数列求和-错位相减、裂项相消 讲义(PDF版含解析)

资源下载
  1. 二一教育资源

数列求和-错位相减、裂项相消 讲义(PDF版含解析)

资源简介

数列求和-错位相减、裂项相消
◆错位相减法
错位相减法是求解由等差数列 an 和等比数列 bn 对应项之积组成的数列 cn (即 cn= anbn)的前n项
和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和
公式,其过程正是利用错位相减的原理, 等比数列的通项 bn其实可以看成等差数列通项an an= 1 与等比
数列通项 bn的积.
公式秒杀:
Sn= (A n+B)qn-B(错位相减都可化简为这种形式,对于求解参数A与B,可以采用将前 1项和与前 2
项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)
【经典例1】设数列 an 的前n项和为Sn,若 a1= 1,Sn= an+1- 1.
(1)求数列 an 的通项公式;
(2)设 bn= na ,求数列 bn 的前n项和Tn.n+1
【经典例2】已知等差数列 an 的前n项和为Sn,数列 bn 为等比数列,且 a1= b1= 1,S3= 3b2= 12.
(1)求数列 an , bn 的通项公式;
(2)若 cn= anbn+1,求数列 cn 的前n项和Tn.
【经典例3】已知各项均为正数的等比数列 an 的前n项和为Sn,且S2= 6,S3= 14.
(1)求数列 an 的通项公式;
(2) b = 2n- 1若 n a ,求数列 bn 的前n项和Tn.n
【练习1】已知数列 an 满足 a1= 1,an+1= 2an+ 1 n∈N .
(1)求数列 an 的通项公式;
(2)求数列 n an+ 1 的前n项和Sn.
【练习2】已知数列 an 的前n项和为Sn,且Sn= 2an- 1.
(1)求 an 的通项公式;
(2)设 bn=nan,求数列 bn 的前n项和Tn.
【练习3】已知数列 an 的前n项和为Sn,且 3Sn= 4an- 2.
(1)求 an 的通项公式;
(2)设 bn= an+1 log2an,求数列 bn 的前n项和Tn.
n+1
【练习4】已知数列 an 满足 a1=
2 a
1,a nn+1= + n (n∈Na 2 +).n
n
(1) 2求证数列 a 为等差数列;n
(2)设 bn=n n+ 1 an,求数列 bn 的前n项和Sn.
◆裂项相消法
把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意
前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第 3项,相应的也要保留最
后一项和倒数第三项.
常见的裂项形式:
(1) 1( + ) =
1
n n k k
1 - 1n n+ k ;
(2) 1 = 1 1 1(2n- 1) (2n+ 1) 2 2n- 1 - 2n+ 1 ;
(3) 1 = 1 ( n+ k- n);
n+ k+ n k
(4) 2n+ 1 = 1 1
n2(n+ 1)2 -n2 (n+ 1)2 ;
2n(5) 1 1
2n-
= - ;
1 2n+1- 1 2n- 1 2n+1- 1
2n(4n- 1) 2n+1(6) = - 2
n
n(n+ 1) n+ 1 n ;
(7) n+ 1( - ) ( + ) n =
1 1
2n 1 2n 1 2 (2n- ) n+1 -1 2 (2n+ 1)2n+2 ;
( ) (-1)
n(n+ 1) = 1 (-1)
n (-1)n+1
8 (2n+ 1) (2n+ 3) 4 2n+ 1 - 2n+ 3
( ) (-1)
n
9 = (-1)n( n+ n- 1) = (-1)n n- (-1)n-1 n- 1
n- n- 1
(10) 1 = 1 1 1 ( + ) ( + ) 2 ( + ) - ( + ) ( + ) .n n 1 n 2 n n 1 n 1 n 2
(11) n n!= n+ 1 !-n!
(12) k = 1 - 1
k+ 1 ! k! k+ 1 !
【经典例1 1】已知正项数列 a 2 2n 中,a1= 1,an+1- an= 1,则数列 a + a 的前 99项和为 ( )n+1 n
A. 4950 B. 10 C. 9 D. 14950
【经典例2】数列 a 2n+ 1n 的通项公式为 a *n= 2 + 2 n∈N ,该数列的前 8项和为__________.n n 1
【经典例3】【已知数列 a n S =n2 b = 1n 的前 项和为 n ,若 n a a ,则数列 {bn}的前n项和为________.n n+1
1
【练习1】数列 + + - 的前 2022项和为 ( )2n 1 2n 1
A. 4043- 1 B. 4045- 12 2 C. 4043- 1 D. 4045- 1
【练习2】数列 an 的各项均为正数,Sn为其前 n项和,对于任意的 n∈N *,总有 an,Sn,a2n成等差数列,又记
bn= 1a a ,数列 bn 的前n项和Tn=______.2n+1 2n+3
1
【练习3】 + 2 + 3 + + n =_______.
2! 3! 4! n+ 1 !
【练习4】设数列 an 满足 a1+ 4a2+ +(3n- 2)an= 3n.
(1)求 an 的通项公式;
(2) a求数列 n 3n+ 1 的前n项和Tn.
【练习5】已知数列 an 的前n项和为Sn,且 2Sn= 1- an n∈N .
(1)求数列 an 的通项公式;
(2)设 bn= log a C = n+ 1- n1 n, n ,求数列 C 的前n项和Tb b n n3 n n+1
【练习6】已知数列 an 中,2na1+ 2n-1a2+ +2an=n 2n.
(1)证明: an 为等比数列,并求 an 的通项公式;
(2) = (n- 1)ab n设 n n(n+ 1) ,求数列 bn 的前n项和Sn.
【练习7】记Sn是公差不为零的等差数列 an 的前n项和,若S3= 6,a3是 a1和 a9的等比中项.
(1)求数列 an 的通项公式;
(2)记 b = 1n a a a ,求数列 bn 的前 20项和.n n+1 n+2
1
【练习8】已知等差数列 an 满足 a3= 7,a5+ a7= 26,bn= 2- (n∈Na 1 +).n
(1)求数列 an , bn 的通项公式;
(2)数列 bn 的前n项和为Sn,求Sn.
【练习9】已知正项数列 an 的前n项和为S n,且 4、an+ 1、Sn成等比数列,其中n∈N .
(1)求数列 an 的通项公式;
( 4S2)设 b = nn a a ,求数列 bn 的前n项和Tn.n n+1
【练习10】已知Sn是数列 an 的前n项和,a1= 1,___________.
S S① n∈N ,an+ an+1= 4n;②数列 n n n 为等差数列,且 n 的前 3项和为 6.从以上两个条件中任选
一个补充在横线处,并求解:
(1)求 an;
(2) a + a设 b = n n+1n 2 ,求数列 bn 的前n项和Ta a n. n n+1
【过关检测】
一、单选题
1. S = 1 + 2 3 nn 2 4 + 8 + + =( )2n
2nA. -n B. 2
n+1-n- 2 nC. 2 -n+ 1 2
n+1-n+ 2
2n 2n 2n+1
D.
2n
2.数列 n 2n 的前n项和等于 ( ).
