资源简介 考点二十八 正方形【命题趋势】在中考中,正方形主要在选择题,填空题,解答题考查为主,并结合相似,锐角三角函数结合考查,;其中正方形常考4种模型是中考中的重难点。【中考考查重点】正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等,并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。1.(2020秋 法库县期末)平行四边形、矩形、菱形、正方形共有的性质是( )A.对角线互相平分 B.对角线相等C.对角线互相垂直 D.对角线互相垂直平分2.(2020秋 武功县期末)如图,在正方形ABCD中,AB=2,P是AD边上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )A.4 B.2 C. D.23.(2010秋 金口河区期末)如图,在正方形ABCD中,E是DC上一点,F为BC延长线上一点,∠BEC=70°,且△BCE≌△DCF.连接EF,则∠EFD的度数是( )A.10° B.15° C.20° D.25°4.(2020春 沙坪坝区期末)如图,正方形ABCD中,AB=,点E是对角线AC上一点,EF⊥AB于点F,连接DE,当∠ADE=22.5°时,EF的长是( )A.1 B.2﹣2 C.﹣1 D.5.(2021 罗湖区校级模拟)如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是( )A.20 B.16 C.34 D.256.(2020春 老城区校级月考)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是( )A.1 B.2 C.3 D.47.(2021秋 南海区月考)如图,点B在MN上,过AB的中点O作MN的平行线,分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状,并证明你的结论.(2)当△CBD满足什么条件时,四边形ACBD是正方形?并给出证明.1.(2021秋 武侯区期末)下列说法中,是正方形具有而矩形不具有的性质是( )A.两组对边分别平行 B.对角线互相垂直C.四个角都为直角 D.对角线互相平分2.(2017春 柳州期末)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )A.2 B.4 C.2 D.63.(2021秋 普宁市期末)下列说法中正确的是( )A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形4.(2020 眉山)下列说法正确的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形5.(2021秋 海州区期末)如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接DE,若AB=10,AE=3,则ED的长度为( )A.7 B.2 C. D.6.(2021秋 铁锋区期末)如图,已知在正方形ABCD中,AB=BC=CD=AD=10厘米,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动时间为t秒.当△BPE与△CQP全等时,t的值为( )A.2 B.2或1.5 C.2.5 D.2.5或27.(2021春 海淀区校级期末)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?1.(2021 玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是( )A.仅① B.仅③ C.①② D.②③2.(2019 毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A. B.3 C. D.53.(2021 重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1 B. C.2 D.24.(2021 湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个5.(2020 陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为 .6.(2021 邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.1.(2021 云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具,此时测得∠D=60°,对角线AC长为16cm,改变教具的形状成为图2所示的正方形,则正方形的边长为( )A.8cm B.4cm C.16cm D.16cm2.(2021 石家庄一模)将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,MN,甲、乙两人有如下结论:甲:若四边形ABCD为正方形,则四边形PQMN必是正方形;乙:若四边形PQMN为正方形,则四边形ABCD必是正方形.下列判断正确的是( )A.甲正确,乙不正确 B.甲不正确,乙正确C.甲、乙都不正确 D.甲、乙都正确3.(2021 临沂模拟)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是( )A.②③ B.②④ C.①③④ D.②③④4.(2020 宁津县一模)下列说法正确的是( )A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形5.(2021 南浔区模拟)如图,E,F是正方形ABCD的边BC上两个动点,BE=CF.连接AE,BD交于点G,连接CG,DF交于点M.若正方形的边长为1,则线段BM的最小值是( )A. B. C. D.6.(2021 平凉模拟)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.7.(2021 沂水县二模)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时,如图1,求∠DMC的度数;(2)若点M是BD上任意一点时,将BM绕点B逆时针旋转60°得到BN,连接EN,CM,求证:EN=CM;(3)当点M在何处时,BM+2CM的值最小,说明理由.8.(2022 南昌模拟)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图1,连接BG、CF,①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN,猜想MN与BE的数量关系与位置关系,并说明理由.