2012_2022年高考数学真题分类汇编18极坐标与参数方程(10份打包)

资源下载
  1. 二一教育资源

2012_2022年高考数学真题分类汇编18极坐标与参数方程(10份打包)

资源简介

极坐标与参数方程
1.(2021年高考全国甲卷理科)在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.
【答案】(1);(2)P的轨迹的参数方程为(为参数),C与没有公共点.
解析:(1)由曲线C的极坐标方程可得,
将代入可得,即,
即曲线C的直角坐标方程为;
(2)设,设


则,即,
故P的轨迹的参数方程为(为参数)
曲线C的圆心为,半径为,曲线的圆心为,半径为2,
则圆心距为,,两圆内含,
故曲线C与没有公共点.
2.(2021年高考全国乙卷理科)在直角坐标系中,的圆心为,半径为1.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
【答案】(1),(为参数);(2)或.
解析:(1)由题意,的普通方程为,
所以参数方程为,(为参数)
(2)由题意,切线的斜率一定存在,设切线方程为,即,
由圆心到直线的距离等于1可得,
解得,所以切线方程为或,
将,代入化简得

3.(2020年高考数学课标Ⅰ卷理科)在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)当时,是什么曲线?
(2)当时,求与的公共点的直角坐标.
【答案】(1)曲线表示以坐标原点为圆心,半径为1的圆;(2).
【解析】(1)当时,曲线的参数方程为为参数),
两式平方相加得,
所以曲线表示以坐标原点为圆心,半径为1的圆;
(2)当时,曲线的参数方程为为参数),
所以,曲线的参数方程化为为参数),
两式相加得曲线方程为,
得,平方得,
曲线的极坐标方程为,
曲线直角坐标方程为,
联立方程,
整理得,解得或(舍去),
,公共点的直角坐标为.
4.(2020年高考数学课标Ⅱ卷理科)已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).
(1)将C1,C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
【答案】(1);;(2).
解析:(1)由得的普通方程为:;
由得:,两式作差可得的普通方程为:.
(2)由得:,即;
设所求圆圆心的直角坐标为,其中,
则,解得:,所求圆的半径,
所求圆的直角坐标方程为:,即,
所求圆的极坐标方程为.
5.(2020年高考数学课标Ⅲ卷理科)在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A、B两点.
(1)求;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
【答案】(1)(2)
解析:(1)令,则,解得或(舍),则,即.
令,则,解得或(舍),则,即.