A. n 2n- 2n+ 2 B. n 2n+1- 2n+1+ 2 C. n 2n+1- 2n D. n 2n+1- 2n+1
3.已知等比数列 {an}的前n项和为Sn,若S3= 7,S6= 63,则数列 {nan}的前n项和为 ( )
A. - 3+ (n+ 1) × 2n B. 3+ (n+ 1) × 2n C. 1+ (n+ 1) × 2n D. 1+ (n- 1) × 2n
4.已知等差数列 an ,a2= 3,a5= 6 1,则数列 a a 的前 8项和为 ( ).n n+1
A. 15 B.
2
5 C.
3
5 D.
4
5
5. 8已知数列 an 的前 n项和为 Sn,Sn+ 4= an+ n+ 1 2.记 bn= a a ,数列的前 n项和为Tn,则Tn的n+1 n+2
取值范围为 ( )
A. 8 4 1 1 4 1 1 63 , 7 B. 9 , 7 C. 7 ,+∞ D. 9 , 7
6.已知数列满足 a 1 + 2 a 2 + 3 a 3 + +na = n 2 b = na 1n ,设 n n,则数列 的前 2022 项和为bnbn+1
( )
A. 4042 B. 20214043 4043 C.
4044 D. 20224045 4045
7.已知数列 an 满足 a 1= 1,且 an= 1+ a *n an+1,n ∈ N ,则 a 1a 2+ a 2a 3+ a 3a 4+ +a 2020a 2021=
( )
A. 2021 B. 2020 C. 1 20212021 22021
D. 2
8.等差数列 an 中,a3= 5,a7= 9 b = 1,设 n + ,则数列 bn 的前 61项和为 ( )an+1 an
A. 7- 3 B. 7 C. 8- 3 D. 8
2
9. n设数列 - + 的前n项和为Sn,则 ( ) 2n 1 2n 1
A. 25n
10.已知数列 an 满足 an= 1+ 2+ 4+ +2n-1 2,则数列 a a 的前 5项和为 ( )n n+1
A. 131 B.
1 C. 3063 31 D.
62
63
a + 1
11.已知数列 an 的首项 a1= 1,且满足 an+1- a n * nn= 2 n∈N ,记数列 的前 n项和为 an+ 2 an+1+ 2
T *n,若对于任意n∈N ,不等式 λ>Tn恒成立,则实数 λ的取值范围为 ( )
A. 1 ,+∞ B. 1 ,+∞ C. 1 ,+∞ D. 1 2 2 3 3 ,+∞
a + 1
12.在数列 a 1 1n 中,a2= 3,其前 n项和 Sn满足 Sn= n n2 ,若对任意 n∈N+总有 4S - 1 +1 4S2- 1 +
+ 14S - 1 ≤ λ恒成立,则实数 λ的最小值为 ( )n
A. 1 B. 23 C.
1 1
2 D. 3
二、填空题
1.已知正项数列 {an}满足 a 2 21= 2且 an+1 - 2an - anan+1= 0,令 bn= (n+ 2)an,则数列 {bn}的前 8项的
和等于 __.
2. n已知数列 {an}的前n项和为Sn,且Sn= 2an- 2,则数列 a 的前n项和Tn=__.n
3.将 1+ x n(n∈Ν+) 1 1的展开式中 x2的系数记为 an,则 a + a + +
1
a =__________.2 3 2015
4.数列 an 的前项n和为Sn,满足 a
1 2 *
1=- 2 ,且 an+ an+1= 2+ n∈N ,则S2n=______.n 2n
三、解答题
1.已知数列 an 满足 a1= 1,2an+1an+ an+1- an= 0.
(1) 1求证:数列 a 为等差数列;n
(2)求数列 anan+1 的前n项和Sn.
2.已知正项数列 an 的前n项和为Sn,an+1- an= 3 n∈N * ,且S3= 18.
(1)求数列 an 的通项公式;
(2) 1若 bn= a a ,求数列 bn 的前n项和Tn.n n+1
3.已知数列 an 的首项为 3,且 an- an+1= an+1- 2 an- 2 .
(1) 1证明数列 a - 2 是等差数列,并求 an 的通项公式;n
(2)若 bn= -1 n
an
n+ 1,求数列 bn 的前n项和Sn.
4.已知数列 an 中,a1=-1,且满足 an+1= 2an- 1.
(1)求证:数列 an- 1 是等比数列,并求 an 的通项公式;
(2)若 b n+ 1n= 1- a ,求数列 bn 的前n项和为Tn.n+1
5.已知等比数列 an ,a1= 2,a5= 32.
(1)求数列 an 的通项公式;
(2)若数列 an 为正项数列 (各项均为正),求数列 (2n+ 1) an 的前n项和Tn.
6.已知等差数列 an 满足 a1= 1,a2 a3= a1 a8,数列 bn 3的前n项和为Sn,且Sn= 2 bn.
(1)求数列 an , bn 的通项公式;
(2)求数列 anbn 的前n项和Tn.数列求和-错位相减、裂项相消
◆错位相减法
错位相减法是求解由等差数列 an 和等比数列 bn 对应项之积组成的数列 cn (即 cn= anbn)的前n项
和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和
公式,其过程正是利用错位相减的原理, 等比数列的通项 bn其实可以看成等差数列通项an an= 1 与等比
数列通项 bn的积.
公式秒杀:
Sn= (A n+B)qn-B(错位相减都可化简为这种形式,对于求解参数A与B,可以采用将前 1项和与前 2
项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)
【经典例1】设数列 an 的前n项和为Sn,若 a1= 1,Sn= an+1- 1.
(1)求数列 an 的通项公式;
(2)设 bn= na ,求数列 bn 的前n项和Tn.n+1
【答案】(1)a = 2n-1n n∈N ; (2)Tn= 2- n+ 2 .2n
【解析】
(1)因为 a1= 1,Sn= an+1- 1.
所以S1= a2- 1,解得 a2= 2.
当n≥ 2时,Sn-1= an- 1,
所以 an=Sn-Sn-1= an+1- an,所以
a
2an= a ,即 n+1n+1 a = 2.n
因为 a2a = 2也满足上式,所以 a 是首项为 1,公比为 2的等比数列,所以 a = 2
n-1 n∈N n n .
1
(2)由 (1)知 an+1= 2n,所以 b = nn n ,2
2 3 n
所以Tn= 1× 12 + 2×
1
2 + 3×
1 1
2 + +n× 2 ①
1 1 2 3 n n+1
2 Tn= 1× 2 + 2×
1
2 + +(n- 1) ×
1
2 +n×
1
2 ②
1 1 n
①-②得 1 T = 1
2 3 n n+1 1- n+1
2 n 2 +
1
2 +
1
2 + +
1
2 -n×
1
2 =
2 2
1 -n×
1
2 1- 2
n
= 1- 1+ n 1 ,所以T = 2- n+ 22 2 n .2n
【经典例2】已知等差数列 an 的前n项和为Sn,数列 bn 为等比数列,且 a1= b1= 1,S3= 3b2= 12.
(1)求数列 an , bn 的通项公式;
(2)若 cn= anbn+1,求数列 cn 的前n项和Tn.
【答案】(1)an= 3n- 2,bn= 4n-1 (2)Tn= 4+ n- 1 4n+1
【解析】
(1)设等差数列 an 的公差为 d,等比数列 bn 的公比为 q,
由题意得:3a1+ 3d= 12,解得:d= 3,
所以 an= 1+ 3 n- 1 = 3n- 2,
由 3b2= 12得:b2= 4,所以 q=
a2
a = 4,1
所以 b n-1n= 4
(2)cn= a nnbn+1= 3n- 2 4 ,
则T = 4+ 4× 42+ 7× 43n + + 3n- 2 4n①,
4Tn= 42+ 4× 43+ 7× 44+ + 3n- 2 4n+1②,
两式相减得:-3Tn= 4+ 3× 42+ 3× 43+ 3× 44+ +3× 4n- 3n- 2 4n+1
= 4+ 3× 16- 4
n+1
- 3n- 2 4n+11- 4 =-12+ 3- 3n 4
n+1,
所以Tn= 4+ n- 1 4n+1
【经典例3】已知各项均为正数的等比数列 an 的前n项和为Sn,且S2= 6,S3= 14.
