资源简介 第10讲 与角度有关的计算知识点1:角的概念以及度分秒的换算1.有公共端点的两条射线组成的图形叫做角,这个公共端点就是角的顶点,这两条射线是角的两条边。角通常用三个字母及符号“∠”来表示,在不引起混淆的情况下,角还可以用它的顶点字母来表示.2.用量角器测量角度时一定要做到两对齐:量角器的中心和角的顶点对齐、 量角器的0刻度线和角的一条边对齐.3.角的常用度量单位是度、分、秒.1°的 为1分,记作1′,即1°=60′.1′的 为1秒,记作1″,即1′=60″.【典例】1.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是( )A. B. C. D.【方法总结】所有的角都可以用顶点处的字母和表示两条射线的另外两个字母来表示;当某个角的顶点处只有1个角(两条射线)时,该角可以用“∠”和顶点字母来表示。【随堂练习】1.(2018 河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50° 2.(2018秋 云安区期末) 度 分 秒.3.(2018秋 顺义区期末) .4.(2017秋 榆树市期末)计算:90°﹣(36°31′52″+12°22′14″). 5.(2017秋 兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为______ °,分针每分钟转动的角度为____°;(2)8点整,钟面角∠AOB=_____°,钟面角与此相等的整点还有:_____点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数. 知识点2:角平分线的定义1.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。2.尺规作图,作∠AOB的平分线的方法:(1)以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。(2)分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。(3)作射线OP。射线OP即为所求。【典例】1.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是________【方法总结】本题已知角的数量关系∠AOC=4∠AOB,以及OD、OM是角平分线,但不知道角∠AOC与∠AOB的位置关系,无法直接得出结论。所以作图分两种情况,即:∠AOB在∠AOC内部和∠AOB在∠AOC外部,结合图形根据已知条件求出未知角的度数。【随堂练习】1.(2018秋 黄埔区期末)如图,为直线上的一点,,平分,①求的度数;②是的平分线吗?为什么?2.(2018秋 织金县期末)如图,已知,,平分,平分,求和的度数.3.(2018秋 龙湖区期末)填空,完成下列说理过程如图,点,,在同一条直线上,,分别平分和.(1)求的度数;(2)如果,求的度数.解:(1)如图,因为是的平分线,所以.因为是的平分线,所以 .所以 .(2)由(1)可知 .所以 .4.(2018秋 蓬江区期末)如图,已知,平分,且,求的度数.5.(2018秋 江夏区期末)如图,已知是直角,平分,平分.(1)若,求的度数;(2)若,此时能否求出的大小,若能请求出它的数值;若不能,请用含的代数式来表示.知识点3:余角和补角1.如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C , ∠A与∠C互余;余角的性质:同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。2.如果两个角的和是一个平角,那么这两个角互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C , ∠A与∠C互补;补角的性质:同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则:∠C=∠B。【典例】1.如图,点A、B、O在同一条直线上,∠COE和∠BOE互余,射线OF和OD分别平分∠COE和∠BOE,则∠AOF+∠BOD与∠DOF的关系是__________【方法总结】题中给出了互余的两个角,隐含了一对互补的角。通过一对互余角的角平分线求出平分后小角组成的大角为45°,利用平角是180°,求出剩余角度之和是135°,进而求出二者之间的比例关系。【随堂练习】1.(2018秋 织金县期末)阅读解题过程,回答问题.如图,在内,和都是直角,且,求的度数.解:过点作射线,使点,,在同一直线上.因为,,所以,所以(1)如果,那么等于多少度?如果,那么等于多少度?(2)如果,,求的度数.2.(2018秋 阳东区期末)如图,射线、、、分别表示从点出发北、东、南、西四个方向,点在点的北偏东方向,点在点的北偏西方向.(1)画出射线,若与互余,请在图1或备用图中画出;(2)若是的角平分线,直接写出的度数(不需要计算过程).3.(2018秋 沧州期末)如图1,点为直线上一点,过点作射线,使.将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分,问:直线是否平分?请说明理由;(2)将图1中的三角板绕点按每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为多少?(3)将图1中的三角板绕点顺时针旋转至图3,使在的内部,请探究:与之间的数量关系,并说明理由.4.(2018秋 临河区期末)一个角的补角比它的余角的3倍小,求这个角的度数.5.(2019春 密山市期末)把一副三角板的直角顶点重叠在一起.(1)如图(1),当平分时,则与的和是多少度?(2)如图(2),当不平分时,则和的和是多少度?(3)当的余角的4倍等于,则多少度?6.(2017秋 濉溪县期末)如图,已知为上一点,与互补,,分别为,的平分线,若,试求与的度数.知识点4:对顶角和邻补角1.