资源简介 中小学教育资源及组卷应用平台第10讲 利用导数研究函数的极值【学习目标】了解函数在某点取得极值的必要条件和充分条件;2、会用导数求函数的极大值、极小值;【备考指南】利用导数求函数的极值、最值是高考中的热点问题、高频考点,题型有求函数的极值、最值和已知函数的极值、最值求参数值或取值范围,难度较大.【考点总结】(1)函数的极小值若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则x=a叫做函数的极小值点,f(a)叫做函数的极小值。(2)函数的极大值若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则x=b叫做函数的极大值点,f(b)叫做函数的极大值,极大值和极小值统称为极值。【考点解析】【考点】一、利用导数解决函数的极值问题角度一 根据图象判断函数的极值例1、设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)·f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)【解析】 由题图可知,当x<-2时,1-x>3,此时f′(x)>0;当-22时,1-x<-1,此时f′(x)>0,由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.【答案】 D知图判断函数的极值的情况;先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号,最后判断是极大值点还是极小值点. 角度二 求函数的极值例2、(2020·湖南省五市十校联考)已知函数f(x)=ln x-ax2+x,a∈R.(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)令g(x)=f(x)-(ax-1),求函数g(x)的极值.【解】 (1)当a=0时,f(x)=ln x+x,则f(1)=1,所以切点为(1,1),又f′(x)=+1,所以切线斜率k=f′(1)=2,故切线方程为y-1=2(x-1),即2x-y-1=0.(2)g(x)=f(x)-(ax-1)=ln x-ax2+(1-a)x+1,则g′(x)=-ax+(1-a)=,当a≤0时,因为x>0,所以g′(x)>0.所以g(x)在(0,+∞)上是增函数,函数g(x)无极值点.当a>0时,g′(x)==-,令g′(x)=0得x=.所以当x∈时,g′(x)>0;当x∈时,g′(x)<0.因为g(x)在上是增函数,在上是减函数.所以x=时,g(x)有极大值g=ln-×+(1-a)·+1=-ln a.综上,当a≤0时,函数g(x)无极值;当a>0时,函数g(x)有极大值-ln a,无极小值.利用导数研究函数极值问题的一般流程角度三 已知函数的极值求参数例3、设函数f(x)=[ax2-(4a+1)x+4a+3]ex.(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.【解】 (1)因为f(x)=[ax2-(4a+1)x+4a+3]ex,所以f′(x)=[ax2-(2a+1)x+2]ex.f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0.所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]ex=(ax-1)(x-2)ex.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.当a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. 【变式】1.(2020·安徽毛坦厂中学4月联考)已知函数f(x)=2ln x+ax2-3x在x=2处取得极小值,则f(x)的极大值为( )A.2 B.-C.3+ln 2 D.-2+2ln 2解析:选B.由题意得,f′(x)=+2ax-3,因为f(x)在x=2处取得极小值,所以f′(2)=4a-2=0,解得a=,所以f(x)=2ln x+x2-3x,f′(x)=+x-3=,所以f(x)在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,所以f(x)的极大值为f(1)=-3=-.故选B.【变式】2.已知函数f(x)=ln x.(1)求f(x)的图象过点P(0,-1)的切线方程;(2)若函数g(x)=f(x)-mx+存在两个极值点x1,x2,求m的取值范围.解:(1)由题意得,函数f(x)的定义域为(0,+∞),f′(x)=.设切点坐标为(x0,ln x0),则切线方程为y=x+ln x0-1.把点P(0,-1)代入切线方程,得ln x0=0,所以x0=1,所以过点P(0,-1)的切线方程为y=x-1.(2)因为g(x)=f(x)-mx+=ln x-mx+,所以g′(x)=-m-==-,令h(x)=mx2-x+m,要使g(x)存在两个极值点x1,x2,则方程mx2-x+m=0有两个不相等的正数根x1,x2.故只需满足即可,解得0【考点】二、利用导数研究函数的最值例1、(2019·高考全国卷Ⅲ)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.【解】 (1)f′(x)=6x2-2ax=2x(3x-a).