(1)求数列 an 的通项公式;
(2)若 b = 2n- 1n a ,求数列 bn 的前n项和Tn.n
【答案】(1)a = 2nn n∈N * 2n+ 3 (2)Tn= 3- 2n
【解析】
(1)设等比数列 an 的公比为 q,当 q= 1时,Sn=na1,所以S2= 2a1= 6,S3= 3a1= 14,无解.
a 1- q21
a 1- qn S2= 1- q = 6,当 q≠ 1时,S = 1 2n 1- q ,所以 - 3 解得 a1= 2,q= 2或 a1= 18,q=- (舍).= a1 1 q 3S3 1- q = 14.
所以 a = 2× 2n-1n = 2n n∈N * .
(2)b = 2n- 1 = 2n- 1 1 3 5 2n- 3 2n- 1 1 1 3 5n a 2n .所以Tn= 2 + 2 + 3 + +2 2 2n-1 + n ①,则2 2 Tn= 22 + 3 + +n 2 24
+ 2n- 3 + 2n- 1
2n 2n+1
②,
①-②得,1 T = 1 + 2 + 2 + 2 + + 2 - 2n- 1 = 1 + 2 1 + 1 + 1 + + 1 - 2n- 12 n 2 22 23 24 2n 2n+1 2 22 23 24 =2n 2n+1
1 1- 11 4 2n-1 + 2× - 2n- 1 3 2n+ 32 1 2n+1 = 2 - 2n+1 .1- 2
所以T = 3- 2n+ 3n .2n
【练习1】已知数列 an 满足 a 1= 1,an+1= 2an+ 1 n∈N .
(1)求数列 an 的通项公式;
(2)求数列 n an+ 1 的前n项和Sn.
【答案】(1)an= 2n- 1 (2)S n+1n= n- 1 2 + 2
【解析】
(1)由 an+1= 2an+ 1得:an+1+ 1= 2 an+ 1 ,又 a1+ 1= 2,
∴数列 an+ 1 是以 2为首项,2为公比的等比数列,∴ an+ 1= 2n,
∴ an= 2n- 1.
(2)由 (1)得:n an+ 1 =n 2n;
∴Sn= 1× 21+ 2× 22+ 3× 23+ + n- 1 2n-1+n 2n,2Sn= 1× 22+ 2× 23+ 3× 24+ + n- 1 2n+
n 2n+1,
n
∴-S = 2+ 22+ 23++2n-n 2n+1= 2 1- 2 n+1 n+1n 1- 2 -n 2 = 1-n 2 - 2,
∴Sn= n- 1 2n+1+ 2.
【练习2】已知数列 an 的前n项和为Sn,且Sn= 2an- 1.
(1)求 an 的通项公式;
(2)设 bn=nan,求数列 bn 的前n项和Tn.
【答案】(1)a = 2n-1n (2)Tn= (n- 1) 2n+ 1
【解析】
(1)令n= 1得S1= a1= 2a1- 1,∴ a1= 1,当n≥ 2时,Sn-1= 2an-1- 1,则 an=Sn-Sn-1= 2an- 2an-1,
整理得 an=
a
2a n n-1n-1,∴ a = 2,∴数列 an 是首项为 1,公比为 2的等比数列,∴ an= 2 ;n-1
(2)由 (1)得 b =na =n 2n-1n n ,则Tn= 1 20+ 2 21+ 3 22+ +n 2n-1,2Tn= 1 21+ 2 22+ 3 23+ +n
2n,
n
两式相减得-T = 20+ 21+ 22+ 23+ +2n-1-n 2n= 1- 2 -n 2n,化简得T = 1- 2n+n 2nn 1- 2 n = (n- 1)
2n+ 1.
【练习3】已知数列 an 的前n项和为Sn,且 3Sn= 4an- 2.
(1)求 an 的通项公式;
(2)设 bn= an+1 log2an,求数列 bn 的前n项和Tn.
【答案】(1)a = 22n-1 (2)T = 40 + 6n- 5 × 22n+3n n 9 9
【解析】
(1)当n= 1时,3S1= 4a1- 2= 3a1,解得 a1= 2.
当n≥ 2时,3an= 3Sn- 3Sn-1= 4an- 2- 4an-1- 2 ,
整理得 an= 4an-1,
所以 an 是以 2为首项,4为公比的等比数列,
故 an= 2× 4n-1= 22n-1.
(2)由 (1)可知,b = a log a = 2n- 1 × 22n+1n n+1 2 n ,
则Tn= 1× 23+ 3× 25+ + 2n- 1 × 22n+1,
4Tn= 1× 25+ 3× 27+ + 2n- 1 × 22n+3,
则-3T = 23+ 26+ 28+ +22n+2n - 2n- 1 × 22n+3
26- 22n+4= 23+ - 2n- 1 × 22n+31- 4 =-
40
3 -
6n- 5 2n+3
3 × 2 .
故T 40n= 9 +
6n- 5 × 22n+39 .
2n+1a
【练习4】已知数列 an 满足 a = 1,a = n1 n+1 n (n∈N+).an+ 2
2n(1)求证数列 a 为等差数列;n
(2)设 bn=n n+ 1 an,求数列 bn 的前n项和Sn.
【答案】(1)证明见解析 (2)Sn= n- 1 2n+1+ 2
【解析】
a a 2n+1 2n 2n+1 2n n(1)由已知可得 n+1 = n ,即 = + 1,即 - 2
2n+

1 an+ 2n an+1 an an+1 a
= 1,∴
n an 是等差数列.
n n
(2)由 (1)知,2 2 2a = a + n- 1 × 1=n+ 1,∴ an= n+ 1,∴ bn=n 2
n
n 1
Sn= 1 2+ 2 22+ 3 23+ +n 2n
2S = 1 22+ 2 23n + + n- 1 2n+n 2n+1
n
相减得,-S 2n= 2+ 2 + 3+ + n- n+1=
2 1- 2
2 2 n 2 n+1 n+1 n+11- 2 -n 2 = 2 - 2-n 2
∴S = n- 1 2n+1n + 2
◆裂项相消法
把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意
前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第 3项,相应的也要保留最
后一项和倒数第三项.
常见的裂项形式:
(1) 1 = 1 1 - 1n(n+ k) k n n+ k ;
(2) 1 1 1 1(2n- 1) ( =2n+ 1) 2 2n- 1 - 2n+ 1 ;
(3) 1 = 1 ( n+ k- n);
n+ k+ n k
(4) 2n+ 1 1 1
n2( + )2 = - ;n 1 n2 (n+ 1)2
n
(5) 2 1 1
2n- 1 2n+1-
= -
1 2n- 1 2n+1-
;
1
n
( ) 2 (4n- 1) 2
n+1
6 = - 2
n
n(n+ 1) n+ 1 n ;
(7) n+ 1 1 1(2n- 1) ( = - ;2n+ 1)2n (2n- 1)2n+1 (2n+ 1)2n+2
( ) (-1)
n(n+ 1) n n+1
8 ( + ) ( + ) =
1 (-1)4 2n+ 1 -
(-1)
2n 1 2n 3 2n+ 3
( ) (-1)
n
9 n- - = (-1) ( n+ n- 1) = (-1)
n n- (-1)n-1 n- 1
n n 1
(10) 1( + ) ( + ) =
1 1 1
n n 1 n 2 2
-
n(n+ 1) (n+ 1) ( + n 2) .