如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角。对顶角的性质:对顶角相等。2.两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角。邻补角的性质:(1)一个角与它的邻补角的和等于180°;(2)如果两个角互为邻补角,那么它们的角平分线互相垂直。【典例】1.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF=______【方法总结】解角度问题常设某一角度为未知数,把其他关联角用未知数表示出来,根据已知条件间建立关于该未知数的方程,解方程即可求得未知数的值,从而得到所求角的度数。用代数方法解几何问题是常用方法之一。【随堂练习】1.(2019春 新余期末)如图所示,已知直线和相交于点,平分,,.(1)求的度数.(2)写出的余角.2.(2019春 洛南县期末)如图,直线、相交于点,,.(1)若,求的度数;(2)若,求和.3.(2018秋 北碚区期末)已知如图,直线、相交于点,.(1)若,求的度数;(2)若,求的度数;(3)在(2)的条件下,过点作,请直接写出的度数.4.(2018秋 慈溪市期末)如图,直线、相交于点.已知,把分成两个角,且.(1)求的度数;(2)若平分,问:是的平分线吗?试说明理由.5.(2019春 南关区校级月考)如图,已知直线和相交于点,平分,是直角,.(1)求的度数;(2)求的余角.6.(2018春 开鲁县期中)如图,直线、相交于点,把分成两部分;(1)直接写出图中的对顶角为 ,的邻补角为 ;(2)若,且,求的度数.综合集训1.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=_______°.2.如图,直线AB、CD相交于点O,∠AOD=140°,∠COE=20°,则∠BOE= ________°.3.一个角的补角为158°12′,那么这个角的余角等于__________.4.如图,∠AOB=90°,OC平分∠AOB,OE平分∠AOD,若∠EOC=60°,则∠BOD=__________.5.一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是 ________.6如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE=________,∠AOC=________.7.计算:(1)48°39′+67°31′﹣21°17′;(2)23°53′×3﹣107°43′÷5.8.如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.9.如图,直线AB上有一点O,射线OD在直线AB上方且不与OA、OB重合,OC平分∠AOD,OE平分∠BOD(1)当∠AOD=70°时,∠DOE=_______°;(2)当∠AOD=100°时,求:∠DOE、∠COE的度数;(3)直接写出,当∠AOD=x°时,∠COD与∠DOE之间满足的关系.第1页(共13页)第10讲 与角度有关的计算知识点1:角的概念以及度分秒的换算1.有公共端点的两条射线组成的图形叫做角,这个公共端点就是角的顶点,这两条射线是角的两条边。角通常用三个字母及符号“∠”来表示,在不引起混淆的情况下,角还可以用它的顶点字母来表示.2.用量角器测量角度时一定要做到两对齐:量角器的中心和角的顶点对齐、 量角器的0刻度线和角的一条边对齐.3.角的常用度量单位是度、分、秒.1°的 为1分,记作1′,即1°=60′.1′的 为1秒,记作1″,即1′=60″.【典例】1.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是( )A. B. C. D.【方法总结】所有的角都可以用顶点处的字母和表示两条射线的另外两个字母来表示;当某个角的顶点处只有1个角(两条射线)时,该角可以用“∠”和顶点字母来表示。【随堂练习】1.(2018 河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50° 2.(2017秋 榆树市期末)计算:90°﹣(36°31′52″+12°22′14″). 3.(2017秋 兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为______ °,分针每分钟转动的角度为____°;(2)8点整,钟面角∠AOB=_____°,钟面角与此相等的整点还有:_____点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数. 4.(2017秋 孝感期末)计算:(1)48°39′+67°31′﹣21°17′;(2)23°53′×3﹣107°43′÷5.知识点2:角平分线的定义1.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。2.尺规作图,作∠AOB的平分线的方法:(1)以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。(2)分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。(3)作射线OP。射线OP即为所求。【典例】1.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是________【方法总结】本题已知角的数量关系∠AOC=4∠AOB,以及OD、OM是角平分线,但不知道角∠AOC与∠AOB的位置关系,无法直接得出结论。所以作图分两种情况,即:∠AOB在∠AOC内部和∠AOB在∠AOC外部,结合图形根据已知条件求出未知角的度数。【随堂练习】1.(2017秋 开江县期末)如图,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°,求∠AOB. 2.