(2)由(1)可知,
则直线的方程为,即.
由可得,直线的极坐标方程为.
6.(2019年高考数学课标Ⅲ卷理科)如图,在极坐标系中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.
(1)分别写出,,的极坐标方程;
(2)曲线由,,构成,若点在上,且,求的极坐标.
【答案】
(1),,;
(2)或或或
7.(2019年高考数学课标全国Ⅱ卷理科)在极坐标系中,为极点,点在曲线上,直线过点且与垂直,垂足为.
当时,求及的极坐标方程;
当在上运动且在线段上时,求点轨迹的极坐标方程.
【答案】,的极坐标方程为;.
【官方解析】
因为在上,当时,.
由已知得.
设为上除的任意一点.在中,
经检验,点在曲线上.
所以,的极坐标方程为.
设,在中, ,即.
因为在线段上,且,故的取值范围是.
所以,点轨迹的极坐标方程为 .
【解析】因为点在曲线上,
所以;即,所以,
因为直线过点且与垂直,所以直线的直角坐标方程为,
即;因此,其极坐标方程为,即的极坐标方程为;
设,则,,由题意,,所以,故,整理得,因为在线段上,在上运动,所以,,
所以,点轨迹的极坐标方程为,即.
8.(2019年高考数学课标全国Ⅰ卷理科)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)求上的点到距离的最小值.
【答案】解:(1)因为,且,
所以的直角坐标方程为.的直角坐标方程为.
(2)由(1)可设的参数方程为(为参数,).
上的点到的距离为.
当时,取得最小值7,故上的点到距离的最小值为.
9.(2018年高考数学课标Ⅲ卷(理))【选修4—4:坐标系与参数方程】(10分)
在直角坐标系中,的参数方程为(为参数),过点,且倾斜角为的直线与交两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
解法1(1)的直角坐标方程为
当时,与交于两点;
当时,,则的方程为
与交于两点当且仅当,解得或,即或.
综上可知的取值范围为
(2)的参数方程为(为参数,)
设对应的参数分别为,则,且,满足
于是,,又点的坐标满足
所以点的轨迹的参数方程是(为参数,)
方法2(1)由的参数方程,消去参数,可得:
当时,直线显然与:有两个交点
当时,可设直线
由直线与交两点,可得,解得,所以或
又,且,所以或
综上可知的取值范围为
(2)法一:记,设,连结,则有
所以,所以即即①
此外点必须在圆:内
所以②
所以,即
所以中点的轨迹方程为
所以中点的轨迹方程的参数方程为,(为参数,且)
法二:可设,,
联立,消去,
整理可得
由根与系数的关系得,所以
所以
所以点的轨迹的参数方程为(其中为参数,且).
10.(2018年高考数学课标Ⅱ卷(理))[选修4-4:坐标系与参数方程](10分)
在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
【答案】解析:(1)曲线的直角坐标方程为.
当时,的直角坐标方程为,
当时,的直角坐标方程为.
(2)将的参数方程带入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.
又由①得,故,于是直线的斜率.
11.(2018年高考数学课标卷Ⅰ(理))[选修4–4:坐标系与参数方程](10分)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
【答案】解析:(1)由,得的直角坐标方程为.
(2)由(1)知是圆心为,半径为的圆.
由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与没有公共点.
综上,所求的方程为.
12.(2017年高考数学新课标Ⅰ卷理科)[选修4―4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线l的参数方程为.
(1)若,求与的交点坐标;
(2)若上的点到的距离的最大值为,求.
【解析】(1)曲线的普通方程为.
当时,直线的普通方程为.
由解得或.
从而与的交点坐标为,.
(2)直线的普通方程为,故上的点到的距离为

当时,的最大值为.由题设得,所以;
当时,的最大值为.由题设得,所以.
综上,或.
13.(2017年高考数学课标Ⅲ卷理科)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为(为参数).设与的交点为,当变化时,的轨迹为曲线.
(1)写出的普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,为与的交点,求的极径.
(1)由直线的参数方程为(为参数),可得
由直线的参数方程为(为参数),可得
联立,的方程,消去参数可得:即
当时,,此时两直线没有交点
所以曲线的普通方程为:.
(2)法一:将代入,可得曲线的极坐标方程为:
联立曲线与的极坐标方程
整理可得
所以点的极径长为.
法二:将代入,可得
联立方程
故的直角坐标为,所以.
故点的极径为.
14.(2017年高考数学课标Ⅱ卷理科)[选修4-4:坐标系与参数方程](10分)
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
【基本解法】(1)解法一:设点在极坐标下坐标为
由可得点的坐标为,代入曲线的极坐标方程,得:
,即,两边同乘以,化成直角坐标方程为:
,由题意知,所以检验得.
解法二:设点在直角坐标系下坐标为,曲线的直角坐标方程为,因为三点共线,所以点的坐标为,代入条件得:
,因为,化简得:

(2)解法一:由(1)知曲线的极坐标方程为,故可设点坐标为,
由得,即最大值为.
解法二:在直角坐标系中,点坐标为,直线的方程为.
设点点坐标,则点到直线的距离
所以,又因为点坐标满足方程,由柯西不等式得:
,即

由得,.
解法三:前面同解法二,
,又因为点坐标满足方程,故可设
的坐标,即

15.(2016高考数学课标Ⅲ卷理科)选修4—4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值及此时的直角坐标.
【解析】(Ⅰ)的普通方程为,的直角坐标方程为.
(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值,
即为到的距离的最小值,.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
16.(2016高考数学课标Ⅱ卷理科)(本小题满分10分)选修4-4:坐标系与参数方程
在直线坐标系中,圆的方程为.
(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;
(2)直线的参数方程是(为参数),与交于两点,,求的斜率.
方法1(1)由可得圆的极坐标方程