(11) n n!= n+ 1 !-n!
(12) k = 1 - 1
k+ 1 ! k! k+ 1 !
1
【经典例1】已知正项数列 an 中,a1= 1,a2 2n+1- an= 1,则数列 an+1+ a 的前 99项和为 ( )n
A. 4950 B. 10 C. 9 D. 14950
【答案】C
【解析】
因为 a2 - a2= 1且 a2= 1,所以,数列 a2n+1 n 1 n 是以 1为首项,1为公差的等差数列,
所以,a2n= 1+n- 1=n,
因为数列 an 为正项数列,则 an= n,
则 1 = 1 = n+ 1- n 1 an+1+ an n+ 1+ n n+ 1+ =- n+ n+ 1,所以,数列n n+ 1- n an+1+ an
的前 99项和为-1+ 2- 2+ 3- - 99+ 100= 10- 1= 9.
故选:C .
【经典例2】数列 an
2n+ 1
的通项公式为 a = *n 2 + 2 n∈N ,该数列的前 8项和为__________.n n 1
【答案】8081
【解析】
因为 a = 2n+ 1 1 1n n2 n+
= - ,
1 2 n2 (n+ 1)2
所以S = 1- 1 + 18 2 2 - 12 + + 12 - 1 1 802 2 3 8 92 = 1- 81 = 81.
故答案为:8081.
【经典例3】【已知数列 a 的前n项和为S =n2 b = 1n n ,若 n a a ,则数列 {bn}的前n项和为________.n n+1
【答案】 n2n+ 1
【解析】
当n= 1时,a 21=S1= 1 = 1,
当n≥ 2时,a =S -S =n2- n- 1 2n n n-1 = 2n- 1,
且当n= 1时,2n- 1= 1= a1,故数列 an 的通项公式为 an= 2n- 1,
b = 1 1 1 1 1n ana
=
n+1 (2n- 1) (2n+ )
=
1 2 2n- 1 - 2n+ 1 ,
则数列 {bn}的前n项和为:
1 1- 1 + 1 - 1 + 1 - 12 3 3 5 5 7 + +
1 - 1 = 1 2n- 1 2n+ 1 2 1-
1
2n+ 1 =
n
2n+ 1 .
故答案为: n2n+ 1
1
【练习1】数列 + + - 的前 2022项和为 ( )2n 1 2n 1
A. 4043- 1 B. 4045- 12 2 C. 4043- 1 D. 4045- 1
【答案】B
【解析】
解: 1 = 2n+ 1- 2n- 1 = 2n+ 1- 2n- 1
2n+ 1+ 2n- 1 2n+ 1+ 2n- 1 2n+ 1- 2n- 1 2
记 1 的前n项和为T ,2n+ 1+ 2n- 1 n
则T = 12022 2 3- 1+ 5- 3+ 7- 5+ + 4045- 4043
= 12 4045- 1 ;
故选:B
【练习2】数列 an 的各项均为正数,Sn为其前 n项和,对于任意的 n∈N *,总有 an,S 2n,an成等差数列,又记
bn= 1a a ,数列 bn 的前n项和Tn=______.2n+1 2n+3
【答案】 n6n+ 9
【解析】
由对于任意的n∈N *,总有 an,Sn,a2n成等差数列可得:
2Sn= a2n+ an,
当n≥ 2时可得 2S 2n-1= an-1+ an-1,
所以 2an= 2Sn- 2Sn-1= a2n+ an- a2n-1- an-1,
所以 a2n- an- a2n-1- an-1= 0,
所以 (an+ an-1) (an- an-1- 1) = 0,
由数列 an 的各项均为正数,
所以 an- an-1= 1,
又n= 1时 a2n- an= 0,所以 a1= 1,
所以 an=n,
b = 1 1 1 1 1n a2n+1 a
= =
2n+3 (2n+ 1) (2n+ 3) 2 2n+ 1 - 2n+ 3 ,
T 1 1 1 1 1 1 1 1 1 1 nn= 2 3 - 5 + 5 - 7 + 2n+ 1 - 2n+ 3 = 2 3 - 2n+ 3 = 6n+ 9 .
故答案为: n6n+ 9 .
1 2 3 n
【练习3】 + + + +
2! 3! 4! n+
=_______.
1 !
【答案】1- 1
n+ 1 !
【解析】
∵ k+ =
k+ 1- 1 = 1 - 1 ,
k 1 ! k+ 1 ! k! k+ 1 !
∴ 1 + 2 + 3 n 1 1 1 1 1 1 1 1 12! 3! 4! + + + = 1- 2! + 2! - 3! + - n 1 ! 3! 4!
+ + - +
n- 1 ! n! n!
- + = 1- n 1 !
1
+ . n 1 !
故答案为:1- 1+ . n 1 !
【练习4】设数列 an 满足 a1+ 4a2+ +(3n- 2)an= 3n.
(1)求 an 的通项公式;
(2) a求数列 n + 3n 1 的前n项和Tn.
【答案】(1)a = 3n 3n- 2
(2)T 3nn= 3n+ 1
【解析】
(1)解:数列 an 满足 a1+ 4a2+ +(3n- 2)an= 3n,
当n= 1时,得 a1= 3,
n≥ 2时,a1+ 4a2+ +(3n- 5)an-1= 3(n- 1),
两式相减得:(3n- 2)an= 3,
∴ an= 33n- 2,
当n= 1时,a1= 3,上式也成立.
∴ an= 33n- 2;
( )因为 a2 n 33n+ 1 = ( ,3n- 2) (3n+ 1)
= 1 13n- 2 - 3n+ 1,
∴T = 1n 1 -
1
4 +
1 1 1 1
4 - 7 + + 3n- 2 - 3n+ 1,
= 1- 1 3n3n+ 1 = 3n+ 1 .
【练习5】已知数列 an 的前n项和为Sn,且 2Sn= 1- an n∈N .
(1)求数列 an 的通项公式;
(2) b = log a C = n+ 1- n设 n 1 n, n ,求数列 Cn 的前n项和T
3 b nnbn+1
【答案】(1)a = 1n (2)T 13n n= 1- n+ 1
【解析】
(1)当n= 1时,2a1= 2S1= 1- a1,解得:a = 11 3;
当n≥ 2时,2an= 2Sn- 2S 1n-1= 1- an- 1+ an-1,即 an= 3 an-1,
n
∴数列 an 是以 13 为首项,
1
3 为公比的等比数列,∴ a =
1 = 1n 3 3n .
n
(2)由 (1)得:b = log 1 =n,∴C = n+ 1- n = 1 - 1n 1 3 n3 n n+ 1 n n+ ,1
∴T 1n= 1- + 1 - 1 + 1 - 1 + + 1 - 1 + 1 - 1 = 1- 1 .2 2 3 3 4 n- 1 n n n+ 1 n+ 1
【练习6】已知数列 an 中,2na1+ 2n-1a2+ +2a nn=n 2 .
(1)证明: an 为等比数列,并求 an 的通项公式;
(2) b = (n- 1)an设 n ( + ) ,求数列 bn 的前n项和Sn n 1 n.
