资源简介 万有引力重难点突破考点1:开普勒三定律的理解与应用知识点归纳开普勒三定律定律 内容 图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 =k,k是一个与行星无关的常量题型检测1.(多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。若只考虑海王星和太阳之间的相互作用,则海王星在从P经M、Q到N的运动过程中( )A.从P到M所用的时间等于B.从Q到N阶段,机械能逐渐变大C.从P到Q阶段,速率逐渐变小D.从M到N阶段,万有引力对它先做负功后做正功2.关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律3.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积4.2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105m。已知火星半径约为3.4×106m,火星表面处自由落体的加速度大小约为3.7m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( )A. 6×105m B. 6×106m C. 6×107m D. 6×108m5.2020年是我国第一颗人造地球卫星“东方红一号”卫星成功发射50周年。已知该卫星发射后先以近地点M点所在的圆为轨道做圆周运动,稳定后再变轨为如图所示的椭圆轨道。下列说法正确的是( )A.卫星在圆轨道上运动的周期小于在椭圆轨道上运动的周期B.卫星在椭圆轨道上运动时,在M点的线速度小于在N点的线速度C.卫星在变轨为椭圆轨道时需要减速D.卫星从M点运动到N点的过程中,地球对卫星的引力做正功,卫星的动能增大6.如图所示,已知地球半径为R,甲、乙两颗卫星绕地球运动。卫星甲做匀速圆周运动,其轨道直径为4R,C是轨道上任意一点;卫星乙的轨道是椭圆,椭圆的长轴长为6R,A、B是轨道的近地点和远地点。不计卫星间相互作用,下列说法正确的是( )A.卫星甲在C点的速度一定小于卫星乙在B点的速度B.卫星甲的周期大于卫星乙的周期C.卫星甲在C点的速度一定小于卫星乙在A点的速度D.在任意相等的时间内,卫星甲与地心的连线扫过的面积一定等于卫星乙与地心的连线扫过的面积7.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。则( )A.v1>v2,v1= B.v1>v2,v1>C.v1考点2:应用万有引力定律估算天体质量和密度1.万有引力定律F=G,式中G为引力常量,在数值上等于两个质量都是1 kg的质点相距1 m时的相互吸引力。引力常量由英国物理学家卡文迪什在实验室中比较准确地测出。测定G值的意义:①引力常量的普适性成了万有引力定律正确性的有力证据;②使万有引力定律有了真正的实用价值。(1).万有引力的特点普遍性 万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力相互性 两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足大小相等,方向相反,作用在两个物体上宏观性 地面上的一般物体之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用(2)应用万有引力定律的注意事项在以下三种情况下可以直接使用公式F=G计算:①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r表示两质点间的距离。②求两个质量分布均匀的球体间的万有引力:公式中的r为两个球心间的距离。③一个质量分布均匀球体与球外一个质点间的万有引力:r指质点到球心的距离。(3)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F=G得出r→0时F→∞的结论,违背公式的物理含义。(4)在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F引=0.2.万有引力与重力的关系地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向.地面上物体的重力随纬度的升高而变大。在南北两极和赤道上重力和引力的方向是一致的。在地球两极处重力就是引力,在赤道上,重力和引力不等,但在一条直线上。(1)在赤道上:G=mg1+mω2R.(2)在两极上:G=mg0.(3)在一般位置:万有引力G等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即=mg.