约为1∶1
实验二:品系M(TsTs)×乙(Atsts)→F1中抗螟矮株∶非抗螟正常株高约为1∶1
(1)实验一中作为母本的是   ,实验二的F1中非抗螟植株的性别表现为    (填:雌雄同株、雌株或雌雄同株和雌株)。
(2)选取实验一的F1抗螟植株自交,F2中抗螟雌雄同株∶抗螟雌株∶非抗螟雌雄同株约为2∶1∶1。由此可知,甲中转入的A基因与ts基因    (填:是或不是)位于同一条染色体上,F2中抗螟雌株的基因型是   。若将F2中抗螟雌雄同株与抗螟雌株杂交,子代的表现型及比例为   。
(3)选取实验二的F1抗螟矮株自交,F2中抗螟矮株雌雄同株∶抗螟矮株雌株∶非抗螟正常株高雌雄同株∶非抗螟正常株高雌株约为3∶1∶3∶1,由此可知,乙中转入的A基因    (填:位于或不位于)2号染色体上,理由是   。 F2中抗螟矮株所占比例低于预期值,说明A基因除导致植株矮小外,还对F1的繁殖造成影响,结合实验二的结果推断这一影响最可能是   。F2抗螟矮株中ts基因的频率为   ,为了保存抗螟矮株雌株用于研究,种植F2抗螟矮株使其随机受粉,并仅在雌株上收获籽粒,籽粒种植后发育形成的植株中抗螟矮株雌株所占的比例为   。
【答案】(1)甲;雌雄同株
(2)是;AAtsts;抗螟雌雄同株∶抗螟雌株=1∶1
(3)不位于;抗螟性状与性别性状间是自由组合的,因此A基因不位于Ts、ts基因所在的2号染色体上;含A基因的雄配子不育;1/2;1/6
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据题意和实验结果可知,实验一中玉米雌雄同株M的基因型为TsTs,为雌雄同株,而甲品系的基因型为tsts,为雌株,只能做母本,根据以上分析可知,实验二中F1的OOTsts非抗螟植株基因型为OOTsts,因此为雌雄同株。(2)根据以上分析可知,实验一的F1AOTsts抗螟雌雄同株自交,后代F2为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,符合基因分离定律的结果,说明实验一中基因A与基因ts插入到同一条染色体上,后代中抗螟雌株的基因型为AAtsts,将F2中AAtsts抗螟雌株与AOTsts抗螟雌雄同株进行杂交,AAtsts抗螟雌株只产生一种配子Ats,AOTsts抗螟雌雄同株作为父本产生两种配子,即Ats、OTs,则后代为AAtsts抗螟雌株:AOTsts抗螟雌雄同株=1:1。(3)根据以上分析可知,实验二中选取F1AOTsts抗螟雌雄同株矮株自交,后代中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=1:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,故乙中基因A不位于基因ts的2号染色体上,且F2中抗螟矮株所占比例小于理论值,说明A基因除导致植株矮小外,还影响了F1的繁殖,根据实验结果可知,在实验二的F1中,后代AOTsts抗螟雌雄同株矮株:OOTsts非抗螟雌雄同株正常株高=1:1,则说明含A基因的卵细胞发育正常,而F2中抗螟矮株所占比例小于理论值,故推测最可能是F1产生的含基因A的雄配子不育导致后代中雄配子只产生了OTs 和Ots两种,才导致F2中抗螟矮株所占比例小于理论值的现象。根据以上分析可知,实验二的F2中雌雄同株:雌株=3:1,故F2中抗螟矮植株中ts的基因频率不变,仍然为1/2;根据以上分析可知,F2中抗螟矮株的基因型雌雄同株为1/3AOTsTs、2/3AOTsts,雌株基因型为AOtsts,由于F1含基因A的雄配子不育,则1/3AOTsTs、2/3AOTsts产生的雄配子为2/3OTs、1/3Ots,AOtsts产生的雌配子为1/2Ats、1/2Ots,故雌株上收获的籽粒发育成的后代中抗螟矮植株雌株AOtsts所占比例为1/2×1/3=1/6。
【分析】根据题意可知,基因Ts存在时表现为雌雄同株,当基因突变为ts后表现为雌株,玉米雌雄同株M的基因型为TsTs,则实验中品系M作为父本,品系甲和乙的基因型为tsts,则作为母本。由于基因A只有一个插入到玉米植株中,因此该玉米相当于杂合子,可以看做为AO,没有插入基因A的植株基因型看做为OO,则分析实验如下:
实验一:品系M(OOTsTs)×甲(AOtsts)→F1AOTsts抗螟雌雄同株1:OOTsts非抗螟雌雄同株1;让F1AOTsts抗螟雌雄同株自交,若基因A插入到ts所在的一条染色体上,则F1AOTsts抗螟雌雄同株产生的配子为Ats、OTs,那么后代为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,该假设与题意相符合,因此说明实验一中基因A与基因ts插入到同一条染色体上。
实验二:品系M(OOTsTs)×乙(AOtsts)→F1AOTsts抗螟雌雄同株矮株1:OOTsts非抗螟雌雄同株正常株高1,选取F1AOTsts抗螟雌雄同株矮株自交,后代中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=3:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,说明基因A与基因ts没有插入到同一条染色体上,则基因A与基因ts位于非同源染色体上,符合基因自由组合定律,其中雌雄同株:雌株=3:1,但是抗螟:非抗螟=1:1不符合理论结果3:1,说明有致死情况出现。
30.(2020·江苏)已知黑腹果蝇的性别决定方式为XY型,偶然出现的XXY个体为雌性可育。黑腹果蝇长翅(A)对残翅(a)为显性,红眼(B)对白眼(b)为显性。现有两组杂交实验结果如下:
请回答下列问题:
(1)设计实验①与实验②的主要目的是验证   。
(2)理论上预期实验①的F2基因型共有   种,其中雌性个体中表现上图甲性状的概率为   ,雄性个体中表现上图乙性状的概率为   。
(3)实验②F1中出现了1只例外的白眼雌蝇,请分析:
Ⅰ.若该蝇是基因突变导致的,则该蝇的基因型为   。
Ⅱ.若该蝇是亲本减数分裂过程中X染色体未分离导致的,则该蝇产生的配子为   。
Ⅲ.检验该蝇产生的原因可用表现型为   的果蝇与其杂交。
【答案】(1)眼色性状与性别有关,翅型性状与性别无关
(2)12;0;3/8
(3)XbXb;XbXb、Y、Xb、XbY;红眼雄性
【知识点】伴性遗传
【解析】【解答】(1)据图可知,无论正交还是反交,长翅性状在雌雄中都无差别,而眼色在雄性中结果不同,故通过实验①和②,主要是验证眼色性状的遗传与性别有关,而翅形性状的遗传与性别无关。(2)据分析可知,实验①中F1分别为AaXBY、AaXBXb,雌雄相互交配所得F2的基因型种类为3×4=12种。F2的雌性个体中不会出现XbXb个体,故表现甲性状即残翅白眼的概率是0;雄性个体中表现乙性状即长翅红眼的概率为3/4×1/2=3/8。
据分析可知,只考虑眼色,实验②中F1分别为XBXb(长红♀)、XbY(长白♂),因此:
I、若F1中出现的长翅白眼♀果蝇是基因突变导致的,则其基因型应为XbXb;
II、若F1中出现的长翅白眼♀果蝇是亲本减数分裂过程中X染色体未分离导致的,则其基因型应为XbXbY,该果蝇经减数分裂产生的配子有XbXb、Y、Xb、XbY。
III、若要鉴别F1中出现的长翅白眼♀果蝇基因型是XbXb还是XbXbY,则应选择某一雄性果蝇与之杂交;若选择XbY,则子代无论雌雄都表现为白色,因此,应该用表现型为红色的雄蝇进行杂交。
【分析】据题图分析可知,实验①和②互为正交和反交,实验①中F1分别为AaXBY(长翅红眼♂)、AaXBXb(长翅红眼♀),实验②中正常情况下F1分别为AaXbY(长翅白眼♂)、AaXBXb(长翅红眼♀),据此分析。
1 / 1高考生物五年真题汇编12——遗传的基本规律(2)
一、单选题
1.(2021·浙江)某玉米植株产生的配子种类及比例为 YR∶ Yr∶yR∶yr=1∶1∶1∶1。若该个体自交,其F1中基因型为YyRR个体所占的比例为(  )
A.1/16 B.1/8 C.1/4 D.1/2
2.(2021·湖南)有些人的性染色体组成为XY,其外貌与正常女性一样,但无生育能力,原因是其X染色体上有一个隐性致病基因a,而Y染色体上没有相应的等位基因。某女性化患者的家系图谱如图所示。下列叙述错误的是(  )
A.Ⅱ-1的基因型为XaY
B.Ⅱ-2与正常男性婚后所生后代的患病概率为1/4
C.I-1的致病基因来自其父亲或母亲
D.人群中基因a的频率将会越来越低
3.(2021·全国甲)果蝇的翅型、眼色和体色3个性状由3对独立遗传的基因控制,且控制眼色的基因位于X染色体上。让一群基因型相同的果蝇(果蝇M)与另一群基因型相同的果蝇(果蝇N)作为亲本进行杂交,分别统计子代果蝇不同性状的个体数量,结果如图所示。已知果蝇N表现为显性性状灰体红眼。下列推断错误的是(  )
A.果蝇M为红眼杂合体雌蝇 B.果蝇M体色表现为黑檀体
C.果蝇N为灰体红眼杂合体 D.亲本果蝇均为长翅杂合体
4.(2021·全国乙卷)某种二倍体植物的n个不同性状由n对独立遗传的基因控制(杂合子表现显性性状)。已知植株A的n对基因均杂合。理论上,下列说法错误的是(  )
A.植株A的测交子代会出现2n种不同表现型的个体
B.n越大,植株A测交子代中不同表现型个体数目彼此之间的差异越大
C.植株A测交子代中n对基因均杂合的个体数和纯合子的个体数相等
D.n≥2时,植株A的测交子代中杂合子的个体数多于纯合子的个体数
5.(2021·浙江)小家鼠的某1个基因发生突变,正常尾变成弯曲尾。现有一系列杂交试验,结果如下表。第①组F1雄性个体与第③组亲本雌性个体随机交配获得F2。F2雌性弯曲尾个体中杂合子所占比例为(  )
杂交 P F1
组合 雌 雄 雌 雄
① 弯曲尾 正常尾 1/2弯曲尾,1/2正常尾 1/2弯曲尾,1/2正常尾
② 弯曲尾 弯曲尾 全部弯曲尾 1/2弯曲尾,1/2正常尾
