2013年全国各地中考数学试题最新分类汇编:统计(共92页)

资源下载
  1. 二一教育资源

2013年全国各地中考数学试题最新分类汇编:统计(共92页)

资源简介

统计
(2013?郴州)数据1,2,3,3,5,5,5的众数和中位数分别是(  )
 
A.
5,4
B.
3,5
C.
5,5
D.
5,3
考点:
众数;中位数.3718684
分析:
根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大重新排列后,最中间的那个数即可求出答案.
解答:
解:数据1,2,3,3,5,5,5中,
5出现了3次,出现的次数最多,
则众数是5;
最中间的数是3,
则中位数是3;
故选D.
点评:
此题考查了众数和中位数,掌握众数和中位数的定义是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
 (2013?郴州)游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 400 名学生;
(2)补全两个统计图;
(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?
考点:
条形统计图;用样本估计总体;扇形统计图.3718684
分析:
(1)根据一定会的人数和所占的百分比即可求出总人数;
(2)用总人数减去其它人数得出不会的人数,再根据家长陪同的人数除以总人数得出家长陪同时会的所占的百分比,从而补全统计图;
(3)用2000乘以一定会下河游泳所占的百分百,即可求出该校一定会下河游泳的人数.
解答:
解:(1)总人数是:20÷5%=400(人);
(2)一定不会的人数是400﹣20﹣50﹣230=100(人),
家长陪同的所占的百分百是×100%=57.5%,
补图如下:
(3)根据题意得:
2000×5%=100(人).
答:该校2000名学生中大约有多少人“一定会下河游泳”有100人.
点评:
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用到的知识点是频率=.
(2013?衡阳)要调查下列问题,你认为哪些适合抽样调查(  )
①市场上某种食品的某种添加剂的含量是否符合国家标准
②检测某地区空气质量
③调查全市中学生一天的学习时间.
 
A.
①②
B.
①③
C.
②③
D.
①②③
考点:
全面调查与抽样调查
分析:
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解答:
解:①食品数量较大,不易普查,故适合抽查;
②不能进行普查,必须进行抽查;
③人数较多,不易普查,故适合抽查.
故选D.
点评:
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
 (2013?衡阳)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为 94 .
考点:
算术平均数.
分析:
先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.
解答:
解:由题意知,最高分和最低分为97,89,
则余下的分数的平均数=(92×2+95×2+96)÷5=94.
故答案为:94.
点评:
本题考查了算术平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.
 (2013?衡阳)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:
(1)这次调查的家长总数为 600 .家长表示“不赞同”的人数为 80 ;
(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是 60% ;
(3)求图②中表示家长“无所谓”的扇形圆心角的度数.
考点:
条形统计图;扇形统计图;概率公式.
分析:
(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;
(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;
(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.
解答:
解:(1)调查的家长总数为:360÷60%=600人,
很赞同的人数:600×20%=120人,
不赞同的人数:600﹣120﹣360﹣40=80人;
(2)“赞同”态度的家长的概率是60%;
(3)表示家长“无所谓”的圆心角的度数为:×360°=24°.
故答案为:600,80;60%.
点评:
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(2013,娄底)有一组数据:2,5,7,2,3,3,6,下列结论错误的是(  ) A.平均数为4   B.中位数为3   C.众数为2   D.极差是5
(2013,娄底)2013年娄底市教育局对九年级学生的信息技术、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定、、、四个等级. 现抽取1000名学生成绩进行统计分析(其中、、、分别表示优秀、良好、合格、不合格四个等级),其相在数据统计如下:
人数   等级
科目
A
B
C
D
信息技术
120
120
40
物理实验操作
100
80
30
化学实验操作
120
90
20
 (1)请将上表空缺补充完整;
 (2)全市共有40000名学生参加测试,试估计该市九年级学生信息技术成绩合格以上(含合格)的人数;  (3)在这40000名学生中,化学实验操作达到优秀的大约有多少人? (2013?湘西州)在某次体育测试中,九年级(2)班6位同学的立定跳远成绩(单位:米)分别是:1.83,1,85,1.96,2.08,1.85,1.98,则这组数据的众数是(  )
 
A.
1.83
B.
1.85
C.
2.08
D.
1.96
考点:
众数.
分析:
根据众数的定义:一组数据中出现次数最多的数据求解即可.
解答:
解:这组数据出现次数最多的是:1.85,共两次,
故众数为:1.85.
故选B.
点评:
本题考查了众数的定义,属于基础题,解答本题的关键是掌握众数的定义:一组数据中出现次数最多的数据.
 (2013?湘西州)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.
(1)求该班人数;
(2)补全条形统计图;
(3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角∠AOB的度数;
(4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)根据5元占总数的百分比以及5元的人数,即可求出总人数;
(2)用总人数减去5元的人数和10元的人数,即可求出15元的人数,补全条形统计图即可;
(3)先利用15元的人数除以总人数得到其所占总数的百分比,用360度乘以所占的百分比即可得到“15元人数”所在扇形的圆心角∠AOB的度数;
(4)根据调查的某班的捐款数与每种情况的捐款人数,求出某班的平均一个人的捐款数,用九年级的总人数乘以一个人的捐款数,即可估计出九年级学生共捐款的钱数.
解答:
解:(1)15÷30%=50(人);
(2)15元的人数为50﹣15﹣25=10(人),补全条形统计图为:
(3)10÷50=20%,
捐款“15元人数”所在扇形的圆心角∠AOB的度数360°×20%=72°;
(4)15×5+25×10+10×15=475元,
则平均每人捐款为475÷50=9.5元,
估计该校九年级学生共捐款800×9.5=7600元.
点评:
此题查考了条形统计图,扇形统计图,以及用样本估计总体,理解清题意是解本题的关键.
(2013?益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).
次数
10
8
6
5
人数
3
a
2
1
(1)表中a= 4 ;
(2)请将条形统计图补充完整;
(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?
考点:
条形统计图;统计表;概率公式.
分析:
(1)根据条形统计图可知a=4;
(2)根据表格数据可知6次的人数是2,然后补全统计图即可;
(3)根据概率公式解得即可.
解答:
解:(1)由条形统计图可知次数为8的有4人,
所以,a=4;
(2)由表可知,6次的有2人,
补全统计图如图;
(3)∵小组成员共10人,参加了10次活动的成员有3人,
∴P=,
答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.
点评:
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
(2013,永州)某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A. 读普通高中; B. 读职业高中 C. 直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).
请问:(1)该县共调查了 名初中毕业生
(2)将两幅统计图中不完整的部分补充完整;
(3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.
21. (本小题8分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BNAN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(2013?株洲)孔明同学参加暑假军事训练的射击成绩如下表:
射击次序
第一次
第二次
第三次
第四次
第五次
成绩(环)
9
8
7
9
6
则孔明射击成绩的中位数是(  )
 