(3)重力与高度的关系由于地球的自转角速度很小,故地球自转带来的影响很小,一般情况下认为在地面附近:mg=G。若距离地面的高度为h,则mg′=G(R为地球半径,g′为离地面h高度处的重力加速度),可得g′==g,所以距地面越高,物体的重力加速度越小,则物体所受的重力也越小。.所以=.3.天体质量、密度的计算使用方法 已知量 利用公式 表达式 备注质量的计算 利用运行天体 r、T G=mr M= 只能得到中心天体的质量r、v G=m M=v、T G=m G=mr M=利用天体表面重力加速度 g、R mg= M=密度的计算 利用运行天体 r、T、R G=mr M=ρ·πR3 ρ= 当r=R时ρ= 利用近地卫星只需测出其运行周期利用天体表面重力加速度 g、R mg= M=ρ·πR3 ρ=4. 估算天体质量、密度时的注意事项与易错点:(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的是中心天体的质量,并非环绕天体的质量。(2)区别天体半径R和卫星轨道半径r,只有在天体表面附近运动的卫星才有r≈R;计算天体密度时,V=πR3中的R只能是中心天体的半径。(3)在考虑中心天体自转问题时,只有在两极处才有=mg。题型检测1.利用引力常量G和下列某一组数据,不能计算出地球质量的是( )A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离2.科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。科学家认为S2的运动轨迹是半长轴约为(太阳到地球的距离为)的椭圆,银河系中心可能存在超大质量黑洞。这项研究工作获得了2020年诺贝尔物理学奖。若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M,可以推测出该黑洞质量约为( )A. B. C. D.3.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为( )A.0.2g B.0.4g C.2.5g D.5g4.地球半径为R,地球表面的重力加速度为g,若高空中某处的重力加速度为,则该处距地球表面的高度为( )A.(-1)R B.RC.R D.2R5.如图所示,一个质量均匀分布的半径为R的球体对球外质点P的万有引力为F。如果在球体中央挖去半径为r的一部分球体,且r=,则原球体剩余部分对质点P的万有引力变为( )A. B. C. D.6.论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。假设地球是一个半径为R、质量分布均匀的实心球体,O为球心,以O为原点建立坐标轴Ox,如图所示。一个质量一定的小物体(可视为质点,假设它能够在地球内部移动)在x轴上各位置受到的引力大小用F表示,则下列选项中的四个F随x的变化关系图正确的是( )7.若一均匀球形星体的密度为ρ,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是( )A. B.C. D.8.火星的质量约为地球质量的,半径约为地球半径的,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A.0.2 B.0.4C.2.0 D.2.59.“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K倍。已知地球半径R是月球半径的P倍,地球质量是月球质量的Q倍,地球表面重力加速度大小为g。则“嫦娥四号”绕月球做圆周运动的速率为( )A. B.C. D.10.(多选)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍。下列应用公式进行的推论正确的有( )A.由v=可知,甲的速度是乙的 倍B.由a=ω2r可知,甲的向心加速度是乙的2倍C.由F=G可知,甲的向心力是乙的D.由=k可知,甲的周期是乙的2倍11.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆。在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图象是( )12.(多选)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a x关系如图中虚线所示。