资源简介 人教A版(2019)必修第二册 9.2 用样本估计总体 同步练习一、单选题1.某赛季甲乙两名篮球运动员在若干场比赛中的得分情况如下:甲:21、22、23、25、28、29、30、30;乙:14、16、23、26、28、30、33、38.则下列描述合理的是( )A.甲队员每场比赛得分的平均值大 B.乙队员每场比赛得分的平均值大C.甲队员比赛成绩比较稳定 D.乙队员比赛成绩比较稳定2.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A.甲的化学成绩领先年级平均分最多.B.甲有2个科目的成绩低于年级平均分.C.甲的成绩最好的前两个科目是化学和地理.D.对甲而言,物理、化学、地理是比较理想的一种选科结果.3.根据气象学上的标准,连续天的日平均气温低于即为入冬.现有甲、乙、丙、丁四地连续天的日平均温度的记录数据(记录数据都是正整数):①甲地:个数据的中位数为,众数为;②乙地:个数据的平均数为,极差为;③丙地:个数据的平均数为,中位数为;④丁地:个数据的平均数为,方差小于.则肯定进入冬季的地区是( )A.甲地 B.乙地 C.丙地 D.丁地4.甲 乙 丙 丁四位同学在高中学业水平模拟测试中的成绩分布分别为下面的频率分布直方图,估计他们的中位数和平均分(同一组中的数据用该组区间的中点值为代表),正确的是( )A.乙的中位数最高,甲的平均分最高B.甲的中位数最高,丙的平均分最高C.丁的中位数最高,乙的平均分最高D.丁的中位数最高,丁的平均分最高5.年月日,习近平总书记在学校考察调研时提出“文明其精神,野蛮其体魄”,“野蛮其体魄”就是强生健体,青少年的体质状况不仅关乎个人成长和家庭幸福,也关乎国家未来和民族希望,为落实《国家学生体质健康标准》达标测试工作,全面提升学生的体质健康水平,某校在高二年级随机抽取部分男生,测试立定跳远项目,依据测试数据绘制了如图所示的频率分布直方图.已知立定跳远以上成绩为及格,以上成绩为优秀,根据图中的样本数据估计该校高二年级男生立定跳远项目的及格率和优秀率分别是( )A.72.5%,5% B.78.75%,10% C.72.5%,10% D.78.75%,5%6.为了增强大学生的环保意识,加强对“碳中和”概念的宣传,某公益组织分别在两所大学随机选取10名学生进行环保问题测试(满分100分),这20名学生得分的折线图如图所示,关于这两所学校被选取的学生的得分,下列结论错误的是( )A.校学生分数的平均分大于校学生分数的平均分B.校学生分数的众数大于校学生分数的众数C.校学生分数的中位数等于校学生分数的中位数D.校学生分数的方差大于校学生分数的方7.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,后从事互联网行业岗位分布条形图,则下列结论错误的是( )注:后指年及以后出生,后指年之间出生,前指年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数后一定比前多D.互联网行业中从事技术岗位的人数后一定比后多8.为落实《国家学生体质健康标准》达标测试工作,全面提升学生的体质健康水平,某校高二年级体育组教师在高二年级随机抽取部分男生,测试了立定跳远项目,依据测试数据绘制了如图所示的频率直方图.已知立定跳远以上成绩为及格,以上成绩为优秀,根据图中的数据估计该校高二年级男生立定跳远项目的优秀率和图中的分别是是( )A.3%,0.010 B.3%,0.012 C.6%,0.010 D.6%,0.0129.已知数据的平均数为,方差为,则,,…,的平均数和方差分别为( )A.和 B.和C.和 D.和10.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下扇形统计图:则下面结论中不正确的是( )A.新农村建设后,种植收入有增加B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入不变D.新农村建设后,种植收入在经济收入中所占比重大幅下降11.下表为12名毕业生的起始月薪:毕业生 起始月薪 毕业生 起始月薪1 2850 7 28902 2950 8 31303 3050 9 29404 2880 10 33255 2755 11 29206 2710 12 2880根据表中所给的数据计算第85百分位数为( )A.2710 B.2890 C.3130 D.294012.某学校组建了演讲,舞蹈 航模 合唱,机器人五个社团,全校名学生每人都参加且只参加其中一个社团,校团委从这名学生中随机选取部分学生进行调查,并将调查结果绘制了如下不完整的两个统计图:则选取的学生中参加机器人社团的学生数为( )A. B. C. D.13.