A.
6
B.
7
C.
8
D.
9
考点:
中位数.
分析:
将数据从小到大排列,根据中位数的定义即可得出答案.
解答:
解:将数据从小到大排列为:6,7,8,9,9,
中位数为8.
故选C.
点评:
本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
(2013?株洲)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 88 分.
考点:
加权平均数.
分析:
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.
解答:
解:∵笔试按60%、面试按40%,
∴总成绩是(90×60%+85×40%)=88分,
故答案为:88.
点评:
此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
 (2013?巴中)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的(  )
 
A.
平均数
B.
方差
C.
頻数分布
D.
中位数
考点:
统计量的选择;方差.
分析:
根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.
解答:
解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.
故选B.
点评:
此题主要考查了方差,关键是掌握方差所表示的意义.
 (2013?巴中)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:
(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?
(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.
(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.
考点:
条形统计图;扇形统计图;中位数;众数.
专题:
计算题.
分析:
(1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数;
(2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点及10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数;
(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.
解答:
解:(1)根据题意得:40÷40%=100(人),
则这一天上午7:00~12:00这一时间段共有100人闯红灯;
(2)根据题意得:7﹣8点的人数为100×20%=20(人),
8﹣9点的人数为100×15%=15(人),
9﹣10点占=10%,
10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人),
补全图形,如图所示:
9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;
(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.
点评:
此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.
(2013,成都)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是____10______元.
(2013?达州)下列说法正确的是(  )
A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖
B.为了了解全国中学生的心理健康状况,应采用普查的方式
C.一组数据0,1,2,1,1的众数和中位数都是1
D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定
答案:C
解析:由概率的意义,知A错;全国中学生较多,应采用抽样调查,故B也错;经验证C正确;方差小的稳定,在D中,应该是甲较稳定,故D错。
(2013?达州)某校在今年“五·四”开展了“好书伴我成长”的读书活动。为了解八年级450名学生的读书情况,随机调查了八年级50名学生本学期读书册数,并将统计数据制成了扇形统计图,则该校八年级学生读书册数等于3册的约有   名。
答案:162
解析:读书册数等于3的约占比例:1-6%-24%-30%-6%=36%,
36%×450=162
(2013?德州)甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):
品种
第1年
第2年
第3年
第4年
第5年

9.8
9.9
10.1
10
10.2

9.4
10.3
10.8
9.7
9.8
经计算,=10,=10,试根据这组数据估计__________种水稻品种的产量比较稳定.
(2013?德州)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
列频数分布表: 画频数分布直方图:
分组
划记
频数
2.0正正一
11
3.5正正正止
19
5.06.58.0
2
合计
50
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可)
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
(2013?广安)数据21、12、18、16、20、21的众数和中位数分别是(  )
 
A.
21和19
B.
21和17
C.
20和19
D.
20和18
考点:
众数;中位数.
分析:
根据众数和中位数的定义求解即可.
解答:
解:在这一组数据中21是出现次数最多的,故众数是21;
数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.
故选A.
点评:
本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
(2013?乐山)乐山大佛景区2013年5月份某周的最高气温(单位:oC)分别为29,31,23,26,29,29,29。这组数据的极差为
A . 29 B. 28 C. 8 D. 6
(2013?乐山)中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图10.1和扇形统计图10.2(不完整)。请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名中学生家长;
(2)将图10.1补充完整;
(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度。
(2013?泸州)某校七年级有5名同学参加射击比赛,成绩分别为7,8,9,10,8(单位:环)。则这5名同学成绩的众数是
A.7 B.8 C. 9 D. 10
(2013?泸州)某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛。它们分别是演讲、唱歌、书法、绘画。要求每位同学必须参加,且限报一项活动。以以九年级(1)班为样本进行统计,并将统计结果绘成如下两幅统计图。请你结合下图所给出的信息解答下列问题:
(1)求出参加绘画比赛的学生人数占全班总人数的百分比?
(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?
(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?
21.(2013?泸州)某中学为提升学生的课外阅读能力,拓展学生的知识面,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个。已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
(2013?眉山)王明同学随机抽查某市10个小区所得到的绿化率情况,结果如下表:
小区绿化率(%)
20
25
30
32
小区个数
2
4
3
1
则关于这10个小区的绿化率情况,下列说法错误的是
A.极差是13% B.众数是25% C.中位是25% D.平均数是26.2%
(2013?眉山)为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果。该由调查数据的____________决定。(填平均数或中位数或众数)
(2013?眉山)我市某中学艺术节期间,向学校学生征集书画作品。九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图。
⑴李老师采取的调查方式是______(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共______件,其中B班征集到作品______,请把图2补充完整。
⑵如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生。现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率。(要求用树状图或列表法写出分析过程)
(2013?绵阳)为了从甲.乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
图1 甲、乙射击成绩统计表
平均数
中位数
方差
命中10环的次数

7
0

1
图2 甲、乙射击成绩折线图
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
(2013?内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是(  )
 