③ 弯曲尾 正常尾 4/5弯曲尾,1/5正常尾 4/5弯曲尾,1/5正常尾
注:F1中雌雄个体数相同
A.4/7 B.5/9 C.5/18 D.10/19
6.(2021·浙江)某种小鼠的毛色受AY(黄色)、A(鼠色)、a(黑色)3个基因控制,三者互为等位基因,AY对A、a为完全显性,A对a为完全显性,并且基因型AYAY胚胎致死(不计入个体数)。下列叙述错误的是(  )
A.若AYa个体与AYA个体杂交,则F1有3种基因型
B.若AYa个体与Aa个体杂交,则F1有3种表现型
C.若1只黄色雄鼠与若干只黑色雌鼠杂交,则F1可同时出现鼠色个体与黑色个体
D.若1只黄色雄鼠与若干只纯合鼠色雌鼠杂交,则F1可同时出现黄色个体与鼠色个体
7.(2021·浙江)下列关于遗传学发展史上4个经典实验的叙述,正确的是(  )
A.孟德尔的单因子杂交实验证明了遗传因子位于染色体上
B.摩尔根的果蝇伴性遗传实验证明了基因自由组合定律
C.T2噬菌体侵染细菌实验证明了DNA是大肠杆菌的遗传物质
D.肺炎双球菌离体转化实验证明了DNA是肺炎双球菌的遗传物质
8.(2020·海南)直翅果蝇经紫外线照射后出现一种突变体,表现型为翻翅,已知直翅和翻翅这对相对性状完全显性,其控制基因位于常染色体上,且翻翅基因纯合致死(胚胎期)。选择翻翅个体进行交配,F1中翻翅和直翅个体的数量比为2∶1。下列有关叙述错误的是(  )
A.紫外线照射使果蝇的直翅基因结构发生了改变
B.果蝇的翻翅对直翅为显性
C.F1中翻翅基因频率为1/3
D.F1果蝇自由交配,F2中直翅个体所占比例为4/9
9.(2020·北京)如图是雄性哺乳动物体内处于分裂某时期的一个细胞的染色体示意图。相关叙述不正确的是(  )
A.该个体的基因型为AaBbDd
B.该细胞正在进行减数分裂
C.该细胞分裂完成后只产生2种基因型的精子
D.A,a和D,d基因的遗传遵循自由组合定律
10.(2020·北京)甲型血友病(HA)是由位于X染色体上的A基因突变为a所致。下列关于HA的叙述不正确的是(  )
A.HA是一种伴性遗传病 B.HA患者中男性多于女性
C.XAXa个体不是HA患者 D.男患者的女儿一定患HA
11.(2020·浙江选考)若某哺乳动物毛发颜色由基因De(褐色)、Df(灰色)、d(白色)控制,其中De和Df分别对d完全显性。毛发形状由基因H(卷毛)、h(直毛)控制。控制两种性状的等位基因均位于常染色体上且独立遗传。基因型为DedHh和DfdHh的雌雄个体交配。下列说法正确的是(  )
A.若De对Df共显性、H对h完全显性,则F1有6种表现型
B.若De对Df共显性、H对h不完全显性,则F1有12种表现型
C.若De对Df不完全显性、H对h完全显性,则F1有9种表现型
D.若De对Df完全显性、H对h不完全显性,则F1有8种表现型
12.(2020·浙江选考)某植物的野生型(AABBcc)有成分R,通过诱变等技术获得3个无成分R的稳定遗传突变体(甲、乙和丙)。突变体之间相互杂交,F1均无成分R。然后选其中一组杂交的F1(AaBbCc)作为亲本,分别与3个突变体进行杂交,结果见下表:
杂交编号 杂交组合 子代表现型(株数)
Ⅰ F1×甲 有(199),无(602)
Ⅱ F1×乙 有(101),无(699)
Ⅲ F1×丙 无(795)
注:“有”表示有成分R,“无”表示无成分R
用杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株杂交,理论上其后代中有成分R植株所占比例为(  )
A.21/32 B.9/16 C.3/8 D.3/4
13.(2020·江苏)有一观赏鱼品系体色为桔红带黑斑,野生型为橄榄绿带黄斑,该性状由一对等位基因控制。某养殖者在繁殖桔红带黑斑品系时发现,后代中2/3为桔红带黑斑,1/3为野生型性状,下列叙述错误的是(  )
A.桔红带黑斑品系的后代中出现性状分离,说明该品系为杂合子
B.突变形成的桔红带黑斑基因具有纯合致死效应
C.自然繁育条件下,桔红带黑斑性状容易被淘汰
D.通过多次回交,可获得性状不再分离的桔红带黑斑品系
14.(2020·全国Ⅰ)已知果蝇的长翅和截翅由一对等位基因控制。多只长翅果蝇进行单对交配(每个瓶中有1只雌果蝇和1只雄果蝇),子代果蝇中长翅∶截翅=3∶1。据此无法判断的是(  )
A.长翅是显性性状还是隐性性状
B.亲代雌蝇是杂合子还是纯合子
C.该等位基因位于常染色体还是X染色体上
D.该等位基因在雌蝇体细胞中是否成对存在
15.(2020·浙江选考)下图为甲、乙两种单基因遗传病的遗传家系图,其中一种遗传病为伴性遗传。人群中乙病的发病率为1/256。
下列叙述正确的是(  )
A.甲病是伴X染色体隐性遗传病
B. 和 的基因型不同
C.若 与某正常男性结婚,所生正常孩子的概率为25/51
D.若 和 再生一个孩子,同时患两种病的概率为1/17
二、多选题
16.(2021·河北)杜氏肌营养不良(DMD)是由单基因突变引起的伴X隐性遗传病,男性中发病率约为1/4000.甲、乙家系中两患者的外祖父均表现正常,家系乙Ⅱ-2还患有红绿色盲。两家系部分成员DMD基因测序结果(显示部分序列,其他未显示序列均正常)如图。下列叙述错误的是(  )
A.家系甲Ⅱ-1和家系乙Ⅱ-2分别遗传其母亲的DMD致病基因
B.若家系乙Ⅰ-1和Ⅰ-2再生育一个儿子,儿子患两种病的概率比患一种病的概率低
C.不考虑其他突变,家系甲Ⅱ-2和家系乙Ⅱ-1婚后生出患DMD儿子的概率为1/8
D.人群中女性DMD患者频率远低于男性,女性中携带者的频率约为1/4000
三、综合题
17.(2021·浙江)利用转基因技术,将抗除草剂基因转入纯合不抗除草剂水稻(2n)(甲),获得转基因植株若干。从转基因后代中选育出纯合矮秆抗除草剂水稻(乙)和纯合高秆抗除草剂水稻(丙)。用甲、乙、丙进行杂交,F2结果如下表。转基因过程中,可发生基因突变,外源基因可插入到不同的染色体上。高秆(矮秆)基因和抗除草剂基因独立遗传,高秆和矮秆由等位基因 A(a)控制。有抗除草剂基因用B+表示、无抗除草剂基因用 B-表示
杂交组合 F2的表现形式及数量(株)
矮秆抗除草剂 矮秆不抗除草剂 高秆抗除草剂 高秆不抗除草剂
甲×乙 513 167 0 0
甲×丙 109 37 313 104
乙×丙 178 12 537 36
回答下列问题:
(1)矮秆对高秆为   性状,甲×乙得到的F1产生   种配子。
(2)为了分析抗除草剂基因在水稻乙、丙叶片中的表达情况,分别提取乙、丙叶片中的RNA并分离出   ,逆转录后进行PCR扩增。为了除去提取 RNA中出现的DNA污染,可采用的方法是   。
(3)乙×丙的 F2中,形成抗除草剂与不抗除草剂表现型比例的原因是   。
(4)甲与丙杂交得到F1,F1再与甲杂交,利用获得的材料进行后续育种。写出F1与甲杂交的遗传图解。
18.(2021·广东)果蝇众多的突变品系为研究基因与性状的关系提供了重要的材料。摩尔根等人选育出M-5品系并创立了基于该品系的突变检测技术,可通过观察F1和F2代的性状及比例,检测出未知基因突变的类型(如显/隐性、是否致死等),确定该突变基因与可见性状的关系及其所在的染色体。回答下列问题:
(1)果蝇的棒眼(B)对圆眼(b)为显性、红眼(R)对杏红眼(r)为显性,控制这2对相对性状的基因均位于X染色体上,其遗传总是和性别相关联,这种现象称为   。
(2)如图示基于M-5品系的突变检测技术路线,在F1代中挑出1只雌蝇,与1只M-5雄蝇交配,若得到的F2代没有野生型雄蝇。雌蝇数目是雄蝇的两倍,F2代中雌蝇的两种表现型分别是棒眼杏红眼和   ,此结果说明诱变产生了伴X染色体   基因突变。该突变的基因保存在表现型为   果蝇的细胞内。
(3)上述突变基因可能对应图中的突变   (从突变①、②、③中选一项),分析其原因可能是   ,使胚胎死亡。
密码子序号 1…4…19 20…540 密码子表(部分):
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG AUG:甲硫氨酸,起始密码子
  突变①↓
 
突变后核苷酸序列 AUG…AAC…ACC
UUA…UAG AAC:天冬酰胺
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG ACU、ACC:苏氨酸
  突变②↓
 
突变后核苷酸序列 AUG…AAA…ACU
UUA…UAG UUA:亮氨酸
正常核苷酸序列 AUG…AAC…ACU
UUA…UAG AAA:赖氨酸
  突变③↓ UAG、UGA:终止密码子
突变后核苷酸序列 AUG…AAC…ACU
UGA…UAG …表示省略的、没有变化的碱基
(4)图所示的突变检测技术,具有的①优点是除能检测上述基因突变外,还能检测出果蝇   基因突变;②缺点是不能检测出果蝇   基因突变。(①、②选答1项,且仅答1点即可)
19.(2021·浙江)水稻雌雄同株,从高秆不抗病植株(核型2n=24)(甲)选育出矮秆不抗病植株(乙)和高秆抗病植株(丙)。甲和乙杂交、甲和丙杂交获得的F1均为高秆不抗病,乙和丙杂交获得的F1为高秆不抗病和高秆抗病。高秆和矮秆、不抗病和抗病两对相对性状独立遗传,分别由等位基因A(a)、B(b)控制,基因B(b)位于11号染色体上,某对染色体缺少1条或2条的植株能正常存活。甲、乙和丙均未发生染色体结构变异,甲、乙和丙体细胞的染色体DNA相对含量如图所示(甲的染色体DNA相对含量记为1.0)。
回答下列问题:
(1)为分析乙的核型,取乙植株根尖,经固定、酶解处理、染色和压片等过程,显微观察分裂中期细胞的染色体。其中酶解处理所用的酶是   ,乙的核型为   。
(2)甲和乙杂交获得F1,F1自交获得F2。F1基因型有   种,F2中核型为2n-2=22的植株所占的比例为   。
(3)利用乙和丙通过杂交育种可培育纯合的矮秆抗病水稻,育种过程是   。
(4)甲和丙杂交获得F1,F1自交获得F2。写出F1自交获得F2的遗传图解。   