假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则( )A.M与N的密度相等B.Q的质量是P的3倍C.Q下落过程中的最大动能是P的4倍D.Q下落过程中弹簧的最大压缩量是P的4倍13.2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms,假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11 N·m2/kg2。以周期T稳定自转的星体的密度最小值约为( )A.5×109 kg/m3 B.5×1012 kg/m3C.5×1015 kg/m3 D.5×1018 kg/m314.2019年3月10日我国在西昌卫星发射中心用长征三号乙运载火箭成功将“中星6C”卫星发射升空,卫星进入预定轨道,它是一颗用于广播和通信的地球静止轨道通信卫星,假设该卫星在距地面高度为h的同步轨道做圆周运动.已知地球的半径为R,地球表面的重力加速度为g,万有引力常量为G.下列说法正确的是( )A.同步卫星运动的周期为2πB.同步卫星运行的线速度大小为C.同步轨道处的重力加速度大小为()2gD.地球的平均密度为15.有一质量为M、半径为R、密度均匀的球体,在距离球心O为2R的地方有一质量为m的质点。现从M中挖去半径为R、球心为O′的球体,且O、O′与质点m位于同一直线上,如图所示,则剩余部分对m的万有引力F为( )A. B. C. D.考点3:同步、近地卫星模型、赤道物体转动模型及其物理量的比较1.人造卫星的运动规律(1)一种模型:无论自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看成质点,围绕中心天体(视为静止)做匀速圆周运动。(2)两条思路:①万有引力提供向心力,即G=man。②天体对其表面的物体的万有引力近似等于重力,即=mg或gR2=GM(R、g分别是天体的半径、表面重力加速度),公式gR2=GM应用广泛,被称为“黄金代换”。(3)地球卫星的运行参数(将卫星轨道视为圆)物理量 推导依据 表达式 最大值或最小值线速度 G=m v= 当r=R时有最大值,v=7.9 km/s角速度 G=mω2r ω= 当r=R时有最大值周期 G=m2r T=2π 当r=R时有最小值,约85 min向心 加速度 G=man an= 当r=R时有最大值,最大值为g轨道 平面 圆周运动的圆心与中心天体中心重合共性:距地面越高,轨道半径大,运动越慢,周期越长——高轨低速(线速度、角速度 加速度)长周期2.近地卫星及其速度大小近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s。这个速度值又叫第一宇宙速度/s,人造卫星的最小发射速度,也是人造卫星的最大环绕速度。计算方法(1)由G=m,解得:v=;(2)由mg=m,解得:v=。4.地球同步卫星的特点(1) 不偏不倚:轨道平面一定,轨道平面和赤道平面重合绕行方向一定:与地球自转的方向一致。(2) 不快不慢:周期一定:与地球自转周期相同,即T=24 h=86400 s。角速度一定:与地球自转的角速度相同。线束度和加速度大小一定.设其运行速度为v,由于G=m,所以v= = =3.1×103 m/s。由G=ma得a=G=gh=0.23 m/s2。(3) 不高不低:高度一定,据G=mr得r= =4.23×104 km,卫星离地面高度h=r-R≈6R(为恒量)。转道半径一定。。5.极地卫星极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。如下图所示:二.近地卫星、 同步卫星和赤道上物体的运行问题比较1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星.(3)其他轨道:除以上两种轨道外的卫星轨道.所有卫星的轨道平面一定通过地球的球心.(4)重要数据:①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2.②月球的公转周期约27.3天,在一般估算中常取27天.③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s.2 .两个向心加速度卫星绕地球运行的向心加速度 物体随地球自转的向心加速度产生原因 由万有引力产生 由万有引力的一个分力(另一分力为重力)产生方向 指向地心 垂直且指向地轴大小 a=(地面附近a近似等于g) a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点 随卫星到地心的距离的增大而减小 从赤道到两极逐渐减小3.