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,50百分位数为b,则有( )A.a=13.7,b=15.5 B.a=14,b=15C.a=12,b=15.5 D.a=14.7,b=1514.有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道13名同学成绩的( )A.平均数 B.众数 C.中位数 D.方差15.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间二、填空题16.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______.17.某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读情况,现采用分层随机抽样的方法,从中抽取了100名学生,先统计了他们的课外阅读时间,然后按初中学生和高中学生分为两组,再将每组学生的阅读时间(单位:h)分为5组:, ,,, ,并分别加以统计,得到如图所示的频率分布直方图,试估计该校所有学生中,阅读时间不小于30h的学生人数为 _______18.对某商店一个月内每天的顾客人数进行了统计,得到的样本数据如下:12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,则该样本的中位数、众数、极差分别为____________,____________,____________.三、解答题19.某服装公司计划今年夏天在其下属实体店销售一男款衬衫,上市之前拟在该公司的线上旗舰店进行连续20天的试销,定价为260元/件.试销结束后统计得到该线上专营店这20天的日销售量(单位:件)的数据如图.(1)若该线上专营店试销期间每件衬衫的进价为200元,求试销期间该衬衫日销售总利润高于9500元的频率.(2)试销结束后,这款衬衫正式在实体店销售,每件衬衫定价为360元,但公司对实体店经销商不零售,只提供衬衫的整箱批发,大箱每箱有70件,批发价为160元/件;小箱每箱有60件,批发价为165元/件.某实体店决定每天批发大小相同的2箱衬衫,根据公司规定,当天没销售出的衬衫按批发价的8折转给另一家实体店.根据往年的销售经验,该实体店的销售量为线上专营店销售量的,以线上专营店这20天的试销量估计该实体店连续20天的销售量.以该实体店连续20天销售该款衬衫的总利润作为决策,试问该实体店每天应该批发2大箱衬衫还是2小箱衬衫?20.某地区全体九年级的3000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3000名学生的平均分 合格率(60或60分以上均属合格).21.在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩 防护服 消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:,,,…,,得到如下频率分布直方图.(1)求出直方图中的值;(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01).22.在2021年高考体检中,某校随机选取了20名男生,测得其身高数据如下(单位)序号 1 2 3 4 5 6 7 8 9 10身高 168 167 165 186 178 158序号 11 12 13 14 15 16 17 18 19 20身高 166 178 175 169 172 177 182 169 168 176由于统计时出现了失误,导致号的身高数据丢失,先用字母表示,但是已知这4个人的身高都在之间(单位,且这20组身高数据的平均数为,标准差为(1)为了更好地研究本校男生的身高数据,决定用这20个数据中在区间以内的数据,重新计算其平均数与方差,据此估计,高校男生身高的平均值与方差分别为多少(方差保留两位小数)?(2)使用统计学的观点说明,以内的数据与原数据对比,有什么特点(主要用平均数与方差进行说明)?(参考公式)试卷第1页,共3页试卷第1页,共3页参考答案:1.C计算均值,再根据数据的集中度判断.【详解】甲的均值为,乙的均值为,两者均值相同,甲的方差为乙的方差为,甲的方差小于乙的方差,甲稳定.故选:C.2.A根据雷达图,对四个选项逐个分析,可选出答案.【详解】根据雷达图,可知物理成绩领先年级平均分最多,即A错误;甲的政治、历史两个科目的成绩低于年级平均分,即B正确;甲的成绩最好的前两个科目是化学和地理,即C正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,即D正确.