令f′(x)=0,得x=0或x=.若a>0,则当x∈(-∞,0)∪时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(-∞,0),单调递增,在单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x∈∪(0,+∞)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在,(0,+∞)单调递增,在单调递减.(2)满足题设条件的a,b存在.(ⅰ)当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.(ⅱ)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.(ⅲ)当0若-+b=-1,b=1,则a=3,与0若-+b=-1,2-a+b=1,则a=3或a=-3或a=0,与0综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.求函数f(x)在闭区间[a,b]内的最大值和最小值的思路(1)若所给的闭区间[a,b]不含有参数,则只需对函数f(x)求导,并求f′(x)=0在区间[a,b]内的根,再计算使导数等于零的根的函数值,把该函数值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.(2)若所给的闭区间[a,b]含有参数,则需对函数f(x)求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.[提醒] 求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【变式】已知函数f(x)=+kln x,k<,求函数f(x)在上的最大值和最小值.解:因为f(x)=+kln x,f′(x)=+=.(1)若k=0,则f′(x)=-在上恒有f′(x)<0,所以f(x)在上单调递减.所以f(x)min=f(e)=,f(x)max=f=e-1.(2)若k≠0,f′(x)==.①若k<0,则在上恒有<0,所以f(x)在上单调递减,所以f(x)min=f(e)=+kln e=+k-1,f(x)max=f=e-k-1.②若k>0,由k<,得>e,则x-<0,所以<0,所以f(x)在上单调递减.所以f(x)min=f(e)=+kln e=+k-1,f(x)max=f=e-k-1.综上,k<时,f(x)min=+k-1,f(x)max=e-k-1.【考点】三、函数极值与最值的综合问题例1、已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为-e3,求f(x)在区间[-5,+∞)上的最大值.【解】 (1)f′(x)==.令g(x)=-ax2+(2a-b)x+b-c,因为ex>0,所以y=f′(x)的零点就是g(x)=-ax2+(2a-b)x+b-c的零点,且f′(x)与g(x)符号相同.又因为a>0.所以当-30,即f′(x)>0,当x<-3或x>0时,g(x)<0,即f′(x)<0,所以f(x)的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x=-3是f(x)的极小值点,所以有解得a=1,b=5,c=5,所以f(x)=.因为f(x)的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞),所以f(0)=5为函数f(x)的极大值,故f(x)在区间[-5,+∞)上的最大值取f(-5)和f(0)中的最大者,而f(-5)==5e5>5=f(0),所以函数f(x)在区间[-5,+∞)上的最大值是5e5.求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【变式】(2020·河南百校联盟模拟)已知函数f(x)=ex-ax,a>0.(1)记f(x)的极小值为g(a),求g(a)的最大值;(2)若对任意实数x,恒有f(x)≥0,求f(a)的取值范围.解:(1)函数f(x)的定义域是(-∞,+∞),f′(x)=ex-a.令f′(x)=0,得x=ln a,易知当x∈(ln a,+∞)时,f′(x)>0,当x∈(-∞,ln a)时,f′(x)<0,所以函数f(x)在x=ln a处取极小值,g(a)=f(x)极小值=f(ln a)=eln a-aln a=a-aln a.g′(a)=1-(1+ln a)=-ln a,当00,g(a)在(0,1)上单调递增;当a>1时,g′(a)<0,g(a)在(1,+∞)上单调递减.所以a=1是函数g(a)在(0,+∞)上的极大值点,也是最大值点,所以g(a)max=g(1)=1.(2)显然,当x≤0时,ex-ax≥0(a>0)恒成立.当x>0时,由f(x)≥0,即ex-ax≥0,得a≤.令h(x)=,x∈(0,+∞),则h′(x)==,当01时,h′(x)>0,故h(x)的最小值为h(1)=e,所以a≤e,故实数a的取值范围是(0,e].f(a)=ea-a2,a∈(0,e],f′(a)=ea-2a,易知ea-2a≥0对a∈(0,e]恒成立,故f(a)在(0,e]上单调递增,所以f(0)=121世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览