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢.(2)公转周期是运行天体绕中心天体做圆周运动一周所需的时间,T=2π,取决于中心天体的质量和运行天体到中心天体的距离.4.解题技巧同步卫星与赤道上随地球自转的物体的共同点是具有相同的角速度和周期。当比较近地卫星和赤道上物体的运动规律时,往往借助同步卫星这一纽带使问题迎刃而解。题型检测1.北斗问天,国之夙愿。我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍。与近地轨道卫星相比,地球静止轨道卫星( )A.周期大 B.线速度大C.角速度大 D.加速度大2.有a、b、c、d四颗地球卫星,卫星a还未发射,在地球赤道上随地球表面一起转动,卫星b在地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星,各卫星排列位置如图,则有( )A.a的向心加速度等于重力加速度gB.b在相同时间内转过的弧长最长C.c在4 h内转过的圆心角是D.d的运动周期有可能是20 h3.(多选)土星外层有一个环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R之间的关系,则下列判断正确的是( )A.若v2∝R则外层的环是土星的卫星群B.若v∝R则外层的环是土星的一部分C.若v∝则外层的环是土星的一部分D.若v2∝则外层的环是土星的卫星群4.若一均匀球形星体的密度为ρ,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是( )A. B.C. D.5.火星的质量约为地球质量的,半径约为地球半径的,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A.0.2 B.0.4C.2.0 D.2.56.“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K倍。已知地球半径R是月球半径的P倍,地球质量是月球质量的Q倍,地球表面重力加速度大小为g。则“嫦娥四号”绕月球做圆周运动的速率为( )A. B.C. D.7.(多选)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍。下列应用公式进行的推论正确的有( )A.由v=可知,甲的速度是乙的 倍B.由a=ω2r可知,甲的向心加速度是乙的2倍C.由F=G可知,甲的向心力是乙的D.由=k可知,甲的周期是乙的2倍8.(多选)中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统、欧洲伽利略卫星导航系统之后第四个成熟的卫星导航系统.2018年12月27日北斗三号基本系统完成建设,即日起提供全球服务.在北斗卫星导航系统中,有5颗地球静止轨道卫星,它们就好像静止在地球上空的某一点.对于这5颗静止轨道卫星,下列说法正确的是( )A.它们均位于赤道正上方B.它们的周期小于近地卫星的周期C.它们离地面的高度都相同D.它们必须同时正常工作才能实现全球通讯9.我国首次火星探测任务被命名为“天问一号”。已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A.火星探测器的发射速度应大于地球的第二宇宙速度B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C.火星的第一宇宙速度大于地球的第一宇宙速度D.火星表面的重力加速度大于地球表面的重力加速度10.火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )A.轨道周长之比为2∶3B.线速度大小之比为 ∶C.角速度大小之比为2∶3D.向心加速度大小之比为9∶411.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。已知它们的轨道半径R金A.a金>a地>a火 B.a火>a地>a金C.v地>v火>v金 D.v火>v地>v金12.2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星( )A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少13.人造地球卫星的轨道可近似为圆轨道。下列说法正确的是( )A.周期是24小时的卫星都是地球同步卫星B.地球同步卫星的角速度大小比地球自转的角速度小C.近地卫星的向心加速度大小比地球两极处的重力加速度大D.近地卫星运行的速率比地球表面赤道上的物体随地球自转的速率大考点4:双星、多星模型1.