2n【答案】(1)证明见解析;a = 2n-1 n∈N *n (2) n+ 1 - 1
【解析】
(1)解:2na + 2n-11 a2+ +2a =n 2nn ,
即为 a aa 2 n1+ 2 + + n-1 =n·······①,2
又 a1+
a2 + + an-12 2n-2 =n- 1,········②,
①-②得 ann-1 = 1,即 a = 2n-1n (n≥ 2),2
又当n= 1时,a = 1= 21-11 ,
故 an= 2n-1 n∈N * ;
从而 a
n
n+1
a =
2 *
n-1 = 2 n∈N ,
n 2
所以 an 是首项为 1,公比为 2的等比数列;
n-1 n n-1
(2)由 (1) (n- 1)2得 bn= ( + ) =
2 - 2 ,
n n 1 n+ 1 n
所以S = 2
1 20 22 21 2n 2n-1 2n
n 2 - 1 + 3 - 2 + + n+ 1 - n = n+ 1 - 1.
【练习7】记Sn是公差不为零的等差数列 an 的前n项和,若S3= 6,a3是 a1和 a9的等比中项.
(1)求数列 an 的通项公式;
(2)记 b 1n= a a a ,求数列 bn 的前 20项和.n n+1 n+2
【答案】(1)a * 115n=n,n∈N (2) 462
【解析】
(1)由题意知 a23= a1 a9,
设等差数列 an 的公差为 d,则 a1 a1+ 8d = a + 2d 21 ,
因为 d≠ 0,解得 a1= d
又S3= 3a1+ 3d= 6,可得 a1= d= 1,
所以数列 an 是以 1为首项和公差为 1的等差数列,
所以 an= a1+ n- 1 d=n,n∈N *
(2)由 (1)可知 b = 1 = 1 1 - 1n ,n n+ 1 n+ 2 2 n n+ 1 n+ 1 n+ 2
设数列 bn 的前n和为Tn,则
T = 1 1 - 1 1 1 1 1n 2 1× 2 2× 3 + 2× 3 - 3× 4 + + -n n+ 1 n+ 1 n+ 2
= 1 12 2 - 1 n+ 1 n+ 2 ,
所以T20= 1 1 1 1152 × 2 - 21× 22 = 462
所以数列 bn 的前 20和为
115
462
【练习8】已知等差数列 an 满足 a3= 7,a5+ a 17= 26,bn= 2- (n∈Na 1 +).n
(1)求数列 an , bn 的通项公式;
(2)数列 bn 的前n项和为Sn,求Sn.
【答案】(1)a = 2n+ 1,b = 1n n (2)S = n4n n n+ 1 4 n+ 1
【解析】
(1)由题意,可设等差数列 an 的公差为 d ,
则 a1+ 2d= 7 + = ,解得 a1= 3,d= 2,2a1 10d 26
∴ an= 3+ 2 n- 1 = 2n+ 1;
∴ b = 1 = 1 = 1 = 1n ;a2- 1 2n+ 1 2n - 1 4n2+ 4n 4n n+ 1
(2) ∵ b 1 1 1 1n= = - ,4n n+ 1 4 n n+ 1
S = 1 1- 1 + 1 - 1 + + 1 - 1 = 1 1- 1n 4 2 2 3 n n+ 1 4 n+ 1 =
n .
4 n+ 1
【练习9】已知正项数列 an 的前n项和为Sn,且 4、an+ 1、Sn成等比数列,其中n∈N .
(1)求数列 an 的通项公式;
(2) 4S设 b nn= a a ,求数列 bn 的前n项和Tn.n n+1
【答案】(1)an= 2n- 1 (2)Tn=n+ n2n+ 1
【解析】
(1)解:对任意的n∈N ,an> 0,由题意可得 4S 2 2n= an+ 1 = an+ 2an+ 1.
当n= 1时,则 4a1= 4S1= a21+ 2a1+ 1,解得 a1= 1,
当n≥ 2时,由 4Sn= a2n+ 2an+ 1可得 4S 2n-1= an-1+ 2an-1+ 1,
上述两个等式作差得 4an= a2 2n- an-1+ 2an- 2an-1,即 an+ an-1 an- an-1- 2 = 0,
因为 an+ an-1> 0,所以,an- an-1= 2,
所以,数列 an 为等差数列,且首项为 1,公差为 2,则 an= 1+ 2 n- 1 = 2n- 1.
( ) = n 1+ 2n- 1 2 解:Sn 2 =n
2,
则 4S
2 2
b n 4n 4n - 1+ 1 1n= ana
= = = 1+ = 1+
n+1 2n- 1 2n+ 1 2n- 1 2n+ 1 2n- 1 2n+ 1
1 1 12 2n- 1 - 2n+ 1 ,
因此,T =n+ 1 1- 1 + 1 - 1n 2 3 3 5 + +
1 1 n
2n- 1 - 2n+ 1 =n+ 2n+ 1 .
【练习10】已知Sn是数列 an 的前n项和,a1= 1,___________.
① n∈ S SN ,an+ an+1= 4n;②数列 n n n 为等差数列,且 n 的前 3项和为 6.从以上两个条件中任选
一个补充在横线处,并求解:
(1)求 an;
(2)设 b = an+ an+1n 2 ,求数列 bn 的前n项和Tn. an an+1
2n n+ 1
【答案】(1)条件选择见解析,an= 2n-

1 (2)Tn=
2n+ 1 2
【解析】
(1)解:选条件①: n∈N ,an+ an+1= 4n,得 an+1+ an+2= 4 n+ 1 ,
所以,an+2- an= 4 n+ 1 - 4n= 4,
即数列 a 2k-1 、 a2k k∈N 均为公差为 4的等差数列,
于是 a2k-1= a1+ 4 k- 1 = 4k- 3= 2 2k- 1 - 1,
又 a1+ a2= 4,a2= 3,a2k= a2+ 4 k- 1 = 4k- 1= 2 2k - 1,所以 an= 2n- 1;
选条件②:因为数列 Sn n 为等差数列,且
Sn
n 的前 3项和为 6,
得 S1 + S21 2 +
S3
3 = 3×
S2
2 = 6,所以
S2
2 = 2,
所以 Sn n 的公差为
= S2 - Sd 12 1 = 2- 1= 1,
得到 Snn = 1+ n- 1 =n,则S =n
2
n ,
当n≥ 2,an=Sn-S 2n-1=n - n- 1 2= 2n- 1.
又 a1= 1满足 an= 2n- 1,所以,对任意的n∈N ,an= 2n- 1.
(2)解:因为 a + ab = n n+1 = 4nn 2 =
1 1 - 1 ,
an an+1 2n- 1 2 2n+ 1 2 2 2n- 1 2 2n+ 1 2
所以Tn= b1+ b + +b = 1 1 1 1 1 1 1 2 n 2 12 - + - + + - 32 32 52 2n- 1 2 2n+ 1 2
= 1 - 1 = 2n n+ 1 2 1 . 2n+ 1 2 2n+ 1 2
【过关检测】
一、单选题
1. Sn= 12 +
2 3
4 + 8 + +
n
n = ( )2
2n-n 2n+1-n- 2 2nA. B. C. -n+ 1 2
n+1
D. -n+ 2
2n 2n 2n+1 2n
【答案】B
【解析】
由Sn= 1 + 2 + 32 4 8 + +
n
2n

得 1 S = 1× 1
2 3 4 n+1
2 n 2 + 2×
1
2 + 3×
1 + +n 12 2 ,
2 3 4 n n+1
两式相减得 12 Sn=
1
2 +
1
2 +
1
2 +
1
2 + +
1
2 -n
1
2
1 1
= 2
1- 2n n+1-n 1 = 1- 1 n+1
n+1
1 2 n -n
1
2 2 =
2 -n- 2
2n+1
.
1- 2
2n+1所以S = -n- 2n 2n .
故选:B.
2.数列 n 2n 的前n项和等于 ( ).