20.(2020·北京)遗传组成不同的两个亲本杂交所产生的杂种一代,产量等多个性状常优于双亲,这种现象称为杂种优势。获得具有杂种优势的杂合种子是提高水稻产量的重要途径。
(1)中国是最早种植水稻的国家,已有七千年以上历史。我国南方主要种植籼稻北方主要种植粳稻。籼稻和粳稻是由共同的祖先在不同生态环境中,经过长期的   ,进化形成的。
(2)将多个不同的籼稻、粳稻品种间进行两两杂交,获得三种类型F1(分别表示为籼-仙,籼-粳,粳-粳)。统计F1的小花数、干重等性状的平均优势(数值越大,杂种优势越明显),结果如图1。可知籼-粳具有更强的杂种优势,说明两个杂交亲本的   差异越大,以上性状的杂种优势越明显。
(3)尽管籼-粳具有更强的杂种优势,但由部分配子不育,导致结实率低,从而制约籼-粳杂种优势的应用。研究发现,这种不育机制与位于非同源染色体上的两对基因(A1、A2和B1、B2)有关。通常情况下,籼稻的基因型为A1A1B1B1粳稻为A2A2B2B2。A1A2杂合子所产生的含A2的雌配子不育;B1B2杂合子所产生的含B2的雄配子不育。
①根据上述机制,补充籼稻×粳稻产生F1及F1自交获得F2的示意图,用以解释F结实率低的原因   。
②为克服粗-粳杂种部分不育,研究者通过杂交、连续多代回交和筛选,培育出育性正常的籼-粳杂交种,过程如图2。通过图中虚线框内的连续多代回交,得到基因型A1A1B1B1的粳稻。若籼稻作为连续回交的亲本,则不能得到基因型A2A2B2B2的籼稻,原因是F1(A1A2B1B2)产生基因型为   的配子不育。
③在产量低的甲品系水稻中发现了A、B基因的等位基因A3、B3(广亲和基因),含有广亲和基因的杂合子,雌雄配子均可育。请写出利用甲品系培育出育性正常的籼-粳杂交稻的流程   。(用文字或图示作答均可)
21.(2020·浙江选考)某昆虫灰体和黑体、红眼和白眼分别由等位基因A(a)和B(b)控制,两对基因均不位于Y染色体上。为研究其遗传机制,进行了杂交实验,结果见下表:
杂交编号及亲体 子代表现型及比例
Ⅰ(红眼♀×白眼♂) F1 1红眼♂∶1红眼♀∶1白眼♂∶1白眼♀
Ⅱ(黑体红眼♀×灰体白眼♂) F1 1灰体红眼♂∶1灰体红眼♀∶1灰体白眼♂∶1灰体白眼♀
F2 6灰体红眼♂∶12灰体红眼♀∶18灰体白眼♂∶9 灰体白眼♀∶2黑体红眼♂∶4黑体红眼♀∶6黑体白眼♂∶3黑体白眼♀
注:F2由杂交Ⅱ中的F1随机交配产生
回答下列问题:
(1)从杂交Ⅰ的F1中选择红眼雌雄个体杂交,子代的表现型及比例为红眼♂∶红眼♀∶白眼♂=1:1:1。该子代红眼与白眼的比例不为3:1的原因是   ,同时也可推知白眼由   染色体上的隐性基因控制。
(2)杂交Ⅱ中的雌性亲本基因型为   。若F2灰体红眼雌雄个体随机交配,产生的F3有   种表现型,F3中灰体红眼个体所占的比例为   。
(3)从杂交Ⅱ的F2中选择合适个体,用简便方法验证杂交Ⅱ的F1中的灰体红眼雄性个体的基因型,用遗传图解表示   。
22.(2020·天津)小麦的面筋强度是影响面制品质量的重要因素之一,如制作优质面包需强筋面粉,制作优质饼干需弱筋面粉等。小麦有三对等位基因(A/a,B1/B2,D1/D2)分别位于三对同源染色体上,控制合成不同类型的高分子量麦谷蛋白(HMW),从而影响面筋强度。科研人员以两种纯合小麦品种为亲本杂交得F1,F1自交得F2,以期选育不同面筋强度的小麦品种。相关信息见下表。
基因 基因的表达 产物(HMW) 亲本 F1 育种目标
小偃6号 安农91168 强筋小麦 弱筋小麦
A 甲 + + + + -
B1 乙 - + + - +
B2 丙 + - + + -
D1 丁 + - + - +
D2 戊 - + + + -
注:“+”表示有相应表达产物;“-”表示无相应表达产物
据表回答:
(1)三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制   来控制生物体的性状。
(2)在F1植株上所结的F2种子中,符合强筋小麦育种目标的种子所占比例为   ,符合弱筋小麦育种目标的种子所占比例为   。
(3)为获得纯合弱筋小麦品种,可选择F2中只含   产物的种子,采用   等育种手段,选育符合弱筋小麦育种目标的纯合品种。
23.(2020·全国Ⅲ)普通小麦是目前世界各地栽培的重要粮食作物。普通小麦的形成包括不同物种杂交和染色体加倍过程,如图所示(其中A、B、D分别代表不同物种的一个染色体组,每个染色体组均含7条染色体)。在此基础上,人们又通过杂交育种培育出许多优良品种。回答下列问题:
(1)在普通小麦的形成过程中,杂种一是高度不育的,原因是   。已知普通小麦是杂种二染色体加倍形成的多倍体,普通小麦体细胞中有   条染色体。一般来说,与二倍体相比,多倍体的优点是   (答出2点即可)。
(2)若要用人工方法使植物细胞染色体加倍,可采用的方法有   (答出1点即可)。
(3)现有甲、乙两个普通小麦品种(纯合体),甲的表现型是抗病易倒伏,乙的表现型是易感病抗倒伏。若要以甲、乙为实验材料设计实验获得抗病抗倒伏且稳定遗传的新品种,请简要写出实验思路   。
24.(2020·全国Ⅱ)控制某种植物叶形、叶色和能否抗霜霉病3个性状的基因分别用A/a、B/b、D/d表示,且位于3对同源染色体上。现有表现型不同的4种植株:板叶紫叶抗病(甲)、板叶绿叶抗病(乙)、花叶绿叶感病(丙)和花叶紫叶感病(丁)。甲和丙杂交,子代表现型均与甲相同;乙和丁杂交,子代出现个体数相近的8种不同表现型。回答下列问题:
(1)根据甲和丙的杂交结果,可知这3对相对性状的显性性状分别是   。
(2)根据甲和丙、乙和丁的杂交结果,可以推断甲、乙、丙和丁植株的基因型分别为   、   、   和   。
(3)若丙和丁杂交,则子代的表现型为   。
(4)选择某一未知基因型的植株X与乙进行杂交,统计子代个体性状。若发现叶形的分离比为3∶1、叶色的分离比为1∶1、能否抗病性状的分离比为1∶1,则植株X的基因型为   。
四、实验探究题
25.(2021·湖南)油菜是我国重要的油料作物,油菜株高适当的降低对抗倒伏及机械化收割均有重要意义。某研究小组利用纯种高秆甘蓝型油菜Z,通过诱变培育出一个纯种半矮秆突变体S。为了阐明半矮秆突变体S是由几对基因控制、显隐性等遗传机制,研究人员进行了相关试验,如图所示。
回答下列问题:
(1)根据F2表现型及数据分析,油菜半矮杆突变体S的遗传机制是   ,杂交组合①的F1产生各种类型的配子比例相等,自交时雌雄配子有   种结合方式,且每种结合方式机率相等。F1产生各种类型配子比例相等的细胞遗传学基础是   。
(2)将杂交组合①的F2所有高轩植株自交,分别统计单株自交后代的表现型及比例,分为三种类型,全为高轩的记为F3-Ⅰ,高秆与半矮秆比例和杂交组合①、②的F2基本一致的记为F3-Ⅱ,高秆与半矮秆比例和杂交组合③的F2基本一致的记为F3-Ⅲ。产生F3-Ⅰ、F3-Ⅱ、F3-Ⅲ的高秆植株数量比为   。产生F3-Ⅲ的高秆植株基因型为   (用A、a;B、b;C、c……表示基因)。用产生F3-Ⅲ的高秆植株进行相互杂交试验,能否验证自由组合定律?   。
26.(2021·河北)我国科学家利用栽培稻(H)与野生稻(D)为亲本,通过杂交育种方法并辅以分子检测技术,选育出了L12和L7两个水稻新品系。L12的12号染色体上带有D的染色体片段(含有耐缺氮基因TD),L7的7号染色体上带有D的染色体片段(含有基因SD),两个品系的其他染色体均来自于H(图1)。H的12号和7号染色体相应片段上分别含有基因TH和SH。现将两个品系分别与H杂交,利用分子检测技术对实验一亲本及部分F2的TD/TH基因进行检测,对实验二亲本及部分F2的SD/SH基因进行检测,检测结果以带型表示(图2)。
回答下列问题:
(1)为建立水稻基因组数据库,科学家完成了水稻   条染色体的DNA测序。
(2)实验一F2中基因型TDTD对应的是带型   。理论上,F2中产生带型Ⅰ、Ⅱ和Ⅲ的个体数量比为   。
(3)实验二F2中产生带型α、β和γ的个体数量分别为12、120和108,表明F2群体的基因型比例偏离   定律。进一步研究发现,F1的雌配子均正常,但部分花粉无活性。已知只有一种基因型的花粉异常,推测无活性的花粉带有   (填“SD”或“SH”)基因。
(4)以L7和L12为材料,选育同时带有来自D的7号和12号染色体片段的纯合品系X(图3)。主要实验步骤包括:①   ;②对最终获得的所有植株进行分子检测,同时具有带型   的植株即为目的植株。
(5)利用X和H杂交得到F1,若F1产生的无活性花粉所占比例与实验二结果相同,雌配子均有活性,则F2中与X基因型相同的个体所占比例为   。
27.(2021·全国甲)植物的性状有的由1对基因控制,有的由多对基因控制。一种二倍体甜瓜的叶形有缺刻叶和全缘叶,果皮有齿皮和网皮。为了研究叶形和果皮这两个性状的遗传特点,某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮。杂交实验及结果见下表(实验②中F1自交得F2)。
实验 亲本 F1 F2
① 甲×乙 1/4缺刻叶齿皮,1/4缺刻叶网皮 1/4全缘叶齿皮,1/4全缘叶网皮 /
② 丙×丁 缺刻叶齿皮 9/16缺刻叶齿皮,3/16缺刻叶网皮 3/16全缘叶齿皮,1/16全缘叶网皮
回答下列问题:
(1)根据实验①可判断这2对相对性状的遗传均符合分离定律,判断的依据是   。根据实验②,可判断这2对相对性状中的显性性状是   。
(2)甲乙丙丁中属于杂合体的是   。
(3)实验②的F2中纯合体所占的比例为   。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮不是9∶3∶3∶1,而是45∶15∶3∶1,则叶形和果皮这两个性状中由1对等位基因控制的是   ,判断的依据是   。
28.(2021·全国乙卷)果蝇的灰体对黄体是显性性状,由X染色体上的1对等位基因(用A/a表示)控制:长翅对残翅是显性性状,由常染色体上的1对等位基因(用B/b表示)控制。回答下列问题:
(1)请用灰体纯合子雌果蝇和黄体雄果蝇为实验材料,设计杂交实验以获得黄体雌果蝇。(要求:用遗传图解表示杂交过程。)
(2)若用黄体残翅雌果蝇与灰体长翅雄果蝇(XAYBB)作为亲本杂交得到F1,F1相互交配得F2,则F2中灰体长翅:灰体残翅:黄体长翅:黄体残翅=   , F2中灰体长翅雌蝇出现的概率为   。
29.(2020·新高考I)玉米是雌雄同株异花植物,利用玉米纯合雌雄同株品系M培育出雌株突变品系,该突变品系的产生原因是2号染色体上的基因Ts突变为ts,Ts对ts为完全显性。将抗玉米螟的基因A转入该雌株品系中获得甲、乙两株具有玉米螟抗性的植株,但由于A基因插入的位置不同,甲植株的株高表现正常,乙植株矮小。为研究A基因的插入位置及其产生的影响,进行了以下实验:
实验一:品系M(TsTs)×甲(Atsts)→F1中抗螟∶非抗螟约为1∶1
实验二:品系M(TsTs)×乙(Atsts)→F1中抗螟矮株∶非抗螟正常株高约为1∶1
(1)实验一中作为母本的是   ,实验二的F1中非抗螟植株的性别表现为    (填:雌雄同株、雌株或雌雄同株和雌株)。
(2)选取实验一的F1抗螟植株自交,F2中抗螟雌雄同株∶抗螟雌株∶非抗螟雌雄同株约为2∶1∶1。由此可知,甲中转入的A基因与ts基因    (填:是或不是)位于同一条染色体上,F2中抗螟雌株的基因型是   。若将F2中抗螟雌雄同株与抗螟雌株杂交,子代的表现型及比例为   。
(3)选取实验二的F1抗螟矮株自交,F2中抗螟矮株雌雄同株∶抗螟矮株雌株∶非抗螟正常株高雌雄同株∶非抗螟正常株高雌株约为3∶1∶3∶1,由此可知,乙中转入的A基因    (填:位于或不位于)2号染色体上,理由是   。 F2中抗螟矮株所占比例低于预期值,说明A基因除导致植株矮小外,还对F1的繁殖造成影响,结合实验二的结果推断这一影响最可能是   。F2抗螟矮株中ts基因的频率为   ,为了保存抗螟矮株雌株用于研究,种植F2抗螟矮株使其随机受粉,并仅在雌株上收获籽粒,籽粒种植后发育形成的植株中抗螟矮株雌株所占的比例为   。
30.(2020·江苏)已知黑腹果蝇的性别决定方式为XY型,偶然出现的XXY个体为雌性可育。黑腹果蝇长翅(A)对残翅(a)为显性,红眼(B)对白眼(b)为显性。现有两组杂交实验结果如下:
请回答下列问题:
(1)设计实验①与实验②的主要目的是验证   。
(2)理论上预期实验①的F2基因型共有   种,其中雌性个体中表现上图甲性状的概率为   ,雄性个体中表现上图乙性状的概率为   。
(3)实验②F1中出现了1只例外的白眼雌蝇,请分析:
Ⅰ.若该蝇是基因突变导致的,则该蝇的基因型为   。
Ⅱ.若该蝇是亲本减数分裂过程中X染色体未分离导致的,则该蝇产生的配子为   。
Ⅲ.检验该蝇产生的原因可用表现型为   的果蝇与其杂交。
答案解析部分
1.【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】用棋盘法解该题较为简单
  YR Yr yR yr
YR     YyRR  
Yr        
yR YrRR      
yr        
从表格中分析:YrRR所占比例为2/16,即1/8。
故答案为:B。
【分析】棋盘法较为明了,可通过棋盘中的基因型或表现型直接得出结论,适用于解决自由交配,存在致死现象的题目。
2.【答案】C
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、据图可知Ⅱ-1是女性化患者,所以Ⅱ-1的基因型是XaY,A不符合题意;
B、Ⅱ-2是女性携带者,其基因型是XAXa,与正常男性XAY婚配后,后代基因型及比例为:XAXA:XAXa:XAY:XaY=1:1:1:1,则所生后代的患病概率是1/4,B不符合题意;
C、Ⅰ-1是女性携带者,基因型为XAXa,若致病基因来自父亲,则父亲基因型为XaY,由题干可知XaY为不育的女性化患者,因此,其致病基因只可能来自母亲,C符合题意;
D、XaY(女性化患者)无生育能力,会使人群中a的基因频率越来越低,A的基因频率逐渐增加,D不符合题意。
故答案为:C
【分析】根据题干可知女性化患者的性染色体组成是XY,且X染色体上有隐性治病基因a,Y染色体上没有相应的等位基因,则女性化患者的基因型为XaY,正常女性基因型为XAXA,女性携带者基因型为XAXa,正常男性基因型为XAY。
3.【答案】A
【知识点】伴性遗传
【解析】【解答】AB、M的基因型为Aa cc XbY或AaccXbXb,表现为长翅黑檀体白眼雄蝇或者长翅黑檀体白眼雌蝇,A错误,B正确;
C、N基因型为AaCcXBXb或AaCcXBY,三对等位基因均为杂合的, 果蝇N为灰体红眼杂合体,C正确;
D、由于亲本长翅的基因型均是Aa,为杂合体,D正确。
故答案为:A。
【分析】根据图意数据的性状分离比可知:果蝇M与果蝇N作为亲本进行杂交杂交,子代中长翅:残翅=3:1,说明长翅相对残翅为显性性状,所以亲本的基因型均为Aa(假设控制翅型的基因为A/a);子代红眼:白眼=1:1,由书本果蝇红眼为显性性状,且控制眼色的基因位于X染色体上,假设控制眼色的基因为B/b),所以亲本基因型为XBXb×XbY或XbXb×XBY;子代灰身:黑檀体=1:1,灰体相对檀体为显性性状,亲本基因型为Cc×cc(假设控制体色的基因为C/c);。3个性状由3对独立遗传的基因控制,所以遗传时遵循基因的自由组合定律。因为N表现为显性性状灰体红眼,故N基因型为AaCcXBXb或AaCcXBY,则M的基因型对应为Aa cc XbY或AaccXbXb 。
4.【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、n对基因均杂合的植株A进行测交,后代表现型种类有2n种,A正确;
B、n越大,植株A测交子代中不同表现型个体数目彼此之间的差异相同,B错误;
C、植株A测交子代中n对基因均杂合的概率为1/2n,纯合子的概率为1/2n,这两种个体概率相等,C正确;
D、植株A测交子代中纯合子的概率为1/2n,杂合子的概率为1-(1/2n),n≥2时,1-(1/2n)大于1/2n,一般而言,植株A的测交子代中杂合子的个体数多于纯合子的个体数,D正确;
故答案为:B.
【分析】 1、通过分析1对、2对、3对……等位基因均杂合的个体,进行测交,用数学归纳法归纳出后代的表现型种类有2n种,其中,子代n对基因均杂合的占1/2n,隐性纯合子占1/2n,n对基因全是显性纯合子占1/2n,杂合子占(1-1/2n)。
2、基因自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对遗传因子彼此分离,决定不同性状的遗传因子自由组合。
5.【答案】B
【知识点】基因的分离规律的实质及应用;伴性遗传
【解析】【解答】依据以上分析,由第①组中弯曲尾与正常尾杂交,F1中雌雄个体均为弯曲尾∶正常尾=1∶1,可推测第①组亲本基因型为XAXa×XaY,则产生的F1中雄性个体基因型及比例为XAY:XaY=1∶1;第③组中弯曲尾与正常尾(XaY)杂交,F1中雌雄个体均为弯曲尾∶正常尾=4∶1,由于亲本雄性正常尾(XaY)产生的配子类型及比例为Xa∶Y=1∶1,根据F1比例可推得亲本雌性弯曲尾产生的配子类型及比例为XA∶Xa=4∶1。
若第①组F1雄性个体与第③组亲本雌性个体随机交配产生F2,已知第①组F1雄性个体中XAY:XaY=1∶1,产生的配子类型及比例为XA∶Xa∶Y=1∶1∶2,而第③组亲本雌性个体产生的配子类型及比例为XA∶Xa=4∶1,则F2中雌性弯曲尾(XAXA、XAXa)个体所占比例为1/4×4/5+1/4×1/5+1/4×4/5=9/20,F2中雌性弯曲尾杂合子(XAXa)所占比例为1/4×1/5+1/4×4/5=5/20,综上,F2雌性弯曲尾个体中杂合子所占比例为5/20÷9/20=5/9。因此B正确,ACD错误。
故答案为:B。
【分析】分析表格,由第②组中弯曲尾与弯曲尾杂交,F1的雌雄个体表现不同,说明该性状的遗传与性别相关联,相关基因位于性染色体上,又由F1中雌性全为弯曲尾,雄性中弯曲尾∶正常尾=1∶1,可推测控制尾形的基因位于X染色体上,且弯曲尾对正常尾为显性,该小家鼠发生的突变类型为显性突变。设相关基因为A、a,则正常尾个体的基因型为XaY、XaXa,弯曲尾个体的基因型为XAXA、XAXa、XAY,据此分析。
6.【答案】C
【知识点】基因的分离规律的实质及应用
【解析】【解答】A、若AYa个体与AYA个体杂交,由于基因型AYAY胚胎致死,则F1有AYA、AYa、Aa共3种基因型,A正确;
B、若AYa个体与Aa个体杂交,产生的F1的基因型及表现型有AYA(黄色)、AYa(黄色)、Aa(鼠色)、aa(黑色),即有3种表现型,B正确;
C、若1只黄色雄鼠(AYA或AYa)与若干只黑色雌鼠(aa)杂交,产生的F1的基因型为AYa(黄色)、Aa(鼠色),或AYa(黄色)、aa(黑色),不会同时出现鼠色个体与黑色个体,C错误;
D、若1只黄色雄鼠(AYA或AYa)与若干只纯合鼠色雌鼠(AA)杂交,产生的F1的基因型为AYA(黄色)、AA(鼠色),或AYA(黄色)、Aa(鼠色),则F1可同时出现黄色个体与鼠色个体,D正确。
故答案为:C。
【分析】由题干信息可知,AY对A、a为完全显性,A对a为完全显性,AYAY胚胎致死,因此小鼠的基因型及对应毛色表型有AYA(黄色)、AYa(黄色)、AA(鼠色)、Aa(鼠色)、aa(黑色),据此分析。
7.【答案】D
【知识点】肺炎链球菌转化实验;噬菌体侵染细菌实验;基因在染色体上的实验证据;孟德尔遗传实验-分离定律
【解析】【解答】A、孟德尔的单因子杂交实验没有证明遗传因子位于染色体上,当时人们还没有认识染色体,A错误;
B、摩尔根的果蝇伴性遗传实验只研究了一对等位基因,不能证明基因自由组合定律,B错误;
C、T2噬菌体侵染细菌实验证明了DNA是噬菌体的遗传物质,C错误;