故选:A.本题考查统计知识,涉及到雷达图的识别及应用,考查学生识图能力、数据分析能力,是一道容易题.3.D根据各地连续天的日平均温度的记录数据,通过特殊值法,可排除ABC选项;根据方差的计算公式,结合丁地的气温数据,可判断D正确.【详解】①甲地:个数据的中位数为,众数为;则这个数据可能为,,,,;即连续天的日平均气温不是都低于,所以甲地不一定入冬,故A错;②乙地:个数据的平均数为,极差为;则这个数据可能为,,,,;即连续天的日平均气温不是都低于,所以乙地不一定入冬,故B错;③丙地:个数据的平均数为,中位数为;则这个数据可能为,,,,;即连续天的日平均气温不是都低于,所以丙地不一定入冬,故C错;④丁地:个数据的平均数为,方差小于.如有数据大于等于,则方差必大于等于,不满足题意,因此丁地这续天的日平均气温都低于,所以丁地一定入冬,故D正确;故选:D.4.D由频率分布直方图易得四位同学的中位数,可比较出大小,再分别计算出平均数进行比较,可得选项.【详解】甲 乙 丙三位同学的成绩中位数都是80,丁的成绩中位数大于80;甲的平均成绩为,乙的平均成绩为,丙的平均成绩为,丁的平均成绩为故选:D.5.B计算以上的矩形的面积之和,可得出该校高二年级男生立定跳远项目的及格率,计算以上的矩形的面积之和,可得出该校高二年级男生立定跳远项目的优秀率.【详解】由题意可知,该校高二年级男生立定跳远项目的及格率为,该校高二年级男生立定跳远项目的优秀率为.故选:B.6.C给定的折线图,理出两校学生测试分数,再逐一分析各个选项即可判断作答.【详解】由图知,校学生测试分数从小到大依次为:50,51,60,63,65,69,74,76,76,78,校学生测试分数从小到大依次为:53,55,56,61,63,64,65,65,67,73,校学生分数的平均分,校学生分数的平均分,A正确;校学生分数的众数为76,校学生分数的众数为65,B正确;校学生分数的中位数为67,校学生分数的中位数为63.5,C错误;校学生分数分布较为分散,相对于波动较大,校学生分数分布较为集中,相对于波动较小,即校学生分数的方差大于校学生分数的方差,D正确.故选:C7.D根据整个互联网行业从业者年龄分布饼状图、后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.【详解】对于选项A,因为互联网行业从业人员中,“后”占比为,其中从事技术和运营岗位的人数占的比分别为和,则“后”从事技术和运营岗位的人数占总人数的.“前”和“后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“后”占比为,其中从事技术岗位的人数占的比为,则“后”从事技术岗位的人数占总人数的.“前”和“后”中必然也有从事技术岗位的人,则总的占比一定超过,故选项B正确;对于选项C,“后”从事运营岗位的人数占总人数的比为,大于“前”的总人数所占比,故选项C正确;选项D,“后”从事技术岗位的人数占总人数的,“后”的总人数所占比为,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“后”事互联网行业岗位的占比乘以“后”所占总人数的占比,再对各选项逐一分析即可.8.C根据频率分布直方图可直接求出优秀率,根据频率之和为,可求出.【详解】由频率分布直方图可得,优秀率为;由,解得;故选:C.9.B根据平均数和方差的性质直接求解.【详解】因为数据的平均数为,方差为,所以,,…,的平均数和方差分别为和故选:B10.C根据扇形统计图,逐项判断,即可得出结果.【详解】因为该地区经过一年的新农村建设,农村的经济收入增加了一倍,不妨设建设前的经济收入为,则建设后的经济收入为,A选项,从扇形统计图中可以看到,新农村建设后,种植收入比建设前增加,故A正确;B选项,新农村建设后,其他收入比建设前增加,即增加了一倍以上,故B正确;C选项,养殖收入的比重在新农村建设前与建设后相同,但建设后总收入为之前的2倍,所以建设后的养殖收入也是建设前的2倍,故C错误;D选项,新农村建设后,种植收入在经济收入中所占比重由建设前的降为,故D正确;故选:C.11.C将数据按从小到大顺序排列,结合百分位数概念计算即可.【详解】将数据从小到大排列:2710 2755 2850 2880 2880 28902920 2940 2950 3050 3130 3325,故表中所给的数据计算得第85百分位数为第11位数:3130.故选:C12.B根据演讲的人数,求得本次调查的人数为人,进而求得机器人所占的比例,即可求解.【详解】由题意,本次调查的人数为人,其中合唱比赛所占的比例为,所以机器人所占的比例为,所以选取的学生中参加机器人社团的学生数为人.