A.
这1000名考生是总体的一个样本
B.
近4万名考生是总体
 
C.
每位考生的数学成绩是个体
D.
1000名学生是样本容量
考点:
总体、个体、样本、样本容量.
分析:
根据总体、个体、样本、样本容量的定义对各选项判断即可.
解答:
解:A、1000名考生的数学成绩是样本,故本选项错误;
B、4万名考生的数学成绩是总体,故本选项错误;
C、每位考生的数学成绩是个体,故本选项正确;
D、1000是样本容量,故本选项错误;
故选C.
点评:
本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
(2013?内江)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 5 .
考点:
算术平均数;一元一次不等式组的整数解;中位数.
分析:
先求出不等式组的整数解,再根据中位数是x,求出x的值,最后根据平均数的计算公式即可求出答案.
解答:
解:解不等式组得:3≤x<5,
∵x是整数,
∴x=3或4,
当x=3时,
3,4,6,8,x的中位数是4(不合题意舍去),
当x=4时,
3,4,6,8,x的中位数是4,符合题意,
则这组数据的平均数可能是(3+4+6+8+4)÷5=5;
故答案为:5.
点评:
此题考查了算术平均数、一元一次不等式组的整数解、中位数,关键是根据不等式组的整数解和中位数求出x的值.
(2013?内江)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):
数据段
频数
频率
30﹣40
10
0.05
40﹣50
36
 0.18 
50﹣60
 78 
0.39
60﹣70
 56 
 0.28 
70﹣80
20
0.10
总计
200
1
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
考点:
频数(率)分布直方图;频数(率)分布表.
分析:
(1)根据频数÷总数=频率进行计算即可;
(2)结合(1)中的数据补全图形即可;
(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.
解答:
解:(1)36÷200=0.18,
200×0.39=78,
200﹣10﹣36﹣78﹣20=56,
56÷200=0.28;
(2)如图所示:
(3)违章车辆数:56+20=76(辆).
答:违章车辆有76辆.
点评:
此题主要考查了读频数分布直方图的能力和看频数分布表的能力;利用频数分布表获取信息时,必须认真仔细,才能作出正确的判断和解决问题.
2013?遂宁)以下问题,不适合用全面调查的是(  )
 
A.
了解全班同学每周体育锻炼的时间
B.
旅客上飞机前的安检
 
C.
学校招聘教师,对应聘人员面试
D.
了解全市中小学生每天的零花钱
考点:
全面调查与抽样调查.
分析:
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解答:
解:A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;
B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;
C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;
D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.
故选D.
点评:
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
(2013?遂宁)我市某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
平均数(分)
中位数(分)
众数(分)
初中部
 85 
85
 85 
高中部
85
 80 
100
考点:
条形统计图;算术平均数;中位数;众数.
分析:
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;
(2)根据平均数和中位数的统计意义分析得出即可;
(3)分别求出初中、高中部的方差即可.
解答:
解:(1)填表:初中平均数为:(75+80++85+85+100)=85(分),
众数85(分);高中部中位数80(分).
(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,
所以在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵=(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2=70,
=(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2=160.
∴<,因此,初中代表队选手成绩较为稳定.
点评:
此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
2013?雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为(  )
 
A.
3.5,3
B.
3,4
C.
3,3.5
D.
4,3
考点:
众数;算术平均数;中位数.
分析:
根据题意可知x=2,然后根据平均数、中位数的定义求解即可.
解答:
解:∵这组数据的众数是2,
∴x=2,
将数据从小到大排列为:2,2,2,4,4,7,
则平均数=3.5
中位数为:3.
故选A.
点评:
本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.
 (2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的(  )
  A.方差 B.众数 C.平均数 D.中位数
考点:方差;统计量的选择.
分析:根据方差的意义作出判断即可.
解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.
故选A.
点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为(  )
  A.3 B.5 C.7 D.9
考点:算术平均数.
分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.
解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,
由图易得当x=7时,直线OP的斜率最大,
即前7年的年平均产量最高,x=7.
故选C.
点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键. 
(2013宜宾)为响应我市“中国梦”?“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦?我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.
请你根据以上图表提供的信息,解答下列问题:(1)a= 5 ,b= 20 ,n= 144 .
(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.
考点:列表法与树状图法;频数(率)分布表;扇形统计图.
专题:图表型.
分析:(1)首先利用频数、频率之间的关系求得参赛人数,然后乘以一等奖的频率即可求得a值,乘以三等奖的频率即可求得b值,用三等奖的频率乘以360°即可求得n值;
(2)列表后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
解答:解:(1)观察统计表知,二等奖的有10人,频率为0.2,
故参赛的总人数为10÷0.2=50人,
a=50×0.1=5人,b=50×0.4=20.
n=0.4×360°=144°,
故答案为:5,20,144;
(2)列表得:
∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,
∴恰好选中王梦和李刚两位同学的概率P==.
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 
(2013?资阳)若一组数据2、-1、0、2、-1、a的众数为2,则这组数据的平均数为______
(2013?资阳)体考在即,初三(1)班的课题研究小组对本年级530名学生的体育达标情况进行调查,制作出图4所示的统计图,其中1班有50人.(注:30分及以上为达标,满分50分.)
根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?(4分)
(2)若除初三(1)班外其余班级学生体育考试成绩在30—40分的有120人,请补全扇形统计图;(注:请在图中注明分数段所对应的圆心角的度数)(2分)
(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?(2分)
(1) 初三(1)班体育达标率为90%,
初三年级其余班级体育达标率为1-12.5%=87.5%; 4分
(2) 成绩在30—40分所对应的圆心角为90°,40—50分所对应的圆心角为225°. 6分
(3) 全年级同学的体育达标率为(420+45)÷530≈87.8%<90%,所以不达标. 8分
(2013?自贡)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是(  )
 
A.
5
B.
5.5
C.
6
D.
7
考点:
中位数;算术平均数.
分析:
根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.
解答:
解:∵4、5、5、x、6、7、8的平均数是6,
∴(4+5+5+x+6+7+8)÷7=6,
解得:x=7,
将这组数据从小到大排列为4、5、5、6、7、7、8,
最中间的数是6;
则这组数据的中位数是6;
故选C.
点评:
此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
 