(2017秋 定边县期末)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC. 3.(2017秋 泸县期末)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.4.(2017秋 杜尔伯特县期末)如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.知识点3:余角和补角1.如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C , ∠A与∠C互余;余角的性质:同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。2.如果两个角的和是一个平角,那么这两个角互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C , ∠A与∠C互补;补角的性质:同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则:∠C=∠B。【典例】1.如图,点A、B、O在同一条直线上,∠COE和∠BOE互余,射线OF和OD分别平分∠COE和∠BOE,则∠AOF+∠BOD与∠DOF的关系是__________【方法总结】题中给出了互余的两个角,隐含了一对互补的角。通过一对互余角的角平分线求出平分后小角组成的大角为45°,利用平角是180°,求出剩余角度之和是135°,进而求出二者之间的比例关系。【随堂练习】1.(2017秋 海口期末)已知∠2是∠1的余角,∠3是∠2的补角,且∠1=38°,则∠3等于( )A.62° B.128° C.138° D.142° 2.(2017秋 溧水区期末)如果∠α和∠β互补,且∠α<∠β,下列表达式:①90°﹣∠α;②∠β﹣90°;③(∠β+∠α);④(∠β﹣∠α)中,等于∠α的余角的式子有( )A.1个 B.2个 C.3个 D.4个3.(2017秋 阜宁县期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由. 4.(2017秋 襄城区期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=_____度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.探究∠AOM与∠NOC之间数量关系,并说明你的理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是多少秒?(直接写出答案即可,不必说明理由) 5.(2017秋 大余县期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,设ON的反向延长线为OD,则∠COD=____°,∠AOD=____°.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.知识点4:对顶角和邻补角1.如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角。对顶角的性质:对顶角相等。2.两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角。邻补角的性质:(1)一个角与它的邻补角的和等于180°;(2)如果两个角互为邻补角,那么它们的角平分线互相垂直。【典例】1.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF=______【方法总结】解角度问题常设某一角度为未知数,把其他关联角用未知数表示出来,根据已知条件间建立关于该未知数的方程,解方程即可求得未知数的值,从而得到所求角的度数。用代数方法解几何问题是常用方法之一。【随堂练习】1.(2016秋 玄武区校级期末)如图,直线AB与CD相交于点O,∠AOC:∠AOD=4:5,OE平∠BOD分,请在图中画出OF⊥AB并求出∠BOF的度数. 2.(2017秋 天河区期末)如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数. 3.(2017秋 平邑县期末)如图,直线AB,CD相交于点O,∠BOE=90°,OF平分∠AOD,∠COE=20°,求∠BOD与∠DOF的度数.综合集训1.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=_______°.2.如图,直线AB、CD相交于点O,∠AOD=140°,∠COE=20°,则∠BOE= ________°.3.一个角的补角为158°12′,那么这个角的余角等于__________.4.如图,∠AOB=90°,OC平分∠AOB,OE平分∠AOD,若∠EOC=60°,则∠BOD=__________.5.一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是 ________.6如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE=________,∠AOC=________.7.计算:(1)48°39′+67°31′﹣21°17′;(2)23°53′×3﹣107°43′÷5.8.如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.9.如图,直线AB上有一点O,射线OD在直线AB上方且不与OA、OB重合,OC平分∠AOD,OE平分∠BOD(1)当∠AOD=70°时,∠DOE=_______°;(2)当∠AOD=100°时,求:∠DOE、∠COE的度数;(3)直接写出,当∠AOD=x°时,∠COD与∠DOE之间满足的关系.第13页(共13页) 展开更多...... 收起↑ 资源列表 第10讲 与角度有关的运算 --尖子班(学生版).docx 第10讲 与角度有关的运算 --尖子班(教师版).docx