双星模型(1)两颗星体绕公共圆心转动,如图1所示。(2)特点①各自所需的向心力由彼此间的万有引力相互提供,即=m1ωr1,=m2ωr2。②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2。③两颗星的轨道半径与它们之间的距离关系为:r1+r2=L。④两颗星到轨道圆心的距离r1、r2与星体质量成反比,即=。⑤双星的运动周期T=2π。⑥双星的总质量m1+m2=。2.三星模型(1)三星系统绕共同圆心在同一平面内做圆周运动时比较稳定,三颗星的质量一般不同,其轨道如图2所示。每颗星体做匀速圆周运动所需的向心力由其他星体对该星体的万有引力的合力提供。(2)特点:对于这种稳定的轨道,除中央星体外(如果有),每颗星体转动的方向相同,运行的角速度、周期相同。(3)理想情况下,它们的位置具有对称性,下面介绍两种特殊的对称轨道。①三颗星位于同一直线上,两颗质量均为m的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图3甲所示)。②三颗质量均为m的星体位于等边三角形的三个顶点上(如图3乙所示)。3.四星模型:(1)如图所示,四颗质量相等的行星位于正方形的四个顶点上,沿外接于正方形的圆轨道做匀速圆周运动。×2×cos 45°+=ma,其中r= L。四颗行星转动的方向相同,周期、角速度、线速度的大小相等。(2)如图所示,三颗质量相等的行星位于正三角形的三个顶点,另一颗恒星位于正三角形的中心O点,三颗行星以O点为圆心,绕正三角形的外接圆做匀速圆周运动。×2×cos 30°+=ma。其中L=2rcos 30°。外围三颗行星转动的方向相同,周期、角速度、线速度的大小均相等。5.解题要诀:(1)根据双星或多星的运动特点及规律,确定系统的中心以及运动的轨道半径。(2)星体的向心力由其他天体的万有引力的合力提供。(3)星体的角速度相等。(4)星体的轨道半径不是天体间的距离。要利用几何知识,寻找两者之间的关系,正确计算万有引力和向心力。6.多星模型的解题步骤(1)明确各星体的几何位置,画出示意图;(2)明确各星体的转动方式,找出各星体做圆周运动的共同的圆心位置,确定各星体运动的轨道半径;(3)受力分析,确定每颗星体向心力的来源;(4)抓住每颗星体做匀速圆周运动的周期和角速度相同这一特点,列式解题题型检测1.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图6示为A、B、C三颗星体质量不相同时的一般情况)。若A星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小FA;(2)B星体所受合力大小FB;(3)C星体的轨道半径RC;(4)三星体做圆周运动的周期T。2.(多选)如图为某双星系统A、B绕其连线上的O点做匀速圆周运动的示意图,若A星的轨道半径大于B星的轨道半径,双星的总质量为M,双星间的距离为L,其运动周期为T,则( )A.A的质量一定大于B的质量B.A的线速度一定大于B的线速度C.L一定,M越大,T越大D.M一定,L越大,T越大3.“双星系统”由相距较近的星球组成,每个星球的半径均远小于两者之间的距离,而且双星系统一般远离其他天体,它们在彼此的万有引力作用下,绕某一点O做匀速圆周运动。如图所示,某一双星系统中A星球的质量为m1,B星球的质量为m2,它们球心之间的距离为L,引力常量为G,则下列说法正确的是( )A.B星球的轨道半径为LB.A星球运行的周期为2πLC.A星球和B星球的线速度大小之比为m1∶m2D.若在O点放一个质点,则它受到两星球的引力之和一定为零4.宇宙中,两颗靠得比较近的恒星,只受到彼此的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称为双星系统.由恒星A与恒星B组成的双星系统绕其连线上的O点做匀速圆周运动,如图所示.已知它们的运行周期为T,恒星A的质量为M,恒星B的质量为3M,引力常量为G,则下列判断正确的是( )A.两颗恒星相距B.恒星A与恒星B的向心力大小之比为3∶1C.恒星A与恒星B的线速度大小之比为1∶3D.恒星A与恒星B的轨道半径之比为∶15.(多选)如图,天文观测中观测到有三颗星位于边长为l的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T的匀速圆周运动.已知引力常量为G,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是( )A.三颗星的质量可能不相等B.某颗星的质量为C.它们的线速度大小均为D.