(2013鞍山)一组数据2,4,5,5,6的众数是(  )
  A.2 B.4 C.5 D.6
考点:众数.
分析:根据众数的定义解答即可.
解答:解:在2,4,5,5,6中,5出现了两次,次数最多,
故众数为5.
故选C.
点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个
(2013鞍山)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是(  )
  A.甲 B.乙 C.丙 D.丁
考点:方差.
专题:图表型.
分析:根据方差的定义,方差越小数据越稳定.
解答:解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.
故选B.
点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 
(2013?大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:? ??
金额/元
5
6
7
10
人数
2
3
2
1
???这8名同学捐款的平均金额为( ? ? ?)
??A.3.5元? ?????B.6元?? ???C.6.5元? ?????D.7元?
(2013?大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:??
移植总数(n)
400
750
1500
3500
7000
9000
14000
成活数? (m)
369
662
1335
3203
6335
8073
12628
成活的频率m/n
0.923
0.883
0.890
0.915
0.905
0.897
0.902
???根据表中数据,估计这种幼树移植成活的概率为?? ????(精确到0.1)。
(2013?大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天)。
大连市2012年海水浴场环境质量监测结果统计表
监测时段:2012年7月至9月
???
大连市2012年市区空气质量级别统计图
?根据以上信息,解答下列问题:
?(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是?? ??(填浴场名称),海水浴场环境质量为优的数据的众数为? ?? %,海水浴场环境质量为良的数据的中位数为???? ??%;??
(2)2012年大连市区空气质量达到优的天数为??天,占全年(366天)的百分比约为? ? ? ? ? ?(精确到0.1%);
?(3)求2012年大连市区空气质量为良的天数? ? ? ? ? (按四舍五入,精确到个位)。
(2013?沈阳)一组数据2,4,x,-1的平均数为3,则x的值是 =_________.
(2013?沈阳)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价, 图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。
请你根据以上统计图提供的信息,回答下列问题;
本次调查的人数为___________人;
图①中,a=_________,C等级所占的圆心角的度数为__________度;
请直接在答题卡中不全条形统计图。
(2013?铁岭)在综合实践课上.五名同学做的作品的数量(单位:件)分别是:5,7,3,6,4,则这组数据的中位数是 5 件.
考点:
中位数.
分析:
根据中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
解答:
解:按从小到大的顺序排列是:3,4,5,6,7.
中间的是5,故中位数是5.
故答案是:5.
点评:
本题主要考查了中位数的定义,理解定义是关键.
(2013?铁岭)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是 甲 (填“甲”或“乙”)
考点:
方差.
分析:
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答:
解:∵,,
∴<,
∴成绩比较稳定的是甲;
故答案为:甲.
点评:
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
 
(2013?恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:
2009年恩施州各县市的固定资产投资情况表:(单位:亿元)
单位
恩施市
利川县
建始县
巴东县
宜恩县
咸丰县
来凤县
鹤峰县
州直
投资额
60
28
24
23
14
16
15
5
下列结论不正确的是(  )
 
A.
2009年恩施州固定资产投资总额为200亿元
 
B.
2009年恩施州各单位固定资产投资额的中位数是16亿元
 
C.
2009年来凤县固定资产投资额为15亿元
 
D.
2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°
考点:
条形统计图;扇形统计图.
分析:
利用建始县得投资额÷所占百分比可得总投资额;利用总投资额减去各个县市的投资额可得来凤县固定资产投资额,再根据中位数定义可得2009年恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案.
解答:
解:A、24÷12%=200(亿元),故此选项不合题意;
B、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),
把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;
C、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),故此选项不合题意;
D、360°×=108°,故此选项符合题意;
故选:D.
点评:
本题考查的是条形统计图和扇形统计图的综合运用,以及中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(2013?黄石)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
关于这15名同学所捐款的数额,下列说法正确的是
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20
答案:D
解析:由表知捐款20元的有5个,因此众数应是20,故A错;平均数为:(10+40+100+150+100)=,因此B错;极差是100-5=95,C也错;第8个数据为中位数,由表知中位数为20,故选D。
(2013?黄石)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组
频数
频率
50.5~60.5
4
0.08
60.5~70.5
14
0.28
70.5~80.5
16
80.5~90. 5
90.5~100.5
10
0.20
合 计
1.00
请解答下列问题:
(1)填写频率分布表中的空格,并补全频率分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导。请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.
解析:
21.(8分)解:(1)
分 组
频数
频率
50.5~60.5
4
0.08
60.5~70.5
14
0.28
70.5~80.5
16
0.32
80.5~90.5
6
0.12
90.5~100.5
10
0.20
合 计
50
1.00
(6分)
(2)说明该校的学生心理健康状况不正常,需要加强心理辅导 (2分)
(2013?荆门)在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是(  )
 
A.
众数是90
B.
中位数是90
C.
平均数是90
D.
极差是15
考点:
折线统计图;算术平均数;中位数;众数;极差.
分析:
根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.
解答:
解:∵90出现了5次,出现的次数最多,
∴众数是90;
∵共有10个数,
∴中位数是第5、6个数的平均数,
∴中位数是(90+90)÷2=90;
∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
极差是:95﹣80=15;
∴错误的是C;
故选C.
点评:
此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.
(2013?荆州)四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是B
A.20,10 B.10,20 C.16,15 D.15,16
(2013?潜江)垃圾的分类处理与回收利用,可以减少污染,节省资源. 某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:

根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨;
(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
(2013?十堰)某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为 3.1 .
分数
5
4
3
2
1
人数
3
1
2
2
2
考点:
加权平均数.3718684
分析:
利用加权平均数的计算方法列式计算即可得解.
解答:
解:×(5×3+4×1+3×2+2×2+1×2)
=×(15+4+6+4+2)
=×31
=3.1.
所以,这10人成绩的平均数为3.1.
故答案为:3.1.
点评:
本题考查的是加权平均数的求法,是基础题.
 