D、肺炎双球菌离体转化实验证明了DNA是转化因子,即DNA是肺炎双球菌的遗传物质,D正确。
故答案为:D。
【分析】1、肺炎双球菌转化实验包括活体细菌转化实验和离体细菌转化实验,其中活体细菌转化实验证明S型细菌中存在某种“转化因子”,能将R型细菌转化为S型细菌;离体细菌转化实验证明DNA是遗传物质。2、T2噬菌体侵染细菌的实验步骤:标记噬菌体→标记的噬菌体与大肠杆菌混合培养→在搅拌器中搅拌,然后离心,检测上清液和沉淀物中的放射性物质。该实验证明DNA是遗传物质。3、萨顿提出基因在染色体上的假说,摩尔根通过果蝇伴性遗传实验证明了基因位于染色体上。
8.【答案】D
【知识点】基因的分离规律的实质及应用;基因频率的概念与变化
【解析】【解答】A、紫外线照射使果蝇基因基构发生了改变,产生了新的等位基因,A正确;
B、由分析知,翻翅为显性基因,B正确;
C、F1中Aa占2/3,aa占1/3,A的基因频率为: ,C正确;
D、F1中Aa占2/3,aa占1/3,则产生A配子的概率为2/3×1/2=1/3,a配子概率为2/3,F2中aa为:2/3×2/3=4/9,Aa为:1/3×2/3×2=4/9,AA为:1/3×1/3=1/9(死亡),因此直翅所占比例为1/2,D错误;
故答案为:D。
【分析】翻翅个体交配,F1出现了性状分离,说明翻翅为显性性状,直翅为隐性性状,设定A为显性基因,a为隐性基因,翻翅纯合致死,则AA致死,亲本的翻翅个体基因型为Aa,杂交后产生子代为Aa:aa=2:1。
9.【答案】C
【知识点】减数第一、二次分裂过程中染色体的行为变化;基因的自由组合规律的实质及应用
【解析】【解答】A、根据细胞图示中的基因分布可以发现,该个体的基因型应该为AaBbDd,A正确;
B、图中显示同源染色体正在联会,且下方的一对同源染色体正在发生交叉互换,可判定该细胞正在进行减数分裂,B正确;
C、图中细胞发生了同源染色体非姐妹染色单体之间的交叉互换,由此可知该细胞分裂完成后可以产生4种配子,C错误;
D、A、a和D、d基因位于非同源染色体上,因此遵循自由组合定律,D正确;
故答案为:C。
【分析】本题主要考查细胞分裂,图示中可观察到正在发生同源染色体的联会,AB和ab所在的同源染色体之间正在发生交叉互换,因此可判定细胞正在进行减数分裂。
10.【答案】D
【知识点】伴性遗传;人类遗传病的类型及危害
【解析】【解答】A、甲型血友病(HA)是由位于X染色体上的A基因突变为a所致,是一种伴X隐性遗传病,A正确;
B、男性存在Xa即表现患病,女性需同时存在XaXa时才表现为患病,故HA患者中男性多于女性,B正确;
C、XAXa个体不是HA患者,属于携带者,C正确;
D、男患者XaY,若婚配对象为XAXA,则女儿(XAXa)不会患病,D错误。
故答案为:D。
【分析】据题可知,甲型血友病(HA)属于伴X隐性遗传病;伴X隐性遗传病的特点是隔代交叉遗传。
11.【答案】B
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】A、若De对Df共显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型2种,则F1有4×2=8种表现型,A错误;
B、若De对Df共显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型3种,则F1有4×3=12种表现型,B正确;
C、若De对Df不完全显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型4种,毛发形状基因型有HH、Hh和hh三种,表现型2种,则F1有4×2=8种表现型,C错误;
D、若De对Df完全显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、 Ded、Dfd和dd四种,表现型3种,毛发形状基因型有HH、Hh和hh三种,表现型3种,则F1有3×3=9种表现型,D错误。
故答案为:B。
故答案为:B。
【分析】1、基因分离定律和自由组合定律定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代,同时位于非同源染色体上的非等位基因进行自由组合。
2、 相对性状:一种生物的同一性状的不同表现类型。共显性:如果双亲的性状同时在F1个体上表现出来,这种显性表现称为共显性,或叫并显性。不完全显性:具有相对性状的纯合亲本杂交后,F1显现中间类型的现象。完全显性:具有相对性状的纯合体亲本杂交后,F1只表现一个亲本性状的现象,即外显率为100%。
12.【答案】A
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】杂交Ⅰ子代中有成分R植株基因型为AABbcc和AaBbcc,比例为1:1,或(基因型为AaBBcc和AaBbcc,比例为1:1,)杂交Ⅱ子代中有成分R植株基因型为AaBbcc,故杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株相互杂交,后代中有成分R所占比例为:1/2×1×3/4×1+1/2×3/4×3/4×1=21/32,A正确。
故答案为:A。
【分析】分析题意可知:基因型为AABBcc的个体表现为有成分R,又知无成分R的纯合子甲、乙、丙之间相互杂交,其中一组杂交的F1基因型为AaBbCc且无成分R,推测同时含有A、B基因才表现为有成分R,C基因的存在可能抑制A、B基因的表达,即基因型为A_B_cc的个体表现为有成分R,其余基因型均表现为无成分R。根据F1与甲杂交,后代有成分R:无成分R≈1:3,有成分R所占比例为1/4,可以将1/4分解为1/2×1/2,则可推知甲的基因型可能为AAbbcc或aaBBcc;F1与乙杂交,后代有成分R:无成分R≈1:7,可以将1/4分解为1/2×1/2×1/2,则可推知乙的基因型为aabbcc;F1与丙杂交,后代均无成分R,可推知丙的基因型可能为AABBCC或AAbbCC或aaBBCC。
13.【答案】D
【知识点】基因的分离规律的实质及应用
【解析】【解答】A、由桔红带黑斑品系的后代出现性状分离,说明该品系均为杂合子,A正确;
B、由分析可知,桔红带黑斑为显性性状,则突变形成的桔红带黑斑基因为显性基因,杂合桔红带黑斑鱼(Aa)相互交配,子代表现型比例为2∶1,可推得基因型为AA的个体死亡,即桔红带黑斑基因具有纯合致死效应,B正确;
C、由于桔红带黑斑基因具有纯合致死效应,自然繁育条件下,该显性基因的频率会逐渐下降,则桔红带黑斑性状容易被淘汰,C正确;
D、桔红带黑斑基因显性纯合致死,则无论回交多少次,所得桔红带黑斑品系均为杂合子,D错误。
故答案为:D。
【分析】已知该鱼体色受一对等位基因控制,设为A、a,繁殖桔红带黑斑品系时,后代出现的表现型比例为桔红带黑斑∶橄榄绿带黄斑=2∶1,说明桔红带黑斑为显性性状,且后代存在显性纯合致死情况。
14.【答案】C
【知识点】伴性遗传
【解析】【解答】A、根据截翅为无中生有可知,截翅为隐性性状,长翅为显性性状,A不符合题意;
B、根据杂交的后代发生性状分离可知,亲本雌蝇一定为杂合子,B不符合题意;
C、无论控制翅形的基因位于X染色体上还是常染色体上,后代中均会出现长翅:截翅=3:1的分离比,C符合题意;
D、根据后代中长翅:截翅=3:1可知,控制翅形的基因符合基因的分离定律,故可推测该等位基因在雌蝇体细胞中是成对存在的,D不符合题意。
故答案为:C。
【分析】假设控制相对性状的基因用A/a来表示,当翅形的基因位于X染色体时,XAXa和XAY后代为XAXA、XAXa、XAY、XaY,长翅:截翅=3:1的分离比,当翅形的基因位于常染色体时,Aa和Aa后代为AA、2Aa、aa,长翅:截翅=3:1的分离比,所以无法确定该等位基因位于常染色体还是X染色体上。
15.【答案】C
【知识点】基因的分离规律的实质及应用;基因的自由组合规律的实质及应用;伴性遗传;人类遗传病的类型及危害
【解析】【解答】A、根据分析可知,甲病为伴X染色体显性遗传病,A错误;
B、根据Ⅲ3同时患甲病和乙病可知,Ⅱ3的基因型为AaXbXb,根据Ⅱ4患乙病可知,Ⅲ6为AaXbXb,二者基因型相同,B错误;
C、根据Ⅲ3同时患甲病和乙病可知,Ⅱ2和Ⅱ3的基因型分别为AaXBY、AaXbXb,则Ⅲ1为1/3AAXBXb或2/3AaXBXb,正常男性XbY乙病的基因型为Aa的概率为30/256÷(30/256+225/256)=2/17,二者婚配的后代患乙病的概率为2/3×2/17×1/4=1/51,不患乙病的概率为1-1/51=50/51,后代不患甲病的概率为1/2,故后代正常的概率为50/51×1/2=25/51,C正确;
D、Ⅲ3的基因型为aaXBXb,Ⅲ4甲病的基因型为XbY,乙病相关的基因型为Aa的概率为30/256÷(30/256+225/256)=2/17,为AA的概率为1-2/17=15/17,后代患乙病的概率为2/17×1/2=1/17,患甲病的概率为1/2,再生一个孩子同时患两种病的概率为1/17×1/2=1/34,D错误。
故答案为:C。
【分析】根据Ⅱ2×Ⅱ3→Ⅲ3可知,乙病为常染色体隐性遗传病,设相关的基因为A/a;根据题意可知,甲病为伴性遗传病,由于甲病有女患者,故为伴X遗传病,又因为Ⅲ3患甲病,而Ⅳ1正常,故可以确定甲病为伴X显性遗传病,设相关的基因为B/b。根据人群中乙病的发病率为1/256,可知a基因概率为1/16,A基因频率为15/16,则AA=15/16×15/16=225/256,Aa=2×1/16×15/16=30/256。
16.【答案】A,B,D
【知识点】伴性遗传;人类遗传病的类型及危害
【解析】【解答】A.从测序结果分析,家系甲Ⅱ-1的致病基因不来自母亲,可能来自基因突变,家系乙Ⅱ-2遗传其母亲的DMD致病基因,A说法错误;
B.由于ab基因连锁,交叉互换的概率较低,家系乙Ⅰ-1(XABY)和Ⅰ-2(XABXab)再生育一个儿子,儿子患两种病的概率高于患一种病的概率,B说法错误;
