资源简介 中小学教育资源及组卷应用平台江苏省常州市五年(2018-2022)中考数学真题题型知识点汇编:04解答题基础题一.实数的运算(共2小题)1.(2021 常州)计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.2.(2018 常州)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.二.平方差公式(共2小题)3.(2022 常州)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).4.(2019 常州)计算:(1)π0+()﹣1﹣()2;(2)(x﹣1)(x+1)﹣x(x﹣1).三.解分式方程(共1小题)5.(2020 常州)解方程和不等式组:(1)+=2;(2).四.一元一次不等式的应用(共1小题)6.(2020 常州)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?五.解一元一次不等式组(共3小题)7.(2022 常州)解不等式组,并把解集在数轴上表示出来.8.(2021 常州)解方程组和不等式组:(1);(2).9.(2019 常州)解不等式组并把解集在数轴上表示出来.六.反比例函数与一次函数的交点问题(共2小题)10.(2022 常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.11.(2021 常州)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图象交于点C,连接OC.已知点A(﹣4,0),AB=2BC.(1)求b、k的值;(2)求△AOC的面积.七.翻折变换(折叠问题)(共1小题)12.(2018 常州)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是 .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.八.旋转的性质(共1小题)13.(2022 常州)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为 ;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.九.条形统计图(共3小题)14.(2022 常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是 ,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.15.(2021 常州)为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.(1)本次调查的样本容量是 ;(2)补全条形统计图;(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.16.(2020 常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.一十.众数(共1小题)17.(2019 常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是 ,这组数据的众数为 元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.一十一.列表法与树状图法(共2小题)18.(2022 常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是 ;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.19.(2020 常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是 ;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.参考答案与试题解析一.实数的运算(共2小题)1.(2021 常州)计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.【解答】解:原式=2﹣1﹣1+=.2.(2018 常州)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.二.平方差公式(共2小题)3.(2022 常州)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).【解答】解:(1)原式=2﹣1+=;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.4.(2019 常州)计算:(1)π0+()﹣1﹣()2;(2)(x﹣1)(x+1)﹣x(x﹣1).【解答】解:(1)π0+()﹣1﹣()2=1+2﹣3=0;(2)(x﹣1)(x+1)﹣x(x﹣1)=x2﹣1﹣x2+x=x﹣1;三.解分式方程(共1小题)5.(2020 常州)解方程和不等式组:(1)+=2;(2).【解答】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.四.一元一次不等式的应用(共1小题)6.(2020 常州)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.五.解一元一次不等式组(共3小题)7.(2022 常州)解不等式组,并把解集在数轴上表示出来.【解答】解:由5x﹣10≤0,得:x≤2,由x+3>﹣2x,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:8.(2021 常州)解方程组和不等式组:(1);(2).【解答】解:(1),①+②,得:3x=3,解得x=1,将x=1代入①,得:1+y=0,解得y=﹣1,则方程组的解为;(2)解不等式3x+6>0,得:x>﹣2,解不等式x﹣2<﹣x,得:x<1,则不等式组的解集为﹣2<x<1.9.(2019 常州)解不等式组并把解集在数轴上表示出来.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式3x﹣8≤﹣x,得:x≤2,∴不等式组的解集为﹣1<x≤2,将解集表示在数轴上如下:六.反比例函数与一次函数的交点问题(共2小题)10.(2022 常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.【解答】解:(1)∵一次函数y=2x+b的图象过点B(0,4),∴b=4,∴一次函数为y=2x+4,∵OB=4,△BOC的面积是2.∴OB xC=2,即=2,∴xC=1,把x=1代入y=2x+4得,y=6,∴C(1,6),∵点C在反比例函数y=(x>0)的图象上,∴k=1×6=6;(2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∴S△AOC==6.11.(2021 常州)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图象交于点C,连接OC.已知点A(﹣4,0),AB=2BC.(1)求b、k的值;(2)求△AOC的面积.【解答】解:(1)作CD⊥y轴于D,则△ABO∽△CBD,∴,∵AB=2BC,∴AO=2CD,∵点A(﹣4,0),∴OA=4,∴CD=2,∵点A(﹣4,0)在一次函数y=x+b的图象上,∴b=2,∴,当x=2时,y=3,∴C(2,3),∵点C在反比例函数y=(x>0)的图象上,∴k=2×3=6;(2)作CE⊥x轴于E,S△AOC=.七.翻折变换(折叠问题)(共1小题)12.(2018 常州)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是 BC垂直平分AD .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ABC=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,OA=OD∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC垂直平分AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.八.旋转的性质(共1小题)13.(2022 常州)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为 (3,37°) ;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.【解答】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB﹣∠AOA′=74°﹣37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.九.条形统计图(共3小题)14.(2022 常州)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是 100 ,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.【解答】解:(1)20÷20%=100,所以本次调查的样本容量为100;C类户数为100×25%=25(户),B类户数为100﹣20﹣25﹣15=40(户),补全条形统计图为:故答案为:100;(2)调查小组的估计合理.理由如下:因为1500×=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.15.(2021 常州)为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.(1)本次调查的样本容量是 100 ;(2)补全条形统计图;(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.【解答】解:(1)55÷55%=100,故答案为:100;(2)完全了解的人数为:100×30%=30(人),较少了解的人数为:100﹣30﹣55﹣5=10(人),补全条形统计图如下:(3)估计该小区对垃圾分类知识“完全了解”的居民人数为:2000×30%=600(人),答:估计该小区对垃圾分类知识“完全了解”的居民人数为600人.16.(2020 常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是 100 ;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.一十.众数(共1小题)17.(2019 常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是 30 ,这组数据的众数为 10 元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.【解答】解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).一十一.列表法与树状图法(共2小题)18.(2022 常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是 ;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.【解答】解:(1)从盒子A中任意抽出1支签,抽到①的概率是,故答案为:;(2)列表如下:① ②③ ①③ ②③④ ①④ ②④⑤ ①⑤ ②⑤由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为=.19.(2020 常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是 ;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,中小学教育资源及组卷应用平台∴P(和为奇数)==.21世纪教育网(www.21cnjy.com)21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览