(2013?武汉)为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人.
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有
360个.
C.由这两个统计图不能确定喜欢“小说”的人数.
D.在扇形统计图中,“漫画”所在扇形的圆心角为72°.
答案:C解析:读左边图,知“其它”有30人,读右边图,知“其它”占10%,所以,总人数为300人,“科普知识”人数:30%×300=90,所以,A正确;该年级“科普知识”人数:30%×1200=360,所以,B正确;,因为“漫画”有60人,占20%,圆心角为:20%×360=72°,
小说的比例为:1-10%-30%-20%=40%,所以,D正确,C错误,选C。
(2013?武汉)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组
数据的众数是 .
答案:28
解析:28出现三次,出现的次数最多,所以,填28。
(2013?襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:
节水量(m3)
0.2
0.25
0.3
0.4
0.5
家庭数(个)
1
2
2
4
1
那么这组数据的众数和平均数分别是(  )
 
A.
0.4和0.34
B.
0.4和0.3
C.
0.25和0.34
D.
0.25和0.3
考点:
众数;加权平均数.
分析:
根据众数及平均数的定义,结合表格信息即可得出答案.
解答:
解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,
则中位数为:0.4;
平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.
故选A.
点评:
本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.
(2013?襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.
根据统计图提供的信息解答下列问题:
(1)补全频数分布直方图,并指出这个样本数据的中位数落在第 三 小组;
(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;
(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?
考点:
频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.
分析:
(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;
(2)利用总人数260乘以所占的比例即可求解;
(3)利用概率公式即可求解.
解答:
解:(1)总人数是:10÷20%=50(人),
第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,

中位数位于第三组;
(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);
(3)成绩是优秀的人数是:10+6+4=20(人),
成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.
点评:
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题
(2013?孝感)为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:
16 9 14 11 12 10 16 8 17 19
则这组数据的中位数和极差分别是(  )
 
A.
13,16
B.
14,11
C.
12,11
D.
13,11
考点:
极差;中位数.
分析:
根据中位数及极差的定义,结合所给数据即可作出判断.
解答:
解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,
中位数为:13;
极差=19﹣8=11.
故选D.
点评:
本题考查了极差及中位数的定义,在求中位数的时候,注意将所给数据从新排列.
(2013?宜昌)合作交流是学习数学的重要方式之一.某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7.这组数据的众数是( )
A.7 B.7.5 C.8 D.9
(2013?宜昌)读书决定一个人的修养和品位.在“文明湖北·美丽宜昌”读书活动中,某学习小组开展综合实践活动,随机调查了该校部分学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.
(1)补全扇形统计图中横线上缺失的数据;
(2)被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数.
(3)请你通过计算估计该校学生平均每人每天课外阅读的时间.
(2013?张家界)若3,a, 4, 5的众数是4,则这组数据的平均数是 4 .
(2013?张家界)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图,请共计统计表图所提供的信息回答下列问题:
(1)统计表中的m= ,n= .
(2)补全频数分布直方图.
(3)若该校共有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?
组 别
A
B
C
D
处理
方式
迅速
离开
马上
救助
视情况
而定
只看
热闹
人 数
m
30
n
5
(1) ………………………………4分
(2)见下图 ………………………………6分

(3)=1200(人)…………………………7分
答:据此估计该校学生采取“马上救助”方式的学生有1200人
(2013?晋江) 某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:
80,92,125,60,97.则这5名同学成绩的中位数是 92 分
(2013?晋江)为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成两幅不完整的统计图表. 请根据图表提供的信息,解答下列问题:
(1)表中的 , ,请你把条形统计图补充完整;
(2)若该校共有名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于册的人数.
解:(1),,条形统计图如图所示;
(2)解:所抽查的50名学生中,读书不少于3册的学生有(人)
(人)
答:该校在本次活动中读书不少于3册的学生有人.
(2013?龙岩)在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为 B
A.44、45 B.45、45 C.44、46 D. 45、46
(2013?龙岩)某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.
频数分布表
请根据上述信息,回答下列问题:
(1)_______________,_______________;
(2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是________;
(3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有_______________人.
(1) 0.11 , 540 ; (注:每空2分)
(2);
(3)9000.
(2013?莆田)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是(  )
 
A.
众数是4
B.
中位数是5
C.
极差是7
D.
平均数是5
考点:
极差;加权平均数;中位数;众数
分析:
根据平均数、众数、中位数和极差的定义分别进行计算,即可求出答案.
解答:
解:4出现了2次,出现的次数最多,
则众数是4;
共有6个数,中位数是第3,4个数的平均数,
则中位数是(4+5)÷2=4.5;
极差是9﹣2=7;
平均数是:(2+4+4+5+6+9)÷6=5;
故选B.
点评:
此题考查了平均数、众数、中位数和极差,求极差的方法是用一组数据中的最大值减去最小值,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.
(2013?莆田)统计学规定:某次测量得到n个结果x1,x2,…,xn.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为 10.1 .
考点:
方差.
专题:
新定义.
分析:
根据题意可知“量佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.
解答:
解:根据题意得:
x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;
故答案为:10.1.
点评:
此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.
 