(2)在(1)中建立的极坐标系中,直线的极坐标方程为.
设所对应的极径分别为,将的极坐标方程代入的极坐标方程得
于是,
由得,.
所以的斜率为或.
方法2(1)由可知圆的极坐标方程为.
(2)记直线的斜率为,则直线的方程为,
由垂径定理及点到直线距离公式知:,
即,整理得,则.
17.(2016高考数学课标Ⅰ卷理科)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系中,曲线的参数方程为(为参数,).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.
(1)说明是哪一种曲线,并将的方程化为极坐标方程;
(2)直线的极坐标方程为,其中满足,若曲线与的公共点都在上,求.
解析:(I)消去参数得到的普通方程
是以为圆心,为半径的圆.
将代入的普通方程中,得到的极坐标方程为

(II)曲线,的公共点的极坐标满足方程组
若,由方程组的
由已知,可得
从而,解得(舍去),
当时,极点也为,的公共点,在上
所以.
法2(I) (均为参数)
∴ ①
∴为以为圆心,为半径的圆.方程为

∴ 即为的极坐标方程
(II) 两边同乘得
即 ②
:化为普通方程为
由题意:和的公共方程所在直线即为
①—②得:,即为
∴,∴.
18.(2015高考数学新课标2理科)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.
(1)求与交点的直角坐标;
(2)若与相交于点,与相交于点,求的最大值.
【答案】(Ⅰ)和;(Ⅱ).
解析:(Ⅰ)曲线的直角坐标方程为,曲线的直角坐标方程为.联立解得或所以与交点的直角坐标为和.
(Ⅱ)曲线的极坐标方程为,其中.因此得到极坐标为,的极坐标为.所以,当时,取得最大值,最大值为.
19.(2015高考数学新课标1理科)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中。直线:,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系。
(1)求,的极坐标方程;
(2)若直线的极坐标方程为,设与的交点为, ,求的面积
【答案】(Ⅰ),(Ⅱ)
分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得,的极坐标方程;(Ⅱ)将将代入即可求出|MN|,利用三角形面积公式即可求出的面积.
解析:(Ⅰ)因为,
∴的极坐标方程为,的极坐标方程为.……5分
(Ⅱ)将代入,得,解得=,=,|MN|=-=,
因为的半径为1,则的面积=.
20.(2014高考数学课标2理科)(本小题满分10)选修4-4:坐标系与参数方程
在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为,.
(1)求C的参数方程;
(2)设点D在C上,C在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.
解析:(Ⅰ)代入得
又因为,所以,C的普通方程
所以C的参数方程为
(Ⅱ)设点D,由(Ⅰ)知曲线C是以为圆心,以为半径的上半圆,C在D处的切线与直线垂直,则
,所以D的坐标为.
21.(2014高考数学课标1理科)选修4—4:坐标系与参数方程
已知曲线:,直线:(为参数).
(1)写出曲线的参数方程,直线的普通方程;
(2)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.
【答案】解析:(1)曲线C的参数方程为: (为参数),
直线的普通方程为:.
(2)在曲线C上任意取一点到的距离为
,
则,其中为锐角且.
当时,取得最大值,最大值为;
当时,取得最小值,最小值为.
22.(2013高考数学新课标2理科)[选修4-4]坐标系与参数方程
已知动点都在曲线(为参数)上,对应参数分别为与,为的中点.
(1)求的轨迹的参数方程;
(2)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.
解析 (1)依题意有,
因此.
的轨迹的参数方程为 (为参数,).
(2)点到坐标原点的距离.
当α=π,d=0,故的轨迹过坐标原点.
23.(2013高考数学新课标1理科)选修4—4:坐标系与参数方程
已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为。
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
解析:将消去参数,化为普通方程,
即:,将代入 得,,
∴的极坐标方程为;
(Ⅱ)的普通方程为,
由解得或,∴与的交点的极坐标分别为(),.
24.(2012高考数学新课标理科)选修4—4:坐标系与参数方程
已知曲线的参数方程是为参数,以坐标原点为极点,轴的正半轴
为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,
且依逆时针次序排列,点的极坐标为.
(1)求点的直角坐标;
(2)设为上任意一点,求的取值范围.
解析(1)点的极坐标为
点的直角坐标为
(2)设;则
PAGE
- 1 -算法与框图
一、选择题
1.(2019年高考数学课标Ⅲ卷理科)执行如图所示的程序框图,如果输入的为,则输出的值等于 (  ).
(  )
A. B. C. D.
【答案】D
【解析】否


