资源简介 菱形的性质与判定的综合学习目标:1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.3.在学习过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力.预习导学:阅读教材P8-9,能灵活运用菱形的性质及判定.自学反馈1.如图所示:在菱形ABCD中,AB=6,(1)三条边AD、DC、BC的长度分别是多少?(2)对角线AC与BD有什么位置关系?(3)若∠ADC=120°,求AC的长.(4)菱形ABCD的面积.合作探究:活动1 小组讨论例1 如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长为10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,即∠AED=90°,DE=BD×10=5(cm)∴在Rt△ADE中,由勾股定理可得:∴AC=2AE=2×12=24(cm).(2)S菱形ABCD= S△ABD+ S△CBD=2×S△ABD=2××BD×AE= BD×AE=10×12=120(cm2).注意:菱形的面积除了以上求法,还可以用对角线相乘除以2.活动2 跟踪训练1.如图,菱形ABCD的周长为40cm,它的一条对角线BD长10cm,则∠ABC= °,AC= cm.2.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是 cm2.3. 如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.课堂小结通过本节课的学习你有哪些收获,你还存在什么疑问? 展开更多...... 收起↑ 资源预览