(2013?莆田)莆田素有“文献名邦”之称,某校就同学们对“莆田历史文化”的了解程度进行随机抽样调查,将调查结果制成如图所示的两幅统计图:
根据统计图的信息,解答下列问题:
(1)本次共调查 60 名学生;
(2)条形统计图中m= 18 ;
(3)若该校共有学生1000名,则该校约有 200 名学生不了解“莆仙历史文化”.
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)根据了解很少的有24人,占40%,即可求得总人数;
(2)利用调查的总人数减去其它各项的人数即可求得;
(3)利用1000乘以不了解“莆仙历史文化”的人所占的比例即可求解.
解答:
解:(1)调查的总人数是:24÷40%=60(人),
故答案是:60;
(2)m=60﹣12﹣24﹣6=18,故答案是:18;
(3)不了解“莆仙历史文化”的人数是:1000×=200.
故答案是:200.
点评:
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(2013?三明)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是(  )
 
A.
极差是7
B.
众数是8
C.
中位数是8.5
D.
平均数是9
考点:
极差;加权平均数;中位数;众数.
分析:
根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.
解答:
解:A、极差=14﹣7=7,结论正确,故本选项错误;
B、众数为7,结论错误,故本选项正确;
C、中位数为8.5,结论正确,故本选项错误;
D、平均数是8,结论正确,故本选项错误;
故选B.
点评:
本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.
(2013?三明)八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是 30% .
考点:
频数(率)分布直方图.
分析:
首先求得总人数,确定优秀的人数,即可求得百分比.
解答:
解:总人数是:5+10+20+15=50(人),优秀的人数是:15人,
则该班这次成绩达到优秀的人数占全班人数的百分比是:×100%=30%.
故答案是:30%.
点评:
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
(2013?漳州)漳州市今年4月某天各区县的最高气温如下表:
区 县
龙海
南靖
长泰
华安
东山
诏安
平和
芗城
云霄
漳浦
最高气温(℃)
32
32
30
32
30
31
29
33
30
32
则这10个区县该天最高气温的众数和中位数分别是
A.32,31.5 B.32,30 C.30,32 D.32,31
(2013?厦门)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩/米
1.50
1.60
1.65
1.70
1.75
1.80
人数
2
3
3
2
4
1

则这些运动员成绩的中位数是 1.65 米.
(2013?厦门)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:
郊县
人数/万
人均耕地面积/公顷
A
20
0.15
B
5
0.20
C
10
0.18
求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);
(1)解: 
≈0.17(公顷/人).
∴ 这个市郊县的人均耕地面积约为0.17公顷.
(2013?长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.

(第20题)
(1)求这n名学生中剩饭学生的人数及n的值.
(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.
(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.
(1)58+41+6=105(人) ,105÷70%=150,
所以这n名学生中剩饭的学生有105人,n的值为150.
(2)=4%,
所以剩饭2次以上的学生占这n名学生人数的4%.
(3)=48(人).
所以估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的约有48人.
(2013?吉林省)端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )
A.22 B.24 C.25 D.27
(2013?吉林省)“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图;
根据上述信息,解答下列问题:
(1)抽取的学生人数为 ;
(2)将两幅统计图补充完整;
(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.
(2013?白银)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 200 名同学;
(2)条形统计图中,m= 40 ,n= 60 ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 72 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;
(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;
(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;
(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;
解答:
解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,
故本次调查中,一共调查了:70÷35%=200人,
故答案为:200;
(2)根据科普类所占百分比为:30%,
则科普类人数为:n=200×30%=60人,
m=200﹣70﹣30﹣60=40人,
故m=40,n=60;
故答案为:40,60;
(3)艺术类读物所在扇形的圆心角是:×360°=72°,
故答案为:72;
(4)由题意,得 (册).
答:学校购买其他类读物900册比较合理.
点评:
此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.
(2013?宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)
(一)班:168 167 170 165 168 166 171 168 167 170
(二)班:165 167 169 170 165 168 170 171 168 167
(1)补充完成下面的统计分析表
班级
平均数
方差
中位数
极差
一班
168
168
6
二班
168
3.8
(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.
考点:
方差;加权平均数;中位数;极差;统计量的选择.
分析:
(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;
(2)应选择方差为标准,哪班方差小,选择哪班.
解答:
解:(1)一班的方差=[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;
二班的极差为171﹣165=6;
二班的中位数为168;
补全表格如下:
班级
平均数
方差
中位数
极差
一班
168
3.2
168
6
二班
168
3.8
168
6
(2)选择方差做标准,
∵一班方差<二班方差,
∴一班可能被选取.
点评:
本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
(2013?宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.
考点:
频数(率)分布直方图;列表法与树状图法.
分析:
(1)根据班级总人数有50名学生以及利用条形图得出m的值即可;
(2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可.
解答:
解:(1)m=50﹣6﹣25﹣3﹣2=14;
(2)记6~8小时的3名学生为,8~10小时的两名学生为,
P(至少1人时间在8~10小时)=.
点评:
此题主要考查了频数分布表以及树状图法求概率,正确画出树状图是解题关键.
(2013?苏州)一组数据:0,1,2,3,3,5,5,10的中位数是
A.2.5 B.3 C.3.5 D.5
(2013?苏州)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:
(1)求这次抽样调查的样本容量,并补全图①;
(2)如果测试成绩(等级)为A,B,C级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.
(图②)
(2013?宿迁)下列选项中,能够反映一组数据离散程度的统计量是
A.平均数   B.中位数 C.众数 D.方差
(2013?宿迁)某校为了解“阳光体育”活动的开展情况,从全校名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有 ▲ 人,并补全条形统计图;
(2)在扇形统计图中,= ▲ ,= ▲ ,表示区域的圆心角为 ▲ 度;
(3)全校学生中喜欢篮球的人数大约有多少?
(2013?常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是(  )
 
A.
甲组数据比乙组数据的波动大
 
B.
乙组数据的比甲组数据的波动大
 
C.
甲组数据与乙组数据的波动一样大
 
D.
甲组数据与乙组数据的波动不能比较
考点:
方差.
分析:
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.
解答:
解:由题意得,方差<,
A、甲组数据没有乙组数据的波动大,故本选项错误;
B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;
C、甲组数据没有乙组数据的波动大,故本选项错误;
D、甲组数据没有乙组数据的波动大,故本选项错误;
故选B.
点评:
本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波动性的大小,方差越大,波动性越大.
(2013?常州)我市某一周的每一天的最高气温统计如下表:
最高气温(℃)
25
26
27
28
天数
1
1
2
3
则这组数据的中位数是 27 ,众数是 28 .
考点:
众数;中位数.
分析:
根据中位数、众数的定义,结合表格信息即可得出答案.
解答:
解:将表格数据从大到小排列为:25,26,27,27,28,28,28,
中位数为:27;
众数为:28.
故答案为:27、28.
点评:
本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
 