考点二十八 正方形【命题趋势】在中考中,正方形主要在选择题,填空题,解答题考查为主,并结合相似,锐角三角函数结合考查,;其中正方形常考4种模型是中考中的重难点。【中考考查重点】正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等,并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。1.(2020秋 法库县期末)平行四边形、矩形、菱形、正方形共有的性质是( )A.对角线互相平分 B.对角线相等C.对角线互相垂直 D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.2.(2020秋 武功县期末)如图,在正方形ABCD中,AB=2,P是AD边上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )A.4 B.2 C. D.2【答案】C【解答】解:在正方形ABCD中,OA⊥OB,∠OAD=45°,∵PE⊥AC,PF⊥BD,∴四边形OEPF为矩形,△AEP是等腰直角三角形,∴PF=OE,PE=AE,∴PE+PF=AE+OE=OA,∵正方形ABCD的边长为2,∴OA=AC==.故选:C.3.(2010秋 金口河区期末)如图,在正方形ABCD中,E是DC上一点,F为BC延长线上一点,∠BEC=70°,且△BCE≌△DCF.连接EF,则∠EFD的度数是( )A.10° B.15° C.20° D.25°【答案】D【解答】解:∵四边形ABCD是正方形,∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF,∠BEC=∠DFC=70°;则△ECF是等腰直角三角形,得∠EFC=45°,∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春 沙坪坝区期末)如图,正方形ABCD中,AB=,点E是对角线AC上一点,EF⊥AB于点F,连接DE,当∠ADE=22.5°时,EF的长是( )A.1 B.2﹣2 C.﹣1 D.【答案】C【解答】解:∵四边形ABCD是正方形,∴AB=CD=BC=,∠B=∠ADC=90°,∠BAC=∠CAD=45°,∴AC=AB=2,∵∠ADE=22.5°,∴∠CDE=90°﹣22.5°=67.5°,∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°,∴∠CDE=∠CED,∴CD=CE=,∴AE=2﹣,∵EF⊥AB,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴EF==﹣1,故选:C.5.(2021 罗湖区校级模拟)如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是( )A.20 B.16 C.34 D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,∴在△DAO和△ABM中,∴△DAO≌△ABM(AAS),∴OA=BM,AM=OD,∵A(﹣3,0),B(2,b),∴OA=3,OM=2,∴OD=AM=5,∴AD==,∴正方形ABCD的面积=34,故选:C.6.(2020春 老城区校级月考)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是( )A.1 B.2 C.3 D.4【答案】C【解答】解:如图,连接PC,延长AP交EF于H,延长FP交AB于G,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,又∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①④正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故③错误;∵PF∥BC,∴∠AGF=∠ABC=90°,∵∠BAP=∠PFE,∠APG=∠FPH,∴∠AGP=∠AHF=90°,∴AP⊥EF,故②正确,故选:C.7.(2021秋 南海区月考)如图,点B在MN上,过AB的中点O作MN的平行线,分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状,并证明你的结论.(2)当△CBD满足什么条件时,四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时,四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形,证明:∵CD平行MN,∴∠OCB=∠CBM,∵BC平分∠ABM,∴∠OBC=∠CBM,∴∠OCB=∠OBC,∴OC=OB,同理可证:OB=OD,∴OA=OB=OC=OD,∵CD=OC+OD,AB=OA+OB,∴AB=CD,∴四边形ACBD是矩形;(2)△CBD满足CB=BD时,四边形ACBD是正方形,证明:由(1)得四边形ACBD是矩形,∵CB=BD,∴四边形ACBD是正方形.1.(2021秋 武侯区期末)下列说法中,是正方形具有而矩形不具有的性质是( )A.两组对边分别平行 B.对角线互相垂直C.四个角都为直角 D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春 柳州期末)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )A.2 B.4 C.2 D.6【答案】A【解答】解:如图,∵四边形ABCD为正方形,∴∠CAD=∠BDA=45°,∵PE⊥AC于点E,PF⊥BD于点F,∴△APE和△PDF为等腰直角三角形,∴PE=AP,PF=PD,∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋 普宁市期末)下列说法中正确的是( )A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角,说法错误,故本选项不符合题意;B、菱形的对角线互相垂直,故本选项不符合题意;C、有一组邻边相等的矩形是正方形,正确,故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意.故选:C.4.(2020 眉山)下列说法正确的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形,可以是平行四边形,故选项A不合题意;B、对角线互相垂直平分的四边形是菱形,故选项B符合题意;C、对角线相等的平行四边形是矩形,故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形,故选项D不合题意;故选:B.5.