它们两两之间的万有引力大小为6.宇宙间存在一些离其他恒星较远的三星系统。其中有一种三星系统如图所示,三颗质量均为M的星位于等边三角形的三个顶点上,任意两颗星的距离均为R,并绕其中心O做匀速圆周运动。如果忽略其他星体对它们的引力作用,引力常量为G,以下对该三星系统的说法中正确的是( )A.每颗星做圆周运动的角速度为3B.每颗星做圆周运动的向心加速度与三星的质量无关C.若距离R和每颗星的质量M都变为原来的2倍,则角速度变为原来的2倍D.若距离R和每颗星的质量M都变为原来的2倍,则线速度大小不变7.(多选)宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同。现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做圆周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示。设两种系统中三个星体的质量均为m,且两种系统中各星间的距离已在图中标出,引力常量为G,则下列说法中正确的是 ( )A.直线三星系统中星体做圆周运动的线速度大小为B.直线三星系统中星体做圆周运动的周期为4πC.三角形三星系统中每颗星做圆周运动的角速度为2D.三角形三星系统中每颗星做圆周运动的加速度大小为8.引力波探测于2017年获得诺贝尔物理学奖。双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由P、Q两颗星体组成,这两颗星绕它们连线的某一点在二者万有引力作用下做匀速圆周运动,测得P星的周期为T,P、Q两颗星的距离为l,P、Q两颗星的轨道半径之差为Δr(P星的轨道半径大于Q星的轨道半径),引力常量为G,求:(1)P、Q两颗星的线速度之差Δv;(2)Q、P两颗星的质量之差Δm。9.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为L的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T1;另一种形式是有三颗星位于边长为L的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比T1/ T2.考点5:卫星变轨、发射、回收、空间站对接及其能量问题1.卫星变轨的基本原理当卫星开启发动机,或者受空气阻力作用时,万有引力不再等于卫星所需向心力,卫星的轨道将发生变化。如图所示。(1)当卫星的速度增加时,G(2)当卫星的速度减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,如果速度减小很缓慢,卫星每转一周均可看成做匀速圆周运动,经过一段时间,轨道半径变小,当卫星进入新的轨道运行时,由v= 可知其运行速度比在原轨道时大。例如,人造卫星受到高空稀薄大气的摩擦力,轨道高度不断降低。2.卫星的发射与回收原理卫星轨道的突变:由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。如图所示,发射同步卫星时,可以分多过程完成:(1)先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v1。(2)变轨时在P点点火加速,短时间内将速率由v1增加到v2,这时(3)卫星运行到远地点Q时的速率为v3,此时进行第二次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。飞船和空间站的对接过程与此类似。卫星的回收过程和飞船的返回则是相反的过程,通过突然减速,>m,变轨到低轨道,最后在椭圆轨道的近地点处返回地面。发射或回收示意图如下:空间站对接示意图如下:3.卫星变轨时三类物理量的定性比较(1)速度:设卫星在圆轨道Ⅰ、Ⅲ上运行时的速率分别为v1、v4,在轨道Ⅱ上过P、Q点时的速率分别为v2、v3,在P点加速,则v2>v1;在Q点加速,则v4>v3。又因v1>v4,故有v2>v1>v4>v3。(2)加速度:因为在P点不论从轨道Ⅰ还是轨道Ⅱ上经过,P点到地心的距离都相同,卫星的加速度都相同,设为aP。同理,在Q点加速度也相同,设为aQ。又因Q点到地心的距离大于P点到地心的距离,所以aQ(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径或半长轴分别为r1、r2、r3,由=k可知T14.