资源简介 6.6 商不变的规律预习案一、自主学习目标及范围1.经历探索与发现商不变规律的过程,理解商不变的规律,发展提出问题和解决问题的能力。2.结合具体的问题,能运用商不变的规律,寻找合理简捷的运算途径,感受算法的多样化,体会规律的价值,提高运算能力。3.在探索规律的过程中,逐步培养独立思考、合作交流、反思质疑的良好学习习惯。课本第77页二、自主学习要点1、观察下面的算式,你发现了什么?8 ÷ 2 = 480 ÷ 20 = 4800 ÷ 200` = 4这三道题什么在变?什么没变?2、你能写出这样的一组算式吗?写写看。3、观察下面的算式,然后填一填,说一说你发现了什么。从下往上看,当被除数和除数同时乘一个相同的数时,( )不变。从上往下看,当被除数和除数同时除以一个相同的数时,( )不变。被除数和除数同时乘或除以(0除外)相同的数,商不变。这个规律叫商不变的规律。三、自主学习检测1、下列说法对不对?(1)被除数24扩大2倍,除数4缩小2倍,商不变。 ( )(2)被除数24扩大100倍,除数4扩大100倍,商不变。( )(3)被除数24增加10,除数4增加10,商不变。 ( )(4) (18 × 2)÷(6 × 3)=3 ( )(5) (18 × 2)÷(6 ÷ 3)=3 ( )(6)在除法算式中,被除数和除数同时乘以(或除以)一个相同的数,商不变。( )2、课件练习探究案一、合作探究探究一:发现规律1、观察下面两组式子,说一说你发现了什么。( )相同,( )和( )不相同。2、填一填我发现:3、还能找到第三组吗 下面这组可以从上往下比较,也能从下往上比较进行了几次比较? 在几次比较中有什么规律?从下往上看,当被除数和除数同时( )一个相同的数时,( )不变。从上往下看,当被除数和除数同时( )一个相同的数时,( )不变。探究二:总结规律1、淘气把三组算式改写了一下,你同意吗?尝试用自己的语言说出其中的规律。2、把我们发现的规律用一句话概括出来被除数和除数同时乘或除以(0除外)相同的数,商不变。这个规律叫( )的规律。探究三:运用规律你能解释他们这样计算350÷50的理由吗?350÷50=35÷5=73 50小结:在计算被除数和除数末尾有0的除法时,商不变的规律能让我们的计算变得既简单又快捷,但在计算时要注意被除数和除数要同时乘或除以相同的数(0除外)。知识运用1、算一算。72÷9= 36÷3=720÷90= 360÷30=7200÷900= 3600÷300=2、课件练习二、随堂检测1、想一想,和同伴说说它们的商为什么都是一样的。2、下面的计算对吗?和同伴交流。3、一捆铁丝有多少米?4、下面是淘气计算400÷25的过程,观察计算的每一 步,你受到什么启发?400÷25=(400×4)÷(25×4)= 1600÷100= 16你能用这个方法计算下面各题吗?150÷25 2000÷125参考答案自主学习检测:1、× √ × × × ×2、略随堂检测:1、用商不变的规律解释2、第一个和第三个正确,第二个是错误的,因为根据商不变的规律,651÷21的商就是6510÷210的商3、250÷5=50(克) 2500÷5=500(米)4、150÷25 2000÷125=(150×4)÷(25×4) =(2000×8) ÷(125×8)=600 ÷100 =16000 ÷1000=6 =16 展开更多...... 收起↑ 资源预览