C.不考虑其他变异,家系甲Ⅱ-2(XBY),家系乙中Ⅱ-2(1/2XBXb、1/2XBXB)生出患DMD儿子的概率为1/2×1/2×1/2=1/8,C说法正确;
D.DMD是由单基因突变引起的伴X隐性遗传病,人群中女性DMD患者频率远低于男性,男性中发病率约为1/4000,即Xb=1/4000,则XB=3999/4000,女性中携带者的频率约为2×1/4000×3999/4000≈1/2000,D说法错误;
故答案为:ABD。
【分析】1、杜氏肌营养不良(DMD)和红绿色盲均是由单基因突变引起的伴X隐性遗传病,这两种病均位于X染色体上,属于连锁遗传。
2、根据家系甲部分成员DMD基因测序结果可知,Ⅰ-2个体基因序列正常,Ⅱ-1个体基因序列异常,假设DMD的致病基因用b表示,则Ⅰ-2的基因型为XBXB,Ⅱ-1的基因型为XbY,则Ⅱ-1患病的原因可能母亲产生配子时发生了基因突变。
17.【答案】(1)隐性;2
(2)mRNA;用 DNA 酶处理提取的 RNA
(3)乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律
(4)
【知识点】DNA分子的结构;基因的自由组合规律的实质及应用;RNA分子的组成和种类
【解析】【解答】(1)甲与乙(纯合矮杆)杂交组合F2没有高杆,其他组合F2高杆:矮杆=3:1,所以矮杆为隐性性状。F1产生两种配子。
故答案为:隐性;2。
(2) 抗除草剂基因在水稻乙、丙叶片中的表达情况,可通过mRNA的情况得到反映,所以可分别提取乙、丙叶片中的RNA并分离出mRNA,逆转录后DNA进行PCR扩增。纯化RNA中出现的DNA污染,可加入DNA酶,将其中的DNA进行降解。
故答案为:mRNA;用 DNA 酶处理提取的 RNA。
(3) 转基因过程中,外源基因可插入到不同的染色体上,乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律。
故答案为:乙和丙的抗除草剂基因位于非同源染色体上,乙和丙上抗除草剂基因的遗传遵循自由组合定律。
(4) 甲(aaB-B-)与丙(AAB+B+)杂交得到F1(AaB+B-),F1再与甲(aaB-B-)杂交的遗传图解如下。
故答案为:
【分析】①显性性状和隐性性状判断:一对相同性状亲本杂交 → 子代分离比为3:1 →分离比为3的为显性性状。
②自由组合定律:控制不同性状的遗传因子的分离和组合是互不相干的,在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
18.【答案】(1)伴性遗传
(2)棒眼红眼;隐性完全致死;雌
(3)③;突变为终止密码子,蛋白质停止表达
(4)X染色体上的可见(或X染色体上的显性);常染色体(或常染色体显性或常染色体隐性)
【知识点】伴性遗传;基因突变的特点及意义;遗传信息的翻译
【解析】【解答】(1)伴性遗传现象可以理解为由于位于性染色体上的基因,在遗传过程中通常和性别相关联的现象。
(2)由分析可知,F2雌蝇(含有两条X染色体,一条来自父方,一条来自母方)基因型为:XBrXBr、XBrXbR,因此F2代中雌蝇的两种表现型应该是棒眼杏红眼和棒眼红眼;然而由于F2代没有野生型雄蝇,雌蝇数目是雄蝇的两倍,此结果说明诱变产生了伴X染色体隐性完全致死基因突变,该突变的基因保存在表现型为雌果蝇的杂合子细胞内。
(3)突变①19号密码子ACU→ACC,突变前后翻译的氨基酸都是苏氨酸,蛋白质未发生改变;突变②4号密码子AAC→AAA,由天冬酰胺变为赖氨酸,蛋白质仅替换一个氨基酸;突变③20号密码子UUA→UGA,由亮氨酸突变为终止翻译,翻译产生的多肽如果不剪切,含有500多个氨基酸。因此上述突变基因可能对应图中的突变③,多肽链明显变短,使胚胎死亡。
(4)染色体上的基因有显性和隐性基因之分。图所示的突变检测技术①优点是除能检测上述伴X染色体隐性完全致死基因突变外,还能检测出果蝇X染色体上的可见基因突变,即X染色体上的显性基因突变以及隐性基因突变;该技术检测的结果需要通过性别进行区分,不能检测出果蝇常染色体上的基因突变,包括常染色体上隐性基因突变和显性基因突变。
【分析】(1)由基于M-5品系的突变检测技术路线可知:
(2)密码子
①密码子:mRNA上3个相邻的碱基决定1个氨基酸。每3个这样的碱基又称为1个密码子.
②特点:专一性
简并性:一种氨基酸对应多个密码子
通用性:生物界公用一套密码子
注: 关于密码子的要点:
①密码子共有64种,终止密码有3种,决定氨基酸的密码子有61种。
②除色氨酸外,其余氨基酸都不止一种密码子。
③AUG既可是起始密码,又能决定甲硫氨酸。
④“一种密码子只能决定一种氨基酸,反之,一种氨基酸可以有一种或多种密码子(密码子的简并性)”。
⑤地球上的所有生物全部共用这套密码子。
19.【答案】(1)果胶酶;2n-1=23
(2)2;1/8
(3)
(4)乙和丙杂交获得F1,取F1中高秆不抗病的植株进行自交,从F2代中选取矮秆抗病植株
【知识点】观察细胞的有丝分裂;基因的分离规律的实质及应用;基因的自由组合规律的实质及应用;杂交育种
【解析】【解答】(1)植物细胞壁的成分为纤维素和果胶,故酶解处理时所用酶为果胶酶;该水稻核型为2n=24,则题图可分为12组染色体,每组含有2条,分析题图可知,乙的11号染色体减少一半,推测其11号染色体少了一条,故的核型为2n-1=23。(2)结合分析可知:甲基因型为AABB,乙缺失一条11号染色体,且表现为矮秆不抗病植株,故其基因型为aaBO,则甲(AABB)与乙(aaBO)杂交,F1基因型为AaBB、AaBO,共2种;F1自交,其中AaBB自交,子代核型均为2n=24,1/2AaBO(产生配子为AB、AO、aB、aO),子代2n-2=22的植株(即缺失两条染色体的植株)所占比例为1/2×1/4(4/16)=1/8。(3)若想让乙aaBO(矮秆不抗病植株)与丙AAbb(高秆抗病植株)通过杂交育种可培育纯合的矮秆抗病水稻(aabb),可通过以下步骤实现:乙和丙杂交获得F1(AaBb),取F1中高秆不抗病的植株进行自交,从F2代中选取矮秆抗病植株(aabb),即为所选育类型。(4)甲植株基因型为AABB,丙植株基因型为AAbb,两者杂交,F1基因型为AABb,F1自交获得F2的遗传图解如下: 。
【分析】分析题图信息可知:甲(高秆不抗病植株)和乙(矮秆不抗病植株)杂交、甲(高秆不抗病植株)和丙(高秆抗病植株)杂交获得的F1均为高秆不抗病,说明高杆对矮杆为显性,不抗病对抗病为显性,据此分析作答。
20.【答案】(1)自然选择
(2)亲缘关系
(3);A2B2;让甲品系(A3A3B3B3)×籼稻(A1A1B1B1)以及甲品系(A3A3B3B3)×粳稻(A2A2B2B2)分别为亲本,得到的F1再杂交A1A3B1B3×A2A3B2B3,筛选出适合的育性正常的籼-粳杂交稻
【知识点】基因的自由组合规律的实质及应用;现代生物进化理论的主要内容
【解析】【解答】(1)籼稻和粳稻是由共同的祖先在不同生态环境中,经过长期的自然选择,进化形成的。(2)籼-粳具有更强的杂种优势,说明两个杂交亲本的亲缘关系差异越大,以上性状的杂种优势越明显。(3)①F1产生的雌雄配子只有一半可育,因此结实率低,如图 。
②由题可知,不能得到基因型A2A2B2B2的籼稻,原因是F1(A1A2B1B2)产生基因型为A2B2的配子不育。
③让甲品系(A3A3B3B3)×籼稻(A1A1B1B1)以及甲品系(A3A3B3B3)×粳稻(A2A2B2B2)分别为亲本,得到的F1再杂交A1A3B1B3×A2A3B2B3,筛选出适合的育性正常的籼-粳杂交稻。
【分析】现代进化理论的基本内容是:①进化是以种群为基本单位,进化的实质是种群的基因频率的改变。②突变和基因重组产生进化的原材料。③自然选择决定生物进化的方向。④隔离导致物种形成。
21.【答案】(1)红眼雌性个体中B基因纯合致死;X
(2)aaXBXb;6;16/27
(3)
【知识点】伴性遗传
【解析】【解答】(1)由以上分析可知,红眼、白眼基因(B、b)位于X染色体上。杂交Ⅱ的亲本为红眼♀(XBXb)和白眼♂(XbY)。F1雌性为1/2XBXb、1/2XbXb,雌配子为1/4XB、3/4Xb,雄性为1/2XBY、1/2XbY,雄配子为1/4XB、1/4Xb、1/2Y,F2雌性中红眼∶白眼=4∶3,雄性中红眼∶白眼=1∶3,可知红眼中XBXB致死。因此杂交Ⅰ(XBXb、XbY)的F1中选择红眼雌雄(XBXb、XBY)交配,后代比例为红眼♀(XBXb)∶红眼♂(XBY)∶白眼♂(XbY)=1∶1∶1,红眼∶白眼为2∶1,不是3∶1。(2)据分析可知,杂交Ⅱ的亲本为黑体红眼♀(aaXBXb)和灰体白眼♂(AAXbY),雌性亲本基因型为aaXBXb。若F2灰体红眼雌雄果蝇随机交配,随机交配的亲本为A_XBXb×A_XBY,A_中有1/3AA、2/3Aa,产生的F3表现型有2×3=6种。随机交配的母本为1/3AAXBXb、2/3AaXBXb,雌配子为2/6AXB、2/6AXb、1/6aXB、1/6aXb,随机交配的父本为1/3AAXBY、2/3AaXBY,雄配子为2/6AXB、1/6aXB、2/6AY、1/6aY,利用棋盘法计算,由于XBXB致死,因此F3中灰体红眼的比例为(4+2+4+2+2+2)/(6×6-4-2-2-1)=16/27。(3)用简便方法验证杂交Ⅱ的F1中的灰体红眼雌雄性个体(AaXBY)的基因型,通常采用将待测个体与隐性个体杂交,即让F1与黑体白眼雌果蝇(aaXbXb)进行杂交。遗传图解的书写要注意:亲本的基因型及表现型、子代的基因型和表现型、配子及各种符号、子代表现型比例,注表现型中应有性别。正确的遗传图解书写如下。