能量问题卫星速率增大(发动机做正功)会做离心运动,轨道半径增大,万有引力做负功,卫星动能减小,由于变轨时遵从能量守恒,稳定在圆轨道上时需满足G=m,致使卫星在较高轨道上的运行速率小于在较低轨道上的运行速率,但机械能增大(发动机做正功);相反,卫星由于速率减小(发动机做负功)会做向心运动,轨道半径减小,万有引力做正功,卫星动能增大,同样原因致使卫星在较低轨道上的运行速率大于在较高轨道上的运行速率,但机械能减小(发动机做负功)。题型检测1.(多选)某火星探测器接近火星后,该探测器需经历如图所示的变轨过程,轨道Ⅰ为圆轨道,已知引力常量为G,则下列说法正确的是( )A.探测器在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能B.探测器在轨道上运动时,运行的周期TⅢ>TⅡ>TⅠC.探测器若从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度反向喷气D.若轨道Ⅰ贴近火星表面,并已知探测器在轨道Ⅰ上运动的角速度,可以推知火星的密度2.我国于2020年发射火星探测器。假设图示三个轨道是探测器绕火星飞行的轨道,其中轨道Ⅰ、Ⅲ均为圆形轨道,轨道Ⅱ为椭圆形轨道,三个轨道在同一平面内,轨道Ⅱ与轨道Ⅰ相切于P点,与轨道Ⅲ相切于Q点,不计探测器在变轨过程中的质量变化,则下列说法正确的是( )A.探测器在轨道Ⅱ的任何位置都具有相同速度B.探测器在轨道Ⅲ的任何位置都具有相同加速度C.不论在轨道Ⅰ还是轨道Ⅱ运行,探测器在P点的动量都相同D.不论在轨道Ⅱ还是轨道Ⅲ运行,探测器在Q点的加速度都相同3.2020年12月17日,嫦娥五号成功返回地球,创造了我国到月球取土的伟大历史。如图所示,嫦娥五号取土后,在P处由圆形轨道Ⅰ变轨到椭圆轨道Ⅱ,以便返回地球。下列说法正确的是( )A.嫦娥五号在轨道Ⅰ和Ⅱ运行时均超重B.嫦娥五号在轨道Ⅰ和Ⅱ运行时机械能相等C.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时速率相等D.嫦娥五号在轨道Ⅰ和Ⅱ运行至P处时加速度大小相等4.我国将在今年择机执行“天问1号”火星探测任务。质量为m的着陆器在着陆火星前,会在火星表面附近经历一个时长为t0、速度由v0减速到零的过程。已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g,忽略火星大气阻力。若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( )A.m B.mC.m D.m5.空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化。空间站安装有发动机,可对轨道进行修正。图中给出了国际空间站在2020.02-2020.08期间离地高度随时间变化的曲线,则空间站( )A. 绕地运行速度约为B. 绕地运行速度约为C. 在4月份绕行的任意两小时内机械能可视为守恒D. 在5月份绕行的任意两小时内机械能可视为守恒6.2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。某航天受好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。设“玉兔”质量为m,月球为R,月面的重力加速度为g月。以月面为零势能面。“玉兔”在h高度的引力势能可表示为,其中G为引力常量,M为月球质量,若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为 ( )A、 B、C、 D、7.在“嫦娥五号”任务中,有一个重要环节,轨道器和返回器的组合体(简称“甲”)与上升器(简称“乙”)要在环月轨道上实现对接,以便将月壤样品从上升器转移到返回器中,再由返回器带回地球。对接之前,甲、乙分别在各自的轨道上做匀速圆周运动,且甲的轨道半径比乙小,如图所示。为了实现对接,处在低轨的甲要抬高轨道。下列说法正确的是( )A.在甲抬高轨道之前,甲的线速度小于乙B.甲可以通过增大速度来抬高轨道C.在甲抬高轨道的过程中,月球对甲的万有引力逐渐增大D.返回地球后,月壤样品所受的重力比在月球表面时大8.如图所示,探月卫星的发射过程可简化如下:首先进入绕地球运行的“停泊轨道”,在该轨道的P处通过变速再进入“地月转移轨道”,在快要到达月球时,对卫星再次变速,卫星被月球引力“俘获”后,成为环月卫星,最终在环绕月球的“工作轨道”绕月飞行(视为圆周运动),对月球进行探测。“工作轨道”周期为T、距月球表面的高度为h,月球半径为R,引力常量为G,忽略其他天体对探月卫星在“工作轨道”上环绕运动的影响。(1)要使探月卫星从“转移轨道”进入“工作轨道”,应增大速度还是减小速度?(2)求探月卫星在“工作轨道”上环绕的线速度大小;(3)求月球的第一宇宙速度。