资源简介 教师 日期学生课程编号 06 课型 暑假专题课题 平行垂直综合应用教学目标1、梳理基础知识点。 2、让学生熟悉本章考点及常考题型。 3、培养学生的计算能力。教学重点1、分析问题的灵活性及全面性。 2、计算环节的准确性。教学安排版块 时长1 知识梳理 202 例题解析 603 师生总结 104 当堂检测 305 课后练习 30……1.两条异面直线的公垂线、距离和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.定义:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条2.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为,,.3.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:.证明:假设直线不平行与平面,∵,∴,若,则和矛盾,若,则和成异面直线,也和矛盾,∴.4. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式:.证明:∵,∴和没有公共点,又∵,∴和没有公共点;即和都在内,且没有公共点,∴.题型一 选择【例1】1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B.C. D. 2.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC,其中恒成立的为( )A.①③ B.③④ C.①② D.②③④3.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条 B.1条 C.2条 D.1条或2条4.已知两条直线m、n与两个平面α、β,下列命题正确的是( )A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m⊥α,m⊥β,则α∥β D.若m⊥n,m⊥β,则n∥β5.如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′﹣FED的体积有最大值.A.① B.①② C.①②③ D.②③ 题型二 简答【例2】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【例3】在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(1)求证:PC⊥AE;(2)求证:CE∥平面PAB;(3)求三棱锥P﹣ACE的体积V.【例4】如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(1)求证:AC∥平面BEF;(2)求四面体BDEF的体积.1.如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是( )A. B. C.1 D.22.已知直线a,b,平面α,满足a α,则使b∥α的条件为( )A.b∥a B.b∥a且b α C.a与b异面 D.a与b不相交 3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.有无数条,不一定在平面α内 B.只有一条,不在平面α内C.有无数条,一定在平面α内 D.只有一条,且在平面α内4.两直线l1与l2异面,过l1作平面与l2平行,这样的平面( )A.不存在 B.有唯一的一个 C.有无数个 D.只有两个5.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V. 6.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E,F分别为PD,BC的中点.(1)求证:AE⊥PC;(2)G为线段PD上一点,若FG∥平面AEC,求的值.7.如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,求.8.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.9.如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.教师 日期学生课程编号 06 课型 暑假专题课题 平行垂直综合应用教学目标1、梳理基础知识点。 2、让学生熟悉本章考点及常考题型。 3、培养学生的计算能力。教学重点1、分析问题的灵活性及全面性。 2、计算环节的准确性。教学安排版块 时长1 知识梳理 202 例题解析 603 师生总结 104 当堂检测 305 课后练习 30……1.两条异面直线的公垂线、距离和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.定义:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条2.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为,,.3.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:.证明:假设直线不平行与平面,∵,∴,若,则和矛盾,若,则和成异面直线,也和矛盾,∴.4. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式:.证明:∵,∴和没有公共点,又∵,∴和没有公共点;即和都在内,且没有公共点,∴.题型一 选择【例1】1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B.C. D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A. 2.