(2013?常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).
(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;
(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为 72° .
考点:
条形统计图;扇形统计图.
分析:
(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;
(2)用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.
解答:
解:(1)总人数是:20÷40%=50(人),
则打乒乓球的人数是:50﹣20﹣10﹣15=5(人).
足球的人数所占的比例是:×100%=20%,
打乒乓球的人数所占的比例是:×100%=10%;
其它的人数所占的比例是:×100%=30%.
补图如下:
(2)根据题意得:
360°×=72°,
则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°;
故答案为:72°.
点评:
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(2013?淮安)一组数据3,9,4,9,5的众数是 9 .
考点:
众数.
分析:
根据众数的定义:一组数据中出现次数最多的数据即可得出答案.
解答:
解:这组数据中出现次数最多的数据为:9.
故众数为9.
故答案为:9.
点评:
本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.
(2013?淮安)如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:
球类名称
乒乓球
排球
羽毛球
足球
篮球
人数
a
12
36
18
b
解答下列问题:
(1)本次调查中的样本容量是 120 ;
(2)a= 30 ,b= 24 ;
(3)试估计上述1000名学生中最喜欢羽毛球运动的人数.
考点:
扇形统计图;用样本估计总体;统计表.
专题:
图表型.
分析:
(1)用喜欢排球的人数除以其所占的百分比即可求得样本容量;
(2)用样本容量乘以乒乓球所占的百分比即可求得a,用样本容量减去其他求得b值;
(3)用总人数乘以喜欢羽毛球的人所占的百分比即可.
解答:
解:(1)∵喜欢排球的有12人,占10%,
∴样本容量为12÷10%=120;
(2)a=120×25%=30人,
b=120﹣30﹣12﹣36﹣18=24人;
(3)喜欢羽毛球的人数为:1000×=300人.
点评:
本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.
(2013?南京) 某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机
抽取了150名学生进行抽样调查。整体样本数据,得到下列图表:
(1) 理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽
样是否合理?请说明理由:
(2) 根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计
图;

(3) 该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议。如:骑车上学的学
生数约占全校的34%,建议学校合理安排自行车停车场地。请你结合上述统计的全过
程,再提出一条合理化建议: 。
(2013?苏州)一组数据:0,1,2,3,3,5,5,10的中位数是(  )
 
A.
2.5
B.
3
C.
3.5
D.
5
考点:
中位数.
分析:
根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.
解答:
解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10,
最中间两个数的平均数是:(3+3)÷2=3,
则中位数是3;
故选B.
点评:
此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
(2013?苏州)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:
(1)求这次抽样调查的样本容量,并补全图①;
(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)抽查人数的样本容量可由A级所占的比例40%,根据总数=某级人数÷比例来计算;可由总数减去A、C、D、E的人数求得B级的人数,再补全条形统计图;
(2)用样本估计总体,用总人数×达到优秀的员工的百分比,就是要求的结果.
解答:
解:(1)依题意有:20÷40%=50(人),
则这次抽样调查的样本容量为50.
50﹣20﹣5﹣8﹣5=12(人).
补全图①为:

(2)依题意有500×=370(人).
答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.
点评:
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.也考查了用样本估计总体.
(2013?泰州)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是__________岁.
【答案】:15.
(2013?南通)某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现
其中有5件不合格,那么估计该厂这10万件产品中合格品约为
A.9.5万件 B.9万件
C.9500件 D.5000件
(2013?南通)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:
某地区八年级地理会考模拟测试成绩统计表
分数段
90<x≤100
80<x≤90
70<x≤80
60<x≤70
x≤60
人数
1200
1461
642
480
217
(1)填空:
①本次抽样调查共测试了 ▲ 名学生;
②参加地理会考模拟测试的学生成绩的中位数落在分数段 ▲ 上;
③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为 ▲ ;
(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?
(2013?南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 86 分.
考点:
加权平均数.
分析:
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
解答:
解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).
故答案为86.
点评:
本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.
(2013?南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
考点:
折线统计图;用样本估计总体;扇形统计图.
专题:
图表型.
分析:
(1)用文学的人数除以所占的百分比计算即可得解;
(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;
(3)用体育所占的百分比乘以360°,计算即可得解;
(4)用总人数乘以科普所占的百分比,计算即可得解.
解答:
解:(1)90÷30%=300(名),
故,一共调查了300名学生;
(2)艺术的人数:300×20%=60名,
其它的人数:300×10%=30名;
补全折线图如图;
(3)体育部分所对应的圆心角的度数为:×360°=48°;
(4)1800×=480(名).
答:1800名学生中估计最喜爱科普类书籍的学生人数为480.
点评:
本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
(2013?钦州)下列说法错误的是(  )
 
A.
打开电视机,正在播放广告这一事件是随机事件
 
B.
要了解小赵一家三口的身体健康状况,适合采用抽样调查
 
C.
方差越大,数据的波动越大
 
D.
样本中个体的数目称为样本容量
考点:
随机事件;全面调查与抽样调查;总体、个体、样本、样本容量;方差.3718684
分析:
根据随机事件的概念以及抽样调查和方差的意义和样本容量的定义分别分析得出即可.
解答:
解:A、打开电视机,正在播放广告这一事件是随机事件,根据随机事件的定义得出,此选项正确,不符合题意;
B、要了解小赵一家三口的身体健康状况,适合采用全面调查,故此选项错误,符合题意;
C、根据方差的定义得出,方差越大,数据的波动越大,此选项正确,不符合题意;
D、样本中个体的数目称为样本容量,此选项正确,不符合题意.
故选:B.
点评:
此题主要考查了随机事件以及样本容量和方差的定义等知识,熟练掌握相关的定理是解题关键.
)(2013?玉林)已知一组从小到大的数据:0,4,x,10的中位数是5,则x=(  )
 