A. n 2n- 2n+ 2 B. n 2n+1- 2n+1+ 2 C. n 2n+1- 2n D. n 2n+1- 2n+1
【答案】B
【解析】
解:设 n 2n 的前n项和为Sn,
则Sn= 1× 21+ 2× 22+ 3× 23+ +n 2n, ①
所以 2S = 1× 22+ 2× 23+ + n- 1 2n+n 2n+1n , ②
2 1- 2n①-②,得-S = 2+ 22n + 23+ +

2n-n 2n+1= n+11- 2 -n 2 ,
所以Sn=n 2n+1- 2n+1+ 2.
故选:B.
3.已知等比数列 {an}的前n项和为Sn,若S3= 7,S6= 63,则数列 {nan}的前n项和为 ( )
A. - 3+ (n+ 1) × 2n B. 3+ (n+ 1) × 2n C. 1+ (n+ 1) × 2n D. 1+ (n- 1) × 2n
【答案】D
【解析】
设等比数列 {an}的公比为 q,易知 q≠ 1,
3
S = a1 1- q 3所以由题设得 1- q = 7 = a1 1- 6 ,q S6 1- q = 63
两式相除得 1+ q3= 9,解得 q= 2,
进而可得 a1= 1,
所以 an= a -1 -11qn = 2n ,
所以nan=n× 2n-1.
设数列 {nan}的前n项和为Tn,
则Tn= 1× 20+ 2× 21+ 3× 22+ +n× 2n-1,
2Tn= 1× 21+ 2× 22+ 3× 23+ +n× 2n,
n
两式作差得-Tn= 1+ 2+ 22+ +2n-1-n× 2n= 1- 21- 2 -n× 2n=-1+ (1-n) × 2n,
故Tn= 1+ (n- 1) × 2n.
故选:D.
4. 1已知等差数列 an ,a2= 3,a5= 6,则数列 a a 的前 8项和为 ( ).n n+1
A. 15 B.
2
5 C.
3
5 D.
4
5
【答案】B
【解析】
由 a2= ,
a - a
3 a5= 6可得公差 d= 5 23 = 1 ,所以 an= a2+ n- 2 d=n+ 1,
因此 1 1 1 1 1 1 1 1a a = + + = n+ 1 - n+ 2 ,所以前 8项和为+ n 1 n 2 2 - 3 + 3 - 4 + n n 1
+ 1 - 1 = 1 - 1 = 29 10 2 10 5
故选:B
5.已知数列 an 的前 n项和为 Sn,Sn+ 4= an+ n+ 1 8 2.记 bn= a ,数列的前 n项和为Tn,则Tn的n+1an+2
取值范围为 ( )
A. 8 63 ,
4
7 B.
1 1 4
9 , 7 C. 7 ,+∞ D.
1 1
9 , 7
【答案】A
【解析】
因为数列 a 中,S + 4= a + (n+ 1)2,所以S + 4= a + n+ 2 2n n n n+1 n+1 ,所以Sn+1+ 4- Sn+ 4 = an+1-
an+ 2n+ 3,所以 an= 2n+ 3.因为 b = 8 ,所以 b 8 1 1n a a n=n+1 n+2 2n+
= 4
5 2n+ 7 2n+ 5 - 2n+ 7 ,
所以Tn= 4 1 - 1 + 1 - 1 + + 1 - 1 = 4 1 - 17 9 9 11 2n+ 5 2n+ 7 7 2n+ 7 .因为数列 Tn 是递增数列,
当n= 1时,T 8 1 4 8 4n= 63,当n→+∞时,2n+ 7 → 0,Tn→ 7,所以 63 ≤Tn< 7,所以Tn的取值范围为
8 4 63 , 7 .
故选:A.
6.已知数列满足 a 1 + 2 a 2 + 3 a 3 + +na n = n 2,设 b n = na 1n,则数列 bnbn+1 的前 2022 项和为
( )
A. 4042 2021 4044 20224043 B. 4043 C. 4045 D. 4045
【答案】D
【解析】
因为 a1+ 2a2+ 3a + +na =n23 n ①,
当n= 1时,a1= 1;
当n≥ 2时,a1+ 2a2+ 3a3+ + n- 1 an-1= (n- 1)2②,
①-②化简得 a = 2n- 1n n ,
当n= 1时:a = 2× 1- 11 1 = 1= 1,也满足 a =
2n- 1
n n ,
所以 an= 2n- 1n ,b =na
1 1 1 1 1
n n= 2n- 1, = = -bnbn+1 (2n- 1) (2n+ 1) 2 2n- 1 2n+ 1
所以 1 的前 2022项和
1 1- 1 + 1 - 1 + + 1 - 1 =
b b n n+1 2 3 3 5 2× 2022- 1 2× 2022+ 1
1
2 1-
1 2022
2× 2022+ 1 = 4045 .
故选:D.
7.已知数列 an 满足 a *1= 1,且 an= 1+ an an+1,n ∈ N ,则 a 1a 2+ a 2a 3+ a 3a 4+ +a 2020a 2021=
( )
A. 2021 B. 2020 1 20212021 C. D. 222021
【答案】B
【解析】
∵ an= 1+ an an+1,即 =
a
a n 1
1+ an 1
n+1 1+ a ,则 =n an+1 a
=
n a
+ 1
n
∴数列 1 a 是以首项
1
a = 1,公差 d= 1的等差数列n 1
则 1a = 1+n- 1=n,即 a
1
n=
n n
∴ ana 1 1 1n+1= = -n n+ 1 n n+ 1
则 a1a2+ a2a3+ a3a4+ +a 1 1 1 1 1 20202020a2021= 1- 2 + 2 - 3 +...+ 2020 - 2021 = 2021
故选:B.
8.等差数列 an 中,a3= 5,a7= 9,设 bn= 1an+1+
,则数列 b 的前 61项和为 ( )
a nn
A. 7- 3 B. 7 C. 8- 3 D. 8
【答案】C
【解析】
解:因为等差数列满足 a = 5,a = 9,所以 a - ad= 7 33 7 7- 3 = 1,所以 an= a3+ n- 3 d=n+ 2,所以 bn=
1
+ + + = n+ 3- n+ 2,令数列 bn 的前n项和为S ,n 3 n 2 n
所以数列 bn 的前n项和Sn= 4- 3+ 5- 4+ + n+ 3- n+ 2= n+ 3- 3,所以S61= 8
- 3.
故选:C.
9. n2设数列 - + 的前n项和为Sn,则 ( ) 2n 1 2n 1
A. 25【答案】A
【解析】
n2由 1 4n
2 1
( - ) ( + ) = 4 2- = 4 1+
1 1 1 1 1
2n 1 2n 1 4n 1 4n2- =1 4 1+ 2 (2n- 1) ( 2n+ 1) = 4 +
1 1 18 2n- 1 - 2n+ 1 ,
∴S = n + 1 1- 1 + 1 - 1 + + 1 - 1 = n + 1 - 1 =
n(n+ 1)
n 4 8 3 3 5 2n- 1 2n+ 1 4 8 1 2n+ 1 2( ,2n+ 1)
∴S = 100× 101100 ( × + ) ≈ 25.12,2 2 100 1
故选:A.
n
10.已知数列 an 满足 an= 1+ 2+ 4+ +2n-1,则数列 2 a a 的前 5项和为 ( )n n+1
A. 131 B.
1
63 C.
30
31 D.
62
63
【答案】D
【解析】
因为 a = 1+ 2+ 4+ +2n-1= 2nn - 1,an+1= 2n+1- 1,
所以 2
n
= 2
n
= 2
n+1- 1 - 2n- 1 = 1 1ana n
- .
n+1 2 - 1 2n+1- 1 2n- 1 2n+1- 1 2n- 1 2n+1- 1
所以 2
n 1 1 1 1 1 1
a a 前 5项和为 1- - 2- + 2- - 3- + + 5- - 6- =
1
1 -
n n+1 2 1 2 1 2 1 2 1 2 1 2 1 2 - 1
1
6- = 1-
1 62
2 1 63
= 63
故选:D
a + 1
11.已知数列 an 的首项 a1= 1,且满足 an+1- an= 2n n∈N * ,记数列 n + + 的前 n项和为 an 2 an+1 2
Tn,若对于任意n∈N *,不等式 λ>Tn恒成立,则实数 λ的取值范围为 ( )
A. 1 2 ,+∞ B.
1
2 ,+∞ C.