(2021秋 海州区期末)如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接DE,若AB=10,AE=3,则ED的长度为( )A.7 B.2 C. D.【答案】C【解答】解:如图,连接BE,∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,AB=AD,∵AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE,∵EF⊥AB于点F,AE=3,∴AF=EF=3,∵AB=10,∴BF=7,∴BE==,∴ED=.故选:C.6.(2021秋 铁锋区期末)如图,已知在正方形ABCD中,AB=BC=CD=AD=10厘米,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动时间为t秒.当△BPE与△CQP全等时,t的值为( )A.2 B.2或1.5 C.2.5 D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10﹣6=4厘米,∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t==(秒),故选:D.7.(2021春 海淀区校级期末)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴∠BFE=90°,∠BGE=90°.又∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.1.(2021 玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是( )A.仅① B.仅③ C.①② D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形,添加c即一组邻边相等的平行四边形是菱形,再添加d即一个角是直角的菱形是正方形,故①正确;②由b得到一组对边平行且相等的四边形是平行四边形,添加d即有一个角是直角的平行四边形是矩形,再添加c即一组邻边相等的矩形是正方形,故②正确;③由a得到两组对边分别相等的四边形是平行四边形,添加b得到一组对边平行且相等的平行四边形仍是平行四边形,再添加c即一组邻边相等的平行四边形是菱形,不能得到四边形是正方形,故③不正确;故选:C.2.(2019 毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A. B.3 C. D.5【答案】B【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.3.(2021 重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1 B. C.2 D.2【答案】C【解答】解:∵四边形ABCD是正方形,∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,∴∠DON+∠CON=90°,∵ON⊥OM,∴∠MON=90°,∴∠DON+∠DOM=90°,∴∠DOM=∠CON,在△DOM和△CON中,,∴△DOM≌△CON(ASA),∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,∴△DOC的面积是1,∴正方形ABCD的面积是4,∴AB2=4,∴AB=2,故选:C.4.(2021 湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC=.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故选:C.5.(2020 陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为 .【答案】4 【解答】解:如图,连接AC,BD交于点H,过点O和点H的直线MN平分该组合图形的面积,交AD于S,取AE中点P,取AB中点Q,连接OP,HQ,过点O作OT⊥QH于T,∵四边形ABCD是矩形,∴AH=HC,又∵Q是AB中点,∴QH=BC=4,QH∥BC,AQ=BQ=2,同理可求PO=AG=2,PO∥AG,EP=AP=2,∴PO∥AD∥BC∥EF∥QH,EP=AP=AQ=BQ,∴MO=OS=SH=NH,∠OPQ=∠PQH=90°,∵OT⊥QH,∴四边形POTQ是矩形,∴PO=QT=2,OT=PQ=4,∴TH=2,∴OH===2,∴MN=2OH=4,故答案为:4.6.(2021 邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.【答案】(1) 略 (2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=,∴BD===8,由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,又AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF=4﹣2=2,故四边形BEDF为菱形.∵∠DOE=90°,∴DE===2.∴4DE=,故四边形BEDF的周长为8.1.(2021 云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具,此时测得∠D=60°,对角线AC长为16cm,改变教具的形状成为图2所示的正方形,则正方形的边长为( )A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AD=DC,∵∠D=60°,∴△ADC是等边三角形,∴AD=DC=AC=16cm,∴正方形ABCD的边长为16cm,故选:C.2.(2021 石家庄一模)将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,MN,甲、乙两人有如下结论:甲:若四边形ABCD为正方形,则四边形PQMN必是正方形;乙:若四边形PQMN为正方形,则四边形ABCD必是正方形.下列判断正确的是( )A.甲正确,乙不正确 B.甲不正确,乙正确C.甲、乙都不正确 D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形,可设AB=BC=CD=AD=x,∴AQ=4﹣x,AP=3+x,∴PQ2=AQ2+AP2,即PQ===,x取值不同则PQ的长度不同,∴甲不正确,若四边形PQMN为正方形,则PQ=PN=MN=MQ=5,且∠QMD+∠MQD=∠QAP=∠AQP+∠QPA=90°,在△QMD和△PQA中,,∴△QMD≌△PQA(ASA),∴QD=AP,同理QD=AP=MC=BN,又∵BP=MD=AQ,∴QD﹣AD=PA﹣AB,∴AB=AD,同理AB=CD=AD=BC,即四边形ABCD为菱形,∵∠DAB=180°﹣∠QAP=90°,则四边形ABCD为正方形,∴乙正确,故选:B.3.