【分析】某昆虫灰体和黑体(A、a)、红眼和白眼(B、b)分别由两对等位基因控制,且两对等位基因均不位于Y染色体上,因此,不用考虑同源区段。从杂交Ⅱ的亲本为黑体♀和灰体♂,F1全为灰体,F2无论雌雄灰体∶黑体=3∶1,可知灰体为显性,且A、a位于常染色体(若位于X的非同源区段,则F1雄性全为黑体,不符合题意)。杂交Ⅱ的亲本为黑体♀(aa)和灰体♂(AA)。同理,根据组合Ⅱ的F2可知,雌性中红眼∶白眼=4∶3,雄性中红眼∶白眼=1∶3,可知控制该对性状的基因位于X染色体上,且杂交Ⅱ的亲本为红眼♀和白眼♂,F1雄性中红眼∶白眼=1∶1,可知红眼为显性,且杂交Ⅱ的亲本为红眼♀(XBXb)和白眼♂(XbY)。
22.【答案】(1)蛋白质的结构
(2)1/16;0
(3)甲、乙、丁;诱变、基因工程、将其与不含甲产物的小麦品种进行杂交
【知识点】基因的自由组合规律的实质及应用;基因、蛋白质、环境与性状的关系;育种方法综合
【解析】【解答】(1)由题意“控制合成不同类型的高分子量麦谷蛋白,从而影响面筋强度”可知,三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制蛋白质的结构直接控制生物体的性状。(2)由分析可知,亲本小偃6号基因型为AAB2B2D1D1,安农91168的基因型为AAB1B1D2D2,则F1的基因型为AAB1B2D1D2,而育种目标中强筋小麦基因型为AAB2B2D2D2,弱筋小麦基因型为AAB1B1D1D1,根据自由组合定律可得出,F2中符合强筋小麦育种目标的种子占1×1/4×1/4=1/16,符合弱筋小麦育种目标的种子占0。(3)为获得纯合弱筋小麦品种(aaB1B1D1D1),能从F2中选择的只能是AAB1B1D1D1,即含有甲、乙和丁产物的小麦种子。由于小麦AAB1B1D1D1没有a基因,要想获得aaB1B1D1D1,则需要通过诱变或基因工程使其获得a基因,或通过将其与不含甲产物的小麦品种进行杂交以获得aa的个体。
【分析】本题联系基因的自由组合定律和育种的相关知识综合考查遗传学相关规律的应用。由题意分析得知,亲本小偃6号基因型为AAB2B2D1D1,安农91168的基因型为AAB1B1D2D2,育种目标中强筋小麦基因型为AAB2B2D2D2,弱筋小麦基因型为aaB1B1D1D1,由此再结合自由组合定律解题即可。
23.【答案】(1)无同源染色体,不能进行正常的减数分裂;42;营养物质含量高、茎秆粗壮
(2)秋水仙素处理
(3)甲、乙两个品种杂交,F1自交,选取F2中既抗病又抗倒伏、且自交后代不发生性状分离的植株
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)杂种一是一粒小麦和斯氏麦草杂交的产物,细胞内含有一粒小麦和斯氏麦草各一个染色体组,所以细胞内不含同源染色体,不能进行正常的减数分裂,因此高度不育;
普通小麦含有6个染色体组,每个染色体组有7条染色体,所以体细胞有42条染色体;
多倍体植株通常茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。(2)人工诱导植物细胞染色体加倍可以采用秋水仙素处理。(3)为获得稳定遗传的抗病抗倒伏的小麦,可以利用杂交育种,设计思路如下:
将甲和乙两品种杂交获得F1,将F1植株进行自交,选取F2中既抗病又抗倒伏的、且自交后代不发生性状分离的植株,即为稳定遗传的抗病又抗倒伏的植株。
【分析】图中是普通小麦育种的过程,一粒小麦和斯氏麦草杂交形成杂种一,经过加倍后形成拟二粒小麦AABB,在和滔氏麦草杂交获得杂种二ABD,然后加倍形成普通小麦AABBDD。
秋水仙素可以抑制纺锤丝的形成,导致细胞染色体数目加倍。
24.【答案】(1)板叶、紫叶、抗病
(2)AABBDD;AabbDd;aabbdd;aaBbdd
(3)花叶绿叶感病、 花叶紫叶感病
(4)AaBbdd
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知显性性状为板叶、紫叶、抗病,甲为显性纯合子AABBDD。(2)已知显性性状为板叶、紫叶、抗病,再根据甲乙丙丁的表现型和杂交结果可推知,甲、乙、丙、丁的基因型分别为AABBDD、AabbDd、aabbdd、aaBbdd。(3)若丙aabbdd和丁aaBbdd杂交,根据自由组合定律,可知子代基因型和表现型为:aabbdd(花叶绿叶感病)和aaBbdd(花叶紫叶感病)。(4)已知杂合子自交分离比为3:1,测交比为1:1,故,X与乙杂交,叶形分离比为3:1,则为Aa×Aa杂交,叶色分离比为1:1,则为Bb×bb杂交,能否抗病分离比为1:1,则为Dd×dd杂交,由于乙的基因型为AabbDd,可知X的基因型为AaBbdd。
【分析】分析题意可知:甲板叶紫叶抗病与丙花叶绿叶感病杂交,子代表现型与甲相同,可知甲为显性纯合子AABBDD,丙为隐性纯合子aabbdd;乙板叶绿叶抗病与丁花叶紫叶感病杂交,后代出现8种表现型,且比例接近1:1:1:1:1:1:1:1,可推测三对等位基因应均为测交。
25.【答案】(1)由两对位于非同源染色体上的隐性基因控制;16;F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合
(2)7∶4∶4;Aabb、aaBb;不能
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据分析可推测,半矮秆突变体S是双隐性纯合子,其遗传机制是由两对位于非同源染色体上的隐性基因控制。杂交组合①的F1为双杂合子,减数分裂可以产生雌雄配子各4种,且比例相等,雌雄配子结合的方式有4×4=16种。F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合。
(2)杂交组合①的F2所有高秆植株基因型及比例分别为1AABB:2AABb:2AaBB:4AaBb:1AAbb:2Aabb:1aaBB:2aaBb,所有高秆植株自交,其中含有一对纯合显性基因的高杆植株1AABB、2AABb、2AaBB、1AAbb、1aaBB,占高杆植株的比例为7/15,其后代全为高秆,记为F3-Ⅰ;AaBb占高杆植株的比例为4/15,自交后代高秆与半矮秆比例≈15∶1 ,和杂交组合①、②的F2基本一致,记为F3-Ⅱ;2Aabb、2aaBb占高杆植株的比例为4/15,自交后代高秆与半矮秆比例和杂交组合③的F2基本一致,记为 F3-Ⅲ,产生F3-Ⅰ、F3-Ⅱ、F3-Ⅲ的高秆植株数量比为7∶4∶4。用产生F3-Ⅲ的高秆植株进行相互杂交试验,不论两对基因位于一对同源染色体上,还是两对同源染色体上,亲本均产生两种数量相等的雌雄配子,子代均出现高杆∶半矮杆=3∶1,因此不能验证基因的自由组合定律。
故答案为:(1) 由两对位于非同源染色体上的隐性基因控制 ; 16 ; F1减数分裂产生配子时,位于同源染色体上的等位基因分离,位于非同源染色体上的非等位基因自由组合 (2) 7∶4∶4 ; Aabb、aaBb ; 不能
【分析】根据实验①和②,正交反交结果相同,说明控制高杆和半矮杆的基因不在性染色体上。又根据实验①②中F2出现高杆∶半矮杆≈15∶1,可知该性状受两对等位基因控制,且两对等位基因不连锁,且半矮杆占F2植株的1/16,应该是双隐性纯合子。
26.【答案】(1)12
(2)Ⅲ;1∶2∶1
(3)(基因)分离;SD
(4)将L7和L12杂交,获得F1后自交;α和Ⅲ
(5)1/80
【知识点】基因的分离规律的实质及应用;基因的自由组合规律的实质及应用
【解析】【解答】(1)据题图可知,水稻为雌雄同株的植物,含有12对同源染色体,故需要对水稻的12条染色体的DNA进行基因测序。
故答案为:12。
(2)实验一:亲本为L12(基因型TDTD)与H(基因型THTH)杂交,故F1的基因型为TDTH,F2的基因型分别为TDTD∶TDTH∶THTH=1∶2∶1,TDTD与亲本L12对应的条带相同,即条带Ⅲ,理论上,F2中产生带型Ⅰ∶Ⅱ∶Ⅲ的个体数量比为1∶2∶1。
故答案为:Ⅲ;1∶2∶1。
(3)实验二:亲本为L7(基因型SDSD)与H(基因型SHSH)杂交,故F1的基因型为SDSH,F2的基因型分别为SDSD∶SDSH∶SHSH=1∶2∶1,理论上,F2中产生带型α:β:γ的个体数量比为1∶2∶1。实际上F2中产生带型α、β、γ的个体数量分别为12、120和108,约为1∶10∶9,带型α即SDSD的个体数量很少,结合题干,可推测无活性的花粉带有SD基因。
故答案为:(基因)分离;SD。
(4)TD/TH、SD/SH分别位于7号和12号染色体上,遵循自由组合定律,故可以设计以下实验:将L7(SDSDTHTH)和L12(SHSHTDTD)杂交,获得F1(SDSHTDTH)后自交,对最终获得的所有F2植株进行分子检测,同时具有带型α和Ⅲ的植株即为目的植株。
故答案为:将L7和L12杂交,获得F1后自交;α和Ⅲ。
(5)实验二中SDSD∶SDSH∶SHSH=12∶120∶108=1∶10∶9,可知花粉中可存活SD=1/9,利用X(基因型为SDSDTDTD)和H(基因型为SHSHTHTH)杂交得到F1,基因型为SDSHTDTH,若F1产生的SD花粉无活性,所占比例与实验二结果相同,雌配子均有活性,F1得到F2,利用棋盘法:
  SDTD SDTH SHTD SHTD
1/9SDTD 1/9 1/9 1/9 1/9
1/9SDTH 1/9 1/9 1/9 1/9
SHTD 1 1 1 1
SHTD 1 1 1 1
F2中基因型为SDSDTDTD的个体所占比例为1/9÷(1/9×8+1×8)=1/80。
故答案为:1/80。
【分析】1、在可存活配子比例计算时,可利用棋盘法,实验二中SDSD∶SDSH∶SHSH=12∶120∶108=1∶10∶9,计算花粉中可存活SD=x,
  SD SH
xSD x x
SH 1 1
则:存在x/2x+2=1/20,计算得到x=1/9,可知花粉中可存活SD=1/9。
2、等位基因遵循分离定律,非同源染色体上的非等位基因遵循自由组合定律,L12的12号染色体上含有耐缺氮基因TD,L7的7号染色体上含有基因SD,SD/SH与TD/TH遵循基因自由组合定律。