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC,其中恒成立的为( )A.①③ B.③④ C.①② D.②③④【解答】解:如图所示,连接AC、BD相交于点O,连接EM,EN.对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.故选:A.3.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条 B.1条 C.2条 D.1条或2条【解答】解:如图所示,四边形EFGH为平行四边形,则EF∥GH,∵EF 平面BCD,GH 平面BCD,∴EF∥平面BCD,∵EF 平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD,∴CD∥平面EFGH,同理AB∥平面EFGH,故选C.4.已知两条直线m、n与两个平面α、β,下列命题正确的是( )A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m⊥α,m⊥β,则α∥β D.若m⊥n,m⊥β,则n∥β【解答】解:对于A,若m∥α,n∥α,则m,n可以平行、相交,也可以异面,故不正确;对于B,若m∥α,m∥β,则当m平行于α,β的交线时,也成立,故不正确;对于C,若m⊥α,m⊥β,则m为平面α与β的公垂线,则α∥β,故正确;对于D,若m⊥n,m⊥β,则n∥β,n也可以在β内故选C. 5.如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′﹣FED的体积有最大值.A.① B.①② C.①②③ D.②③【解答】解:①中由已知可得面A′FG⊥面ABC,∴点A′在面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当面A′DE⊥面ABC时,三棱锥A′﹣FDE的体积达到最大.故选C 题型二 简答【例2】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF 平面ABC,AB 平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【例3】在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(1)求证:PC⊥AE;(2)求证:CE∥平面PAB;(3)求三棱锥P﹣ACE的体积V.【解答】解:(1)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.取PC中点F,连AF,EF,∵PA=AC=2,∴PC⊥AF.∵PA⊥平面ABCD,CD 平面ABCD,∴PA⊥CD,又∠ACD=90°,即CD⊥AC,∴CD⊥平面PAC,∴CD⊥PC,∴EF⊥PC,∴PC⊥平面AEF,∴PC⊥AE.(2)证明:取AD中点M,连EM,CM.则EM∥PA.∵EM 平面PAB,PA 平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,AC=AM=2,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC 平面PAB,AB 平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC 平面EMC,∴EC∥平面PAB.(3)由(1)知AC=2,EF=CD,且EF⊥平面PAC.在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.则V=.【例4】如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(1)求证:AC∥平面BEF;(2)求四面体BDEF的体积.【解答】证明:(1)设AC∩BD=O,取BE中点G,连接FG,OG,所以,OG∥DE,且OG=DE.因为AF∥DE,DE=2AF,所以AF∥OG,且OG=AF,从而四边形AFGO是平行四边形,FG∥OA.因为FG 平面BEF,AO 平面BEF,所以AO∥平面BEF,即AC∥平面BEF.…(6分)解:(2)因为平面ABCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF.因为AF∥DE,∠ADE=90°,DE=DA=2AF=2所以△DEF的面积为S△DEF=×ED×AD=2,所以四面体BDEF的体积V= S△DEF×AB=(12分)“线线”与“线面”平行关系:一条直线和已知平面平行,当且仅当这条直线平行于经过这条直线的平面和已知平面的交线.1.如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是( )A. B. C.1 D.2【解答】解:∵直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,∴HG∥AB;同理:EF∥AB,FG∥CD,EH∥CD,所以:FG∥EH,EF∥HG.故:四边形EFGH为平行四边形.又∵AD=BD,AC=BC的对称性,可知AB⊥CD.所以:四边形EFGH为矩形.设BF:BD=BG:BC=FG:CD=x,(0≤x≤1)FG=2x,HG=2(1﹣x)SEFGH=FG×HG=4x(1﹣x)=﹣4()=﹣4根据二次函数的性质可知:SEFGH面积的最大值1.故选:C.2.已知直线a,b,平面α,满足a α,则使b∥α的条件为( )A.b∥a B.b∥a且b α C.a与b异面 D.a与b不相交【解答】解:∵a α,∴b∥a b∥α,或b α,故A不成立;b∥a且b α b∥α,故B成立;a与b异面 b∥α或b与α相交,故C不成立;a与b不相交 b∥α或b α或b与α相交,故D不成立.故选:B. 3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.有无数条,不一定在平面α内 B.