资源简介 ‖数学学习指导与练习第3章函数3.1函数的概念【知识梳理】1.函数自变量函数值定义域3.值域【同步练习】1.D2.B3.B4.A5.B6.{-1,1,3,5,7}7.(1){xx≠1}或(-∞,-1)U(-1,+∞)(2≥号》8.(1)(2,+∞)(2)[2,5)U(5,+∞)【拓展训练】1.V=x(4-2x)2=4x3-16x2+16x,x∈(0,2)2.43.2函数的三种表示法【知识梳理】1.列表法解析法图像法2.列表法公式法解析表达式解析式3.分段函数【同步练习】1.B2.B3.C4.A5.B6.12(22是-日8)∫登+1(-22x+1(0(4)R{yy≥-4}(5)0π47.f(-2)-f(2)=0-2=-2130参考答案8.f(x)的图像如下图.Q2A6810x4-6-8-10-12-14H-16【拓展训练】1.(1)x=π>2,此时f(x)=2x,.f(π)=2π(2).'x≤-1时,f(x)=x+2≤1,.a不会在x≤-1范围内.而x≥2时,f(x)=2x≥4,∴.a不会在x≥2范围内当-12.函数f(x)的图像如下图.'33.3函数的单调性【知识梳理】1.增函数单调递增区间2.减函数单调递减区间3.函数的单调性【同步练习】1.B2.B3.B4.B5.C6.(1)(-∞,1](2)<(3)x=-1[-5,-1](4)(-∞,1]7.[-2,2]8.设x1,x2是R上的任意两个实数,且x1f(x1)131数学学习指导与练习【拓展训练】1.(-∞,1)x>-2x+8,2.由题意得x≥0,解集为(84]-2x+8≥0,3.4函数的奇偶性【知识梳理】1.图形E关于直线1对称对称轴2.偶函数4.中心对称图形对称中心图形G关于点O对称5.奇函数【同步练习】1.D2.D3.C4.C5.B6.(1)(-2,-3)(-2,3)(2)非奇非偶函数(3)奇函数(4)0(5)2(6)②④①③7.(1)偶函数(2)奇函数(3)奇函数(4)偶函数8两数的定义城为R,且水一》《二兰-)则)为周雨数【拓展训练】1.因为f(-3)=f(3)2.h(-2)=-63.5一元二次函数的性质与图像【知识梳理】4ac-b24ac-b2x=62ax=-Aa2a4a【同步练习】1.B2.B3.C4.D5.C6.(1)30(2)5(3)减(4)[0,+∞)7.(1)因为y=-x2+4x-2=-(x-2)2+2,x∈[0,5],所以此函数的单调递增区间为[0,2),单调递减区间为[2,5].132数学学习指导与练习3.4函数的奇偶性学习要求(1)理解奇函数、偶函数的定义与函数图像的几何特征;初步掌握函数奇偶性的判定方法,(2)会用函数的奇偶性描述函数的图像特征,对函数的性质进行推理和证明,知识梳理1.平面上一个图形E,如果它的每一个点关于直线1的对称点仍在图形E上,那么称,称直线1为图形E的2.设函数y=f(x)的定义域为A.如果对于任意的a∈A都有一a∈A,且f(-a)=f(a),那么称y=f(x)是3.函数y=f(x)是偶函数台y=f(x)的图像关于y轴对称.4.在平面内,如果一个图形G绕一个点O旋转180°,所得到的图形与原来的图形G互相重合,那么图形G叫作,点O叫作图形G的,此时也称5.设函数y=f(x)的定义域为A.如果对于任意的a∈A,都有一a∈A,且f(-a)=-f(a),那么称y=f(x)是6.函数y=f(x)是奇函数台y=f(x)的图像关于原点对称.冒典例分析例1判断下列函数的奇偶性:(1)fx)=x+1;(2)f(x)=2-x;(8)f)='分析利用函数的奇偶性的定义判断即可.解答(1)函数f(x)的定义域是{xx∈R且x≠0},关于原点对称.:f-x)=-x+=-(女+2)=-x,fx)为奇函数070第3章函数(2)函数f(x)的定义域为R,关于原点对称.f(-x)=2--x=2-x=f(x),.f(x)为偶函数(3).函数f(x)的定义域为{xx∈R且x≠1},显然不关于原点对称.'.f(x)为非奇非偶函数,例2设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是分析先利用偶函数的性质,将函数值转化到单调区间[0,+∞)上,然后利用函数的单调性比较大小关系,即可得到结果解答f(x)是定义域为R的偶函数,∴.f(-3)=f(3),f-2)=f(2)..函数f(x)在[0,+∞)上是增函数,∴.f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2)故答案为f(π)>f(一3)>f(-2)例3已知函数f(x)为定义在[-3,3]上的32偶函数,其部分图像如图所示(1)请作出函数f(x)在[0,3]上的图像;(2)根据函数图像写出函数f(x)的单调区间.123x分析(1)根据偶函数图像关于y轴对称作图.(2)由图像可写出单调区间.解答(1)如图所示(2)根据函数图像,f(x)的单调递增区间为[-3,-2],[0,2],f(x)的单调递减区间为[-2,0],[2,3].围同步练习一、选择题1.下列命题中错误的是()①函数图像关于原点成中心对称的函数一定为奇函数;②奇函数的图像一定过原点;③偶函数的图像与y轴一定相交;④图像关于y轴对称的函数一定为偶函数,A.①②B.③④C.①④D.②③071 展开更多...... 收起↑ 资源列表 中职数学基础模块导与练上册 3.4 函数的奇偶性.pdf 中职数学基础模块导与练上册 第3章-期末测试题 B(参考答案).pdf