27.【答案】(1)基因型不同的两个亲本杂交,F1分别统计,缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,每对相对性状结果都符合测交的结果,说明这2对相对性状的遗传均符合分离定律;缺刻叶和齿皮
(2)甲和乙
(3)1/4
(4)果皮;F2中齿皮∶网皮=48∶16=3∶1,说明受一对等位基因控制
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】 (1)实验①中F1表现型进行逐一性状分析,分别统计两对相对性状的性状分离比,发现缺刻叶∶全缘叶=1∶1,齿皮∶网皮=1∶1,发现每对相对性状结果都符合测交的结果,因而可判断这2对相对性状的遗传均符合分离定律;根据实验②,F1全为缺刻叶齿皮,F2出现不同于亲本F1的性状全缘叶和网皮,可以推测缺刻叶和齿皮对网皮为显性性状。
(2)某小组用基因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮,实验①杂交的F1结果相当于测交结果;而实验②的F2出现9∶3∶3∶1,符合基因自由组合定律的特点,因而F1的基因型为双等位基因杂合子AaBb。分析可知,甲的基因型为Aabb,乙的基因型为aaBb,丙的基因型为AAbb,丁的基因型为aaBB,因而甲乙丙丁中属于杂合体的是甲和乙。
(3)实验②的F2中纯合体基因型为AABB,AAbb,aaBB,aabb,概率均为1/16。 所以实验②的F2中纯合体所占的总比例为1/4。
(4)假如实验②的F2中缺刻叶齿皮∶缺刻叶网皮∶全缘叶齿皮∶全缘叶网皮=45∶15∶3∶1,逐一分析法分析每对相对性状的性状分离比,我们发现,缺刻叶∶全缘叶=60∶4=15∶1,可推测叶形受两对非同源染色体上的等位基因控制。齿皮∶网皮=48∶16=3∶1,可推测果皮受一对等位基因控制。
【分析】 由表格实验数据进行分析。表格里面有两对相对性状,所以需要进行逐一分析。利用注意分析法,分析每对相对性状的性状分离比,通过判断子代性状分离比是否符合自交、测交、杂交的结果,进行写出亲本的基因型。F1全为缺刻叶齿皮,F2出现全缘叶和网皮,可以推测缺刻叶对全缘叶为显性(控制该性状的基因用A和a表示),齿皮对网皮为显性(控制该性状的基因用B和b表示),且F2出现9∶3∶3∶1。
28.【答案】(1)
(2)3:1:3:1;3/16
【知识点】基因的自由组合规律的实质及应用;伴性遗传
【解析】【解答】(1)解∶黄体雌果蝇(XaXa)的一个Xa,来自父本,另一个Xa来自母本。即需要亲本均有Xa,而亲本灰体纯合子雌果蝇(XAXA)没有Xa,所以需要先用灰体纯合子雌果蝇(XAXA)和黄体雄果蝇(XaY)杂交,得到F1代XAXa,再用F1代(XAXa)与亲本黄体雄果蝇(XaY)杂交,即可得到黄体雌果蝇(XaXa).
遗传图解如下:
(2)用黄体残翅雌果蝇与灰体长翅雄果蜂(XAYBB)作为亲本杂交得到F1的过程如下:
让F1相互交配得到F2的过程可以用拆分组合法进行快速计算:
XAXa×XaY→有1/2的概率产生灰体果蝇,有1/2的概率产生黄体果蝇
Bb×Bb→有3/4的概率产生长翅果蝇,有1/4的概率产生残翅果蝇
灰体长翅=1/2×3/4=3/8:灰体残翅=1/2×1/4=1/8;黄体长翅=1/2×3/4=3/8;黄体残翅=1/2×1/4=1/8。
所以,灰体长翅:灰体残翅:黄体长翅:黄体残翅=3:1:3:1。其中灰体长翅的概率为3/8。
在灰体长翅的表现型中,有1/2的个体是雌性,所以F2中灰体长翅雌蝇出现的概率为3/8×1/2=3/16。
【分析】 1、先确定亲本基因型为:XAXA 和XaY,F1由亲本的雌雄配子随机结合产生。所以F1基因型为: XAXa 和 XAY,由于子代杂交不能直接得到黄体雌果蝇(XaXa),两条X染色体一条来自父方,一条来自母方),所以可以考虑回交法。
2、 杂交得到F1的基因型为BbXAXa和BbXaY。逐一分析法算出子二代灰体长翅:灰体残翅:黄体长翅:黄体残翅=(3:1)(1:1)=多少 ,F2中“灰体”“长翅”“雌蝇”出现的概率为多少。
29.【答案】(1)甲;雌雄同株
(2)是;AAtsts;抗螟雌雄同株∶抗螟雌株=1∶1
(3)不位于;抗螟性状与性别性状间是自由组合的,因此A基因不位于Ts、ts基因所在的2号染色体上;含A基因的雄配子不育;1/2;1/6
【知识点】基因的自由组合规律的实质及应用
【解析】【解答】(1)根据题意和实验结果可知,实验一中玉米雌雄同株M的基因型为TsTs,为雌雄同株,而甲品系的基因型为tsts,为雌株,只能做母本,根据以上分析可知,实验二中F1的OOTsts非抗螟植株基因型为OOTsts,因此为雌雄同株。(2)根据以上分析可知,实验一的F1AOTsts抗螟雌雄同株自交,后代F2为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,符合基因分离定律的结果,说明实验一中基因A与基因ts插入到同一条染色体上,后代中抗螟雌株的基因型为AAtsts,将F2中AAtsts抗螟雌株与AOTsts抗螟雌雄同株进行杂交,AAtsts抗螟雌株只产生一种配子Ats,AOTsts抗螟雌雄同株作为父本产生两种配子,即Ats、OTs,则后代为AAtsts抗螟雌株:AOTsts抗螟雌雄同株=1:1。(3)根据以上分析可知,实验二中选取F1AOTsts抗螟雌雄同株矮株自交,后代中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=1:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,故乙中基因A不位于基因ts的2号染色体上,且F2中抗螟矮株所占比例小于理论值,说明A基因除导致植株矮小外,还影响了F1的繁殖,根据实验结果可知,在实验二的F1中,后代AOTsts抗螟雌雄同株矮株:OOTsts非抗螟雌雄同株正常株高=1:1,则说明含A基因的卵细胞发育正常,而F2中抗螟矮株所占比例小于理论值,故推测最可能是F1产生的含基因A的雄配子不育导致后代中雄配子只产生了OTs 和Ots两种,才导致F2中抗螟矮株所占比例小于理论值的现象。根据以上分析可知,实验二的F2中雌雄同株:雌株=3:1,故F2中抗螟矮植株中ts的基因频率不变,仍然为1/2;根据以上分析可知,F2中抗螟矮株的基因型雌雄同株为1/3AOTsTs、2/3AOTsts,雌株基因型为AOtsts,由于F1含基因A的雄配子不育,则1/3AOTsTs、2/3AOTsts产生的雄配子为2/3OTs、1/3Ots,AOtsts产生的雌配子为1/2Ats、1/2Ots,故雌株上收获的籽粒发育成的后代中抗螟矮植株雌株AOtsts所占比例为1/2×1/3=1/6。
【分析】根据题意可知,基因Ts存在时表现为雌雄同株,当基因突变为ts后表现为雌株,玉米雌雄同株M的基因型为TsTs,则实验中品系M作为父本,品系甲和乙的基因型为tsts,则作为母本。由于基因A只有一个插入到玉米植株中,因此该玉米相当于杂合子,可以看做为AO,没有插入基因A的植株基因型看做为OO,则分析实验如下:
实验一:品系M(OOTsTs)×甲(AOtsts)→F1AOTsts抗螟雌雄同株1:OOTsts非抗螟雌雄同株1;让F1AOTsts抗螟雌雄同株自交,若基因A插入到ts所在的一条染色体上,则F1AOTsts抗螟雌雄同株产生的配子为Ats、OTs,那么后代为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,该假设与题意相符合,因此说明实验一中基因A与基因ts插入到同一条染色体上。
实验二:品系M(OOTsTs)×乙(AOtsts)→F1AOTsts抗螟雌雄同株矮株1:OOTsts非抗螟雌雄同株正常株高1,选取F1AOTsts抗螟雌雄同株矮株自交,后代中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=3:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,说明基因A与基因ts没有插入到同一条染色体上,则基因A与基因ts位于非同源染色体上,符合基因自由组合定律,其中雌雄同株:雌株=3:1,但是抗螟:非抗螟=1:1不符合理论结果3:1,说明有致死情况出现。
30.【答案】(1)眼色性状与性别有关,翅型性状与性别无关
(2)12;0;3/8
(3)XbXb;XbXb、Y、Xb、XbY;红眼雄性
【知识点】伴性遗传
【解析】【解答】(1)据图可知,无论正交还是反交,长翅性状在雌雄中都无差别,而眼色在雄性中结果不同,故通过实验①和②,主要是验证眼色性状的遗传与性别有关,而翅形性状的遗传与性别无关。(2)据分析可知,实验①中F1分别为AaXBY、AaXBXb,雌雄相互交配所得F2的基因型种类为3×4=12种。F2的雌性个体中不会出现XbXb个体,故表现甲性状即残翅白眼的概率是0;雄性个体中表现乙性状即长翅红眼的概率为3/4×1/2=3/8。
据分析可知,只考虑眼色,实验②中F1分别为XBXb(长红♀)、XbY(长白♂),因此:
I、若F1中出现的长翅白眼♀果蝇是基因突变导致的,则其基因型应为XbXb;
II、若F1中出现的长翅白眼♀果蝇是亲本减数分裂过程中X染色体未分离导致的,则其基因型应为XbXbY,该果蝇经减数分裂产生的配子有XbXb、Y、Xb、XbY。
III、若要鉴别F1中出现的长翅白眼♀果蝇基因型是XbXb还是XbXbY,则应选择某一雄性果蝇与之杂交;若选择XbY,则子代无论雌雄都表现为白色,因此,应该用表现型为红色的雄蝇进行杂交。
【分析】据题图分析可知,实验①和②互为正交和反交,实验①中F1分别为AaXBY(长翅红眼♂)、AaXBXb(长翅红眼♀),实验②中正常情况下F1分别为AaXbY(长翅白眼♂)、AaXBXb(长翅红眼♀),据此分析。
1 / 1

展开更多......

收起↑

资源列表