(2021 临沂模拟)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是( )A.②③ B.②④ C.①③④ D.②③④【答案】D【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故选:D.4.(2020 宁津县一模)下列说法正确的是( )A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形,故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形,故该选项错误;C、四条边相等的四边形是菱形,不是正方形,故该选项错误;D、对角线相互垂直的四边形不是平行四边形,故该选项错误,故选:A.5.(2021 南浔区模拟)如图,E,F是正方形ABCD的边BC上两个动点,BE=CF.连接AE,BD交于点G,连接CG,DF交于点M.若正方形的边长为1,则线段BM的最小值是( )A. B. C. D.【答案】D【解答】解:如图,在正方形ABCD中,AB=AD=CB,∠EBA=∠FCD,∠ABG=∠CBG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴∠BAG=∠BCG,∴∠CDF=∠BCG,∵∠DCM+∠BCG=∠FCD=90°,∴∠CDF+∠DCM=90°,∴∠DMC=180°﹣90°=90°,取CD的中点O,连接OB、OF,则OF=CO=CD=,在Rt△BOC中,OB===,根据三角形的三边关系,OM+BM>OB,∴当O、M、B三点共线时,BM的长度最小,∴BM的最小值=OB﹣OF==.故选:D.6.(2021 平凉模拟)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.【答案】(1)略 (2)当AB:AD=1:2时,四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS),∴BM=CM;(2)解:当AB:AD=1:2时,四边形MENF是正方形,理由如下:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,∵MF=CM,∴NE=FM,∵NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;∵M为AD中点,∴AD=2AM,∵AB:AD=1:2,∴AD=2AB,∴AM=AB,∵∠A=90°,∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形.7.(2021 沂水县二模)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时,如图1,求∠DMC的度数;(2)若点M是BD上任意一点时,将BM绕点B逆时针旋转60°得到BN,连接EN,CM,求证:EN=CM;(3)当点M在何处时,BM+2CM的值最小,说明理由.【答案】(1)60° (2)略 (3)当M点位于BD,CE交点时,BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形,∴EB=AB=AE,∠EBA=60°,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴EB=CB,∠EBC=∠EBA+∠ABC=60°+90°=150°,∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°,∵BD是正方形ABCD的对角线,∴∠DBC=45°,∵∠DMC是△BMC的外角,∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知,BM=BN,∠MBN=60°,∵∠MBA=45°,∴∠ABN=∠MBN﹣∠MBA=15°,∵∠ABE=60°,∴∠NBE=∠ABE﹣∠ABN=45°,在△BMC和△BNE中,,∴△BMC≌△BNE(SAS),∴CM=EN;(3)当M点位于BD,CE交点时,BM+2CM的值最小,理由如下:在△ADM和△CDM中,,∴△ADM≌△CDM(SAS),∴AM=CM,将BM绕点B旋转60°,得到BN,∵∠EBN+∠NBA=60°,∠NBA+∠ABM=60°,∴∠EBN=∠ABM,在△ENB和△AMB中,,∴△ENB≌△AMB(SAS),∴AM=EN,∵BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴BM=NM,∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM,即E,N,M,C四点共线时,有最小值.8.(2022 南昌模拟)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图1,连接BG、CF,①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN,猜想MN与BE的数量关系与位置关系,并说明理由.【答案】(1)①= ②45°(2)BE=2MN,MN⊥BE【解答】解:(1)①如图1,连接AF,AC,∵四边形ABCD和四边形AEFG都是正方形,∴AC=AB,AF=AG,∠CAB=∠GAF=45°,∠BAD=90°,∴∠CAF=∠BAG,,∴△CAF∽△BAG,∴=;②∵AC是正方形BCD的对角线,∴∠ABC=90°,∠ACB=45°,在△BCH中,∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN,MN⊥BE,理由如下:如图2,连接ME,过点C作CQ∥EF,交直线ME于Q,连接BH,设CF与AD交点为P,CF与AG交点为R,∵CQ∥EF,∴∠FCQ=∠CFE,∵点M是CF的中点,∴CM=MF,又∵∠CMQ=∠FME,∴△CMQ≌△FME(ASA),∴CQ=EF,ME=QM,∴AE=CQ,∵CQ∥EF,AG∥EF,∴CQ∥AG,∴∠QCF=∠CRA,∵AD∥BC,∴∠BCF=∠APR,∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC,∵∠DAG+∠APR+∠ARC=180°,∠BAE+∠DAG=180°,∴∠BAE=∠BCQ,又∵BC=AB,CQ=AE,∴△BCQ≌△BAE(SAS),∴BQ=BE,∠CBQ=∠ABE,∴∠QBE=∠CBA=90°,∵MQ=ME,点N是BE中点,∴BQ=2MN,MN∥BQ,∴BE=2MN,MN⊥BE. 展开更多...... 收起↑ 资源列表 考点28 正方形(原卷版).docx 考点28 正方形(教师版含解析).docx