1
3 ,+∞ D.
1
3 ,+∞
【答案】C
【解析】
解:因为 a - a = 2nn+1 n n∈N * ,所以 a2- a1= 21,a3- a2= 22,a4- a3= 23, ,a n-1n- an-1= 2 ,
2 1- 2n-1所以 a - a = 21+ 22+ +2n-1= nn 1 1- 2 = 2 - 2, n≥ 2 ,又 a1= 1,即 an= 2
n- 1,所以 an+ 1= 2n,
所以 an+ 1
n
= 2 = 1+ -
1 ,
an 2 an+1+ 2 2n+ 1 2n+1+ 1 2n+ 1 2n+1+ 1
所以T = 1 - 1 1 1n 1+ 2+ + 2+ - 3+ + +
1 1 1 1 1
2 1 2 1 2 1 2 1 2n+ -1 2n+1+ = 3 -1 2n+1+ <1 3
所以 λ的取值范围是 1 3 ,+∞ .
故选:C
a + 1
12.在数列 an 中,a2= 3,其前 n项和 Sn满足 Sn= n n2 ,若对任意 n∈N
1 1
+总有 4S + + 1- 1 4S2- 1
+ 14S - 1 ≤ λ恒成立,则实数 λ的最小值为 ( )n
A. 1 B. 23 C.
1
2 D.
1
3
【答案】C
【解析】
当n≥ 2时,2Sn=nan+n,2Sn-1= n- 1 an-1+ n- 1 ,两式相减,整理得 n- 2 an= (n- 1)an-1- 1
①,
又当n≥ 3时, n- 3 an-1= n- 2 an-2- 1②,①-②,整理得 n- 2 an+ an-2 = 2n- 4 an-1
,又因n- 2≠ 0,得 an+ an-2= 2an-1,从而数列 an 为等差数列,
当 = 时, a1+ 1 a1+ 1n 1 S1= 2 即 a1= 2 ,解得 a1= 1,所以公差 d= a2- a1= 2,
则 a = n(n- 1)2n- 1,S =na + d=n2n n 1 2 ,
故当n≥ 2时, 14S - 1 +
1
4S - 1 + +
1 1 1 1 1 1
1 2 4Sn- 1
= 2- + 2- + + = +2 1 4 1 2n 2- 1 1× 3 3× 5
+
+ 1 = 1 1- 1 + 1 - 1- + 2 3 3 5 + +
1 - 1 = 1 1- 1 ,
2n 1 2n 1 2n- 1 2n+ 1 2 2n+ 1
易见 12 1-
1
2n+ 1 随n的增大而增大,从而
1 1 1
2 1- 2n+ 1 < 2 恒成立,所以 λ≥
1
2,故 λ的最小值为
1
2,
故选:C.
二、填空题
1.已知正项数列 {an}满足 a1= 2且 an 2+1 - 2an2- anan+1= 0,令 bn= (n+ 2)an,则数列 {bn}的前 8项的
和等于 __.
【答案】4094
【解析】
由 a2 - 2a2n+1 n- anan+1= 0,
得 (an+1+ an) (an+1- 2an) = 0,又 an> 0,
所以 an+1+ an> 0,
所以 an+1- 2an= 0,
所以 an+1a = 2,n
所以数列 {an}是以 2为首项,2为公比的等比数列,
所以 a = 2× 2n-1n = 2n,
所以 b nn= n+ 2 an= n+ 2 2 ,
令数列 {bn}的前n项的和为Tn,
T 1 2 88= 3× 2 + 4× 2 + +9× 2 ,
则 2T8= 3× 22+ 4× 23+ +9× 29,
-T = 6+ 22+ 238 + +28 - 9× 29
22 1- 27= + 6 1- 2 - 9× 2
9
= 2- 8× 29=-4094,
则T8= 4094,
故答案为:4094.
2. n已知数列 {an}的前n项和为Sn,且Sn= 2an- 2,则数列 a 的前n项和Tn=__.n
【答案】2- n+ 2n .2
【解析】
解:∵Sn= 2an- 2,∴Sn-1= 2an-1- 2(n≥ 2),设公比为 q,
两式相减得:an= 2an- 2an-1,即 an= 2an-1,n≥ 2,
又当n= 1时,有S1= 2a1- 2,解得:a1= 2,
∴数列 {an}是首项、公比均为 2的等比数列,
∴ an= 2n,n = na ,n 2n
又Tn= 1 + 21 +
3 + + n ,
2 22 23 2n
1 Tn= 1 22 2 + 3 + +
n- 1 n
2 2 2n
+
2n+1

1 1- 1
n

两式相减得:1 Tn= 12 2 +
1 + 1 1 n 2 2 n
22 23
+ +
2n
-
2n+1
= - n+1 ,
1- 1 22
整理得:Tn= 2- n+ 2n .2
故答案为:Tn= 2- n+ 2n .2
3.将 1+ x n(n∈Ν+)的展开式中 x2的系数记为 a 1 1 1n,则 a + a + + a =__________.2 3 2015
【答案】40282015
【解析】
+ n = k k = = 2= n n- 1 1 x 的展开式的通项公式为Tk+1 Cnx ,令 k 2可得 an Cn 2 ;
1 2 1 1
a = = 2n n n- 1 n- 1 - n ;
所以 1a +
1
a + +
1 1
a = 2 1- 2 + 2
1 - 12 3 + +2
1
2014 -
1
2 3 2015 2015
= 2 1- 1 = 40282015 2015 .
故答案为:40282015 .
4.数列 an
1 2
的前项n和为Sn,满足 a *1=- 2 ,且 an+ an+1= 2+ n∈N ,则S2n=______.n 2n
【答案】 2n2n+ 1
【解析】
由题意,数列 {an}满足 an+ a 2n+1= n2+ ,2n
可得 a 2 2 1 12n-1+ a2n= (2n- 1)2+ ( - ) =2 2n 1 (2n- 1) (2n+ =1) 2n- 1 - 2n+ 1,
所以S = 1 - 1 1 12n 1 3 + 3 - 5 + +
1
2n- 1 -
1 1 2n
2n+ 1 = 1- 2n+ 1 = 2n+ 1,
故答案为: 2n2n+ 1
三、解答题
1.已知数列 an 满足 a1= 1,2an+1an+ an+1- an= 0.
(1) 1求证:数列 an 为等差数列;
(2)求数列 anan+1 的前n项和Sn.
【答案】(1)证明见解析;
(2)S = nn 2n+ 1 .