故选:B.13.D可直接求出平均数,然后对这一列数排列,从而可求出50百分位数【详解】把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=×(10+12+14+14+15+15+16+17+17+17)=14.7,因为50×=5,所以这10名工人一小时内生产零件的50百分位数为b==15.故选:D14.C成绩由小到大排列,能否进入决赛就看小明成绩排名是否在第7以前即可得解.【详解】把13名同学成绩按由大到小排列,取成绩靠前的6个成绩进入决赛,即最中间一个数之前的6个成绩进入决赛,13个成绩按由大到小排列时,最中间一个数即是中位数.故选:C15.C根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.16.1根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.17.870由分层抽样求出初中高中各被抽取的人数,再由频率分布直方图计算出频率,然后计算阅读时间不小于30h的人数,相加可得.【详解】由分层随机抽样,知抽取的初中生有60名,高中生有40名.因为初中学生中阅读时间不小于30h的频率为,所以该校所有的初中学生中,阅读时间不小于30h的学生人数约为,同理,高中学生中阅读时间不小于30h的频率为,故该校所有的高中学生中,阅读时间不小于30h的学生人数约为.所以该校所有学生中,阅读时间不小于30h的学生人数约为.故答案为:870.本题考查分层抽样,考查频率分布直方图,属于基础题.18. 46 45 56利用中位数、众数、极差的定义求解即可【详解】一共有30个数据,中位数为第15个数和第16个数的平均数,即中位数为,这30个数中出现次数最多的为45出现了3次,所以众数为45,极差为,故答案为:46,45,5619.(1);(2)该实体店应该每天批发2大箱衬衫.(1)先利用不等式性质求得要使得日销售总利润高于9500元时日销售衬衫的件数的取值范围,然后根据频数分布图计算对应的天数,从而求得响应频率;.(2)由题可知,该实体店20天的日销售量情况为3天日销售量为48件,6天日销售量为80件,7天日销售量为128件,4天日销售量为160件.分别就选择批发2小箱时和2大箱时各种情况下的日利润列举计算,并求得相应的总利润,进行比较大小即可做出判断.【详解】解:(1)因为试销期间每件衬衫的利润为元,所以要使得日销售总利润高于9500元,则日销售衬衫的件数大于,故所求频率为.(2)由题可知,该实体店20天的日销售量情况为3天日销售量为48件,6天日销售量为80件,7天日销售量为128件,4天日销售量为160件.若选择批发2小箱,则批发成本为元,当日销售量为48件时,当日利润为元;当日销售量为80件时,当日利润为;当日销量为128件或160件时,当日利润为元.所以这20天销售这款衬衫的总利润为元.若选择批发2大箱,则批发成本为元,当日销售量为48件时,当日利润为元;当日销售量为80件时,当日利润为元;当日销量为128件时,当日利润为元.当日销售量为160件时,当日利润为元.所以这20天销售这款衬衫的总利润为元.因为,所以该实体店应该每天批发2大箱衬衫.20.平均分是79.4分,合格率是96%.利用平均数公式计算可得样本的平均分,进而得出合格率.【详解】平均分为(分),(12+30+18+24+12)÷100×100%=96%,所以样本的平均分是79.4分,合格率是96%,由此来估计总体3000名学生的平均分是79.4分,合格率是96%.21.(1);(2)平均数为71,中位数为73.33.(1)利用频率之和等于1进行求解即可(2)利用平均数和中位数的计算公式进行求解即可【详解】(1)由,得.(2)平均数为,设中位数为,则,得.故可以估计该企业所生产口罩的质量指标值的平均数为71,中位数为73.33.22.(1)平均数为,方差为;(2)答案见解析.(1)由题先算出,故需剔除158和,新数据的平均数为:,方差为:,化简计算即可;(2)由新数据样本数占总数据的90%可知,样本数据较集中,平均数无变化,即平均身高无变化,方差变小,即数据更集中,更具代表性【详解】(1)由条件可得区间,在区间外的数据有158和剔除后,剩余18个数据,其平均数为:,方差为:,,(2)以内的数据与原数据对比,有以下特点:①以内的数据的的占总数据个数的,说明该校左右的男生身高都在区间以内;②以内的数据与原数据对比,平均数没变,即平均身高没有变化;③原数据的方差为49,而以内的数据的方差约为32.67,方差变小了,说明剔除两个极端数据后,数据更趋于集中,更具有代表性.答案第1页,共2页答案第1页,共2页 展开更多...... 收起↑ 资源预览