考点6:卫星(天体)追及相遇模型如果有两颗卫星在同一轨道平面内两个不同轨道上同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示,则当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远,如图乙所示。两卫星相距最远的条件是ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,3…),相距最近的条件是ωaΔt-ωbΔt=2nπ(n=0,1,2,3…)。题型检测1.如图所示,甲、乙两颗卫星在同一平面的两个不同轨道上均绕地球做匀速圆周运动,公转方向相同。已知卫星甲的公转周期为T,每经过最短时间9T,卫星乙都要运动到与卫星甲最近的位置上,则卫星乙的公转周期为( )A.T B.T C.T D.T2.(多选)2019年9月12日,我国在太原卫星发射中心“一箭三星”发射成功。现假设三颗星a、b、c均在赤道平面上绕地球做匀速圆周运动,其中a、b转动方向与地球自转方向相同,c转动方向与地球自转方向相反,a、b、c三颗星的周期分别为Ta=6 h、Tb=24 h、Tc=12 h,下列说法正确的是( )A.a、b每经过6 h相遇一次B.a、b每经过8 h相遇一次C.b、c每经过8 h相遇一次D.b、c每经过6 h相遇一次3.2020年7月23日,中国火星探测任务“天问一号”探测器在海南文昌航天发射场发射升空。如图所示,已知地球和火星到太阳的距离分别为R和1.5R,若某火星探测器在地球轨道上的A点被发射出去,进入预定的椭圆轨道,通过椭圆轨道到达远日点B进行变速被火星俘获。下列说法正确的是( )A.探测器在椭圆轨道A点的速度等于地球的公转速度B.探测器由A点大约经0.7年才能抵达火星附近的B点C.地球和火星相邻两次相距最近的时间间隔约为2.2年D.探测器在椭圆轨道A点的加速度小于在B点的加速度4.太阳系各行星可近似看成在同一平面内沿同一方向绕太阳做匀速圆周运动。设天王星公转周期为T1,公转半径为R1;地球公转周期为T2,公转半径为R2。当地球和天王星运行到太阳两侧,且三者排成一条直线时,(忽略两者之间的引力作用,万有引力常量为G)下列说法正确的是( )A.天王星公转速度大于地球公转速度B.地球与天王星相距最近至少需经历C.太阳的质量为D.天王星公转的向心加速度与地球公转的向心加速度之比为参考答案考点1:CD B C C A C B考点2:D B B A C A A B D CD D AC C C A考点3:A B BD A B D CD AC A C A D D考点4:1. (1)A星体受B、C两星体的引力大小相等,,合力 ①;(2)B星体受A星体的引力,B星体受C星体的引力,三角形定则结合余弦定理得, ②;(3)由对称性知,OA在BC的中垂线上,.对A星体: ③,对B星体: ④,联立解得,在三角形中,,解得,即 ⑤;(4)把⑤式代入④式,得,即.BD B A BD D BD8. (1)设P、Q两颗星的轨道半径分别为rP、rQ,P星的线速度大小vP=Q星的线速度大小vQ=则P、Q两颗星的线速度大小之差为Δv=vP-vQ=-=。(2)双星系统靠相互间的万有引力提供向心力,角速度大小相等,向心力大小相等,则有G=mPrPω2=mQrQω2解得mP=,mQ=则Q、P两颗星的质量差为Δm=mQ-mP==。9. 第一种形式:四颗星稳定地分布在边长为L的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,每颗星做圆周运动的半径为L/2,每颗星做圆周运动的向心力为其它三颗星对它万有引力的合力,即为F=G+2Gcos45°=,由=m·L/2·,解得:T1=2πL。第二种形式:有三颗星位于边长为L的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,第四颗星刚好位于三角形的中心不动.轨道半径为r=L/3。每颗星做圆周运动的向心力为其它三颗星对它万有引力的合力,即为F=G+2Gcos30°=,由= m·L/3·,解得:T2=2πL。星体运动的周期之比T1/ T2=。考点5.BD D D B D D BD8. (1)要使探月卫星从“转移轨道”进入“工作轨道”,应减小速度使卫星做近心运动。(2)根据线速度与轨道半径和周期的关系可知探月卫星线速度的大小v=。(3)设月球的质量为M,探月卫星的质量为m,月球对探月卫星的万有引力提供其做匀速圆周运动的向心力,所以有G=m(R+h)月球的第一宇宙速度v1等于“近月卫星”的环绕速度,设“近月卫星”的质量为m′,则有G=m′解得v1=。考点6:A BC BC B 展开更多...... 收起↑ 资源预览