【解析】
(1)令 b = 1n a ,因为 bn+1- bn=
1 1 an- an+1
n a
- =
n+1 an a a
= 2,
n n+1
所以数列 bn 为等差数列,首项为 1,公差为 2;
(2)由 (1)知:bn= 2n- 1;故 a 1n= 2n- 1;
所以 a a 1 1 1 1n n+1= = - ;
2n- 1 2n+ 1 2 2n- 1 2n+ 1
所以Sn= a1a2+ a a + +a a = 1 + 1 + + 12 3 n n+1 1× 3 3× 5 2n- 1 2n+ 1
= 1 1- 1 + 12 3 3 -
1
5 + +
1
2n- 1 -
1
2n+ 1 =
n
2n+ 1;
2.已知正项数列 an 的前n项和为Sn,an+1- an= 3 n∈N * ,且S3= 18.
(1)求数列 an 的通项公式;
(2)若 b 1n= a a ,求数列 bn 的前n项和Tn.n n+1
【答案】(1)a = 3n (2)T = nn n 9n+ 9
【解析】
(1) ∵ an+1- an= 3,∴数列 an 是以公差为 3的等差数列.
又S3= 18,∴ 3a1+ 9= 18,a1= 3,∴ an= 3n.
(2)由 (1)知 b = 1 = 1 1 1n × + 9 × n - n+ 1 ,于是Tn= b1+ b2+ b3+ +b3n 3 n 1 n=
1 1- 1 + 1 - 1 + 1 - 1 + + 1 - 1 = 1 1- 1 n9 2 2 3 3 4 n n+ 1 9 n+ 1 = 9n+ 9
3.已知数列 an 的首项为 3,且 an- an+1= an+1- 2 an- 2 .
(1) 1证明数列 - a 2 是等差数列,并求 an 的通项公式;n
(2) a若 b = -1 n nn n+ 1,求数列 bn 的前n项和Sn.
【答案】(1)证明见解析;a = 1n n + 2
(2) - 1+ -1 n 1 n+ 1
【解析】
(1)因为 an- an+1= an+1- 2 an- 2 ,所 an- 2 - an+1- 2 = an+1- 2 an- 2 ,
则 1 1 1 1a -n+1- 2 a - 2
= 1,所以数列
n a - 2 是以 3- 2 = 1 为首项,公差等于 1的等差数列,n
∴ 1a - 2 = 1+ n- 1 =n,即 a
1
n= n + 2;n
(2)bn= -
a
1 1 n n n n+ 1 = -1 + +
2
n+ 1 = -1
n 1 n +
1
n n 1 n+ 1 ,
则Sn=- 1+ 12 +
1 + 1 - 1 + 12 3 3 4 + + -1
n 1 n +
1
n+ 1 =-1+ -1
n 1
n+ 1;
综上,a 1 n 1n= n + 2,Sn=-1+ -1 n+ 1 .
4.已知数列 an 中,a1=-1,且满足 an+1= 2an- 1.
(1)求证:数列 an- 1 是等比数列,并求 an 的通项公式;
(2)若 bn= n+ 11- a ,求数列 bn 的前n项和为Tn.n+1
【答案】(1)证明见解析,an=-2n+ 1(2)Tn= 3 n+ 32 - 2n+1
【解析】
(1)解:对任意的n∈N ,an+1= 2an- 1,所以 an+1- 1= 2 an- 1 ,且 a1- 1=-2,所以数列 an- 1 是以
-2为首项,2为公比的等比数列.所以 an- 1=-2n,所以 an=-2n+ 1.
(2)解:由已知可得 b = n+ 1 n+ 1 2 3 4 n+ 1 1 2n 1- a = n+1 ,则Tn= 2 + 3 + 4 + + n+1 ,所以,2 Tn= 3 +
3 +
n+1 2 2 2 2 2 2 24
1 n-1
n n+ 1 1 2 1 1 n+ 1 1 8 1-
1
+ + n+1 n+2 ,两式相减得 2 Tn= 2 + 3 + + n+1 -
2
n+2 = 2 + 1 -
n+ 1 3
n+2 = 4 -2 2 2 2 2 2 1- 22
1 n+ 1 3 n+ 3 3 n+ 3
2n+1
-
2n+2
= 4 - n+2 ,因此,T2 n= 2 - 2n+1 .
5.已知等比数列 an ,a1= 2,a5= 32.
(1)求数列 an 的通项公式;
(2)若数列 an 为正项数列 (各项均为正),求数列 (2n+ 1) an 的前n项和Tn.
【答案】(1)a nn= 2 或 an= 2· -2 n-1;
(2)Tn= 2+ (2n- 1) 2n+1.
【解析】
(1)等比数列 an 的公比为 q,a1= 2,a5= 32,则 4=
a
q 5a = 16,解得 q=±2,1
所以当 q= 2时,an= 2n,当 q=-2时,a = 2 (-2)n-1n .
(2)由 (1)知,a = 2nn ,则有 (2n+ 1) an= (2n+ 1) 2n,
则Tn= 3× 21+ 5× 22+ 7× 23+ +(2n+ 1) 2n,
于是得 2Tn= 3× 22+ 5× 23+ +(2n- 1) 2n+ (2n+ 1) 2n+1,
22× (1- 2n-1)
两式相减,得-Tn= 6+ 2× (22+ 23+ +2n) - (2n+ 1) 2n+1= 6+ 2× 1- 2 - (2n+ 1) 2
n+1=
-2- (2n- 1) 2n+1,
所以Tn= 2+ (2n- 1) 2n+1.
6.已知等差数列 an 满足 a1= 1,a2 a3= a1 a 38,数列 bn 的前n项和为Sn,且Sn= 2 bn.
(1)求数列 an , bn 的通项公式;
(2)求数列 anbn 的前n项和Tn.
【答案】(1)an= 1或 an= 2n- 1;bn= 3n;
n
(2)若 an=
3 3 - 1
1,则 T n+1n= 3 ;若 an= 2n- 1,则Tn= n- 1 3 + 3.
【解析】
(1)设等差数列 an 的公差为 d,
∵ a1= 1,a2 a3= a1 a8,∴ 1+ d 1+ 2d = 1+ 7d,
化简得 2d2- 4d= 0,解得:d= 0或 d= 2,
若 d= 0,则 an= 1;若 d= 2,则 an= 2n- 1;
由数列 bn 的前n项和为Sn= 32 b
3
n- 2 ①,
当n= 1时,得 b1= 3,
当n≥ 2时,有S = 3 b - 3n-1 2 n-1 2 ②;
①-②有 bb = 3n 2 b
3
n- 2 bn-1,即
n = 3,n≥ 2,
bn-1
所以数列 bn 是首项为 3,公比为 3的等比数列,所以 b nn= 3 ,
综上所述:an= 1或 an= 2n- 1;bn= 3n;
(2)若 an= 1,则 anbn= bn= 3n,
n n
则Tn= 3+ 32+ +3n=
3 1- 3
1- 3 =
3 3 - 1
2 ,
若 an= 2n- 1,则 anbn= 2n- 1 3n,
则Tn= 1× 3+ 3× 32+ + 2n- 1 × 3n③;
③× 3得 3Tn= 1× 32+ 3× 33+ + 2n- 1 × 3n+1④;
③-④得:-2Tn= 3+ 2× 32+ 2× 33+ +2× 3n- 2n- 1 × 3n+1
= + × 3
2(1- 3n-1)
3 2 1- 3 - (2n- 1) × 3
n+1
整理化简得:T n+1n= n- 1 3 + 3,
n
综上所述:若 an=
3 3 - 1
1,则 Tn= 3 ;若 an= 2n- 1,则Tn= n- 1 3
n+1+ 3.

展开更多......

收起↑

资源列表