A.
5
B.
6
C.
7
D.
8
考点:
中位数
分析:
根据中位数是5,得出(4+x)÷2=5,求出x的值即可.
解答:
解:一组从小到大的数据:0,4,x,10的中位数是5,
则(4+x)÷2=5,
x=6;
故选B.
点评:
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,是一道基础题.
(2013?玉林)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是(  )
 
A.
1月至2月
B.
2月至3月
C.
3月至4月
D.
4月至5月
考点:
折线统计图.
分析:
根据折线图的数据,分别求出相邻两个月的音乐手机销售额的变化值,比较即可得解.
解答:
解:1月至2月,30﹣23=7万元,
2月至3月,30﹣25=5万元,
3月至4月,25﹣15=10万元,
4月至5月,19﹣14=5万元,
所以,相邻两个月中,用电量变化最大的是3月至4月.
故选C.
点评:
本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的音乐手机销售额变化量是解题的关键.
 (2013?包头)一组数据按从大到小排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为(  )
 
A.
6
B.
8
C.
9
D.
10
考点:
众数;中位数.
分析:
根据中位数为9,可求出x的值,继而可判断出众数.
解答:
解:由题意得,(8+x)÷2=9,
解得:x=10,
则这组数据中出现次数最多的是10,故众数为10.
故选D.
点评:
本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.
(2013?包头)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是 3 .
环数
7
8
9
人数
3
4
考点:
加权平均数.
分析:
先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.
解答:
解:设成绩为9环的人数是x,根据题意得:
(7×3+8×4+9?x)÷(3+4+x)=8,
解得:x=3,
则成绩为9环的人数是3;
故答案为:3.
点评:
此题考查了加权平均数,关键是根据加权平均数的计算公式和已知条件列出方程,是一道基础题.
 
(2013?呼和浩特)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:
成绩x(分)
频数
频率
50≤x<60
10
 0.05 
60≤x<70
16
0.08
70≤x<80
 10 
0.02
80≤x<90
62
 0.47 
90≤x<100
72
0.36
(1)补全频率分布直方图;
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.
考点:
频数(率)分布直方图;频数(率)分布表;可能性的大小.
专题:
计算题.
分析:
(1)由60≤x<70分数段的人数除以所占的百分比,求出总人数,进而求出70≤x<80分数段的频数,以及80≤x<90分数段的频率,补全表格即可;
(2)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.
解答:
解:(1)根据题意得:16÷0.08=200(人),
则70≤x<80分数段的频数为200﹣(10+16+62+72)=10(人),50≤x<60分数段频率为0.05,80≤x<90分数段的频率为0.47,补全条形统计图,如图所示:

故答案为:0.05;10;0.47;
(2)由表格可知:评为“D”的频率是=,由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;
∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,
∴P(B)>P(A)>P(C)>P(D),
∴随机调查一名参数学生的成绩等级“B”的可能性较大.
点评:
此题考查了频数(率)分布直方图,频数(率)分布表,以及可能性大小,弄清题意是解本题的关键.
(2013?毕节)数据4, 7, 4, 8,6, 6, 9,4的众数和中位数是( D )
A. 6,9 B. 4,8 C. 6, 8 D. 4, 6
 (2013?遵义)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:
(1)参与调查的学生及家长共有 400 人;
(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是 135 度.
(3)在条形统计图中,“非常了解”所对应的学生人数是 62 人;
(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求解;
(2)利用360°乘以对应的比例即可求解;
(3)利用总人数减去其它的情况的人数即可求解;
(4)求得调查的学生总数,则对“校园安全”知识达到“非常了解”和“基本了解”所占的比例即可求得,利用求得的比例乘以1200即可得到.
解答:
解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);
(2)基本了解的人数是:73+77=150(人),
则对应的圆心角的底数是:360×=135°;
(3)“非常了解”所对应的学生人数是:400﹣83﹣77﹣73﹣54﹣31﹣16﹣4=62;
(4)调查的学生的总人数是:62+73+54+16=205(人),
对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),
则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).
点评:
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(2013?北京)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
时间(小时)
5
6
7
8
人数
10
15
20
5
则这50名学生这一周在校的平均体育锻炼时间是
A. 6.2小时 B. 6.4小时 C. 6.5小时 D. 7小时
答案:B
解析:平均体育锻炼时间是=6.4小时。
 (2013?北京)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:
(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为__________平方千米;
(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;
(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位)。
第七届至第十届园博会游客量与停车位数量统计表
日均接待游客量
(万人次)
单日最多接待游客量
(万人次)
停车位数量
(个)
第七届
0.8
6
约3 000
第八届
2.3
8.2
约4 000
第九届
8(预计)
20(预计)
约10 500
第十届
1.9(预计)
7.4(预计)
约________
解析:
(2013?天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知(  )
 
A.
(1)班比(2)班的成绩稳定
B.
(2)班比(1)班的成绩稳定
 
C.
两个班的成绩一样稳定
D.
无法确定哪班的成绩更稳定
考点:
方差.
分析:
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答:
解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,
∴(1)班成绩的方差>(2)班成绩的方差,
∴(2)班比(1)班的成绩稳定.
故选B.
点评:
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
(2013?天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 50 ,图①中m的值是 32 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
考点:
条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.
分析:
(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;
(2)利用平均数、中位数、众数的定义分别求出即可;
(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.
解答:
解:(1)根据条形图4+16+12+10+8=50(人),
m=100﹣20﹣24﹣16﹣8=32;
(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,
∴这组数据的平均数为:16,
∵在这组样本数据中,10出现次数最多为16次,
∴这组数据的众数为:10,
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:(15=15)=15;
(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,
∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,
∴该校本次活动捐款金额为10元的学生约有608名.
故答案为:50,32.
点评:
此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
(2013山东滨州,21,8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).
根据以上信息,解答下列问题:
(1)该班共有多少名学生?其中穿175型校服的学生有多少?
(2)在条形统计图中,请把空缺的部分补充完整;
(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;
(4)求该班学生所穿校服型号的众数和中位数.
【解答过程】 解:(1)15÷3

展开更多......

收起↑

资源预览