只有一条,不在平面α内C.有无数条,一定在平面α内 D.只有一条,且在平面α内【解答】解:证明:假设过点P且平行于l的直线有两条m与n,∴m∥l且n∥l由平行公理可得m∥n.这与两条直线m与n相交于点P相矛盾.又∵点P在平面内,∴点P且平行于l的直线有一条且在平面内,∴假设错误.所以直线l∥平面α,P∈α,那么过点P且平行于直线l的直线只有一条,且在平面α内.故选D.4.两直线l1与l2异面,过l1作平面与l2平行,这样的平面( )A.不存在 B.有唯一的一个 C.有无数个 D.只有两个【解答】解:在l1上取一点,做直线a,使得a∥l2,因为l1与a相交,所以确定一个平面,又因为 a∥l2,所以l2平行这个平面,由公理三知满足条件的平面有且只有一个.故选B.5.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.(Ⅰ)求证:GF∥底面ABC;(Ⅱ)求证:AC⊥平面EBC;(Ⅲ)求几何体ADEBC的体积V.【解答】解:(I)证法一:取BE的中点H,连接HF、GH,(如图)∵G、F分别是EC和BD的中点∴HG∥BC,HF∥DE,(2分)又∵ADEB为正方形∴DE∥AB,从而HF∥AB∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,∴平面HGF∥平面ABC∴GF∥平面ABC(5分)证法二:取BC的中点M,AB的中点N连接GM、FN、MN(如图)∵G、F分别是EC和BD的中点∴(2分)又∵ADEB为正方形∴BE∥AD,BE=AD∴GM∥NF且GM=NF∴MNFG为平行四边形∴GF∥MN,又MN 平面ABC,∴GF∥平面ABC(5分)证法三:连接AE,∵ADEB为正方形,∴AE∩BD=F,且F是AE中点,(2分)∴GF∥AC,又AC 平面ABC,∴GF∥平面ABC(5分)(Ⅱ)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)∴BE⊥AC又∵CA2+CB2=AB2∴AC⊥BC,∵BC∩BE=B,∴AC⊥平面BCE(9分)(Ⅲ)连接CN,因为AC=BC,∴CN⊥AB,(10分)又平面ABED⊥平面ABC,CN 平面ABC,∴CN⊥平面ABED.(11分)∵三角形ABC是等腰直角三角形,∴,(12分)∵C﹣ABED是四棱锥,∴VC﹣ABED==(14分) 6.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E,F分别为PD,BC的中点.(1)求证:AE⊥PC;(2)G为线段PD上一点,若FG∥平面AEC,求的值.【解答】(1)证明:∵AP⊥平面ABCD,∴AP⊥CD,在矩形ABCD中,CD⊥AD,又AP∩AD=A,∴CD⊥平面PAD,∵AE 平面PAD,∴CD⊥AE,在△PAD中,E为PD中点,PA=AD,∴AE⊥PD,又CD∩PD=D,CD,PD 平面PCD,∴AE⊥平面PCD,∵PC 平面PCD,∴AE⊥PC(2)解:取AP中点M,连接MF,MG,ME.在△PAD中,M,E分别为PA,PD的中点则ME为△PAD的中位线∴,又,∴ME∥FC,ME=FC,∴四边形MECF为平行四边形,∴MF∥EC,又MF 平面AEC,EC 平面AEC,∴MF∥平面AEC,又FG∥平面AEC,MF∩FG=F,MF,FG 平面MFG,∴平面MFG∥平面AEC,又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,∴MG∥AE,又∵M为AP中点,∴G为PE中点,又E为PD中点,∴,即.7.如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,求.【解答】解:(1)∵BD是AC边上的高,∴BD⊥CD,BD⊥PD,又PD∩CD=D,∴BD⊥平面PCD,又PE 平面PCD中,∴BD⊥PE,即PE⊥BD;(2)如图所示,连接BE,交DM与点F,∵PE∥平面DMN,∴PE∥NF又点N为PB中点,∴点F为BE的中点;∴DF=BE=EF;又∠BCD=90°﹣60°=30°,∴△DEF是等边三角形,设DE=a,则BD=a,DC=BD=3a;∴==.8.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.【解答】证明:(1)由题意知,梯形ABCD为等腰梯形,且,由AB2+BC2=AC2,可知AC⊥BC,又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,BC 平面ABCD,所以BC⊥平面ACEF,又AM 平面ACEF,所以BC⊥AM.解:(2)设AC与BD交于点N,因为AM∥平面BDE,AM 平面ACEF,平面ACEF∩平面BDE=EN,所以AM∥EN,FE∥AC,故四边形ANEM是平行四边形,所以AM=EN,由CD=a,CN=DN,∠DNC=120°,所以,又CE=a,所以,所以. 9.如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【解答】证明:(1)∵BF⊥平面ACE,AE 平面ACE,∴BF⊥AE,BF⊥CE,∵EB=BC,∴F是CE的中点,又∵AD⊥平面ABE,AD 平面ABCD,∴平面ABCD⊥平面ABE,∵平面ABCD∩平面ABE=AB,BC⊥AB∴BC⊥平面ABE,从而BC⊥AE,且BC∩BF=B,∴AE⊥平面BCE,BE 平面BCE,∴AE⊥BE;(2)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,∴CN=CE.∵MG∥AE,MG 平面ADE,AE 平面ADE,∴MG∥平面ADE.同理,GN∥平面ADE,且MG与GN交于G点,∴平面MGN∥平面ADE.又MN 平面MGN,∴MN∥平面ADE.故N点为线段CE上靠近C点的一个三等分点. 展开更多...... 收起↑ 资源列表 第6讲平行垂直综合应用-学生版.docx 第6讲平行垂直综合应用-教师版.docx