输出,故选D.
【点评】循环运算,何时满足精确度成为关键,在求和时的项数应准确,此为易错点.
2.(2019年高考数学课标全国Ⅰ卷理科)右图是求的程序框图,
图中空白框中应填入 (  )
A.
B.
C.
D.
【答案】A
解析:,故图中空白框中应填入.
3.(2018年高考数学课标Ⅱ卷(理))为计算,设计了右侧的程序框图,则在空白框中应填入 (  )
A. B. C. D.
【答案】B
解析:由,得程序框图是先把奇数项累加,再把偶数项累加,最后再相减.因此在空白框中应填入,故选B.
4.(2017年高考数学新课标Ⅰ卷理科)右面程序框图是为了求出满足]的最小偶数,那么在和两个空白框中,可以分别填入 (  )
A.和 B.和
C.和 D.和
【答案】D
【解析】由题意,因为,且框图中在“否”时输出,所以在判定框内不能输入,故判定框内填,又要求为偶数且初始值为,所以矩形框内填,故选D.
【考点】程序框图
【点评】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙的设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断,可以根据选项排除.
5.(2017年高考数学课标Ⅲ卷理科)执行右面的程序框图,为使输出的值小于,则输入的正整数的最小值为 (  )
A. B. C. D.
【答案】D
【解析】该程序框图是直到型的循环结构,循环体完成的功能是实现的累加,的累除
进入循环休内
循环次数
0 是
1 是
2 否
为使输出的值小于,则输入的最小正整数,故选D.
【考点】程序框图
【点评】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.
6.(2017年高考数学课标Ⅱ卷理科)执行右面的程序框图,如果输入的,则输出的 (  )
A.2 B.3 C.4 D.5
【答案】B
【命题意图】本题考查程序框图的知识,意在考查考生对循环结构的理解与应用.
【解析】解法一:常规解法
∵ ,,,,,∴ 执行第一次循环:﹑﹑
;执行第二次循环:﹑﹑;执行第三次循环:﹑﹑
;执行第四次循环:﹑﹑;执行第五次循环:﹑﹑
;执行第五次循环:﹑﹑;当时,终止循环,输出,
故输出值为3.
解法二:数列法
,,裂项相消可得;执行第一次循环:﹑
﹑,当时,即可终止,,即,故输出
值为3.
【考点】 流程图
【点评】识别、运行程序框图和完善程序框图的思路
要明确程序框图的顺序结构、条件结构和循环结构.
要识别、运行程序框图,理解框图所解决的实际问题.
(3)按照题目的要求完成解答并验证。
7.(2016高考数学课标Ⅲ卷理科)执行右面的程序框图,如果输入的,,那么输出的 (  )
A.3 B.4 C.5 D.6
【答案】B
【解析】
第一次循环,得;
第二次循环,得;
第三次循环,得;
第四次循环,得;
退出循环,输出,故选B.
8.(2016高考数学课标Ⅱ卷理科)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的 (  )
(  )
A.7 B.12 C.17 D.34
【答案】C
【解析】 第一次运算:,第二次运算:,第三次运算:,故选C.
9.(2016高考数学课标Ⅰ卷理科)执行右面的程序图,如果输入的,则输出的值满足 (  )
(  )
(A)(B)(C)(D)
【答案】C
【解析】如下表:
循环节运行次数 判断 是否输出
运行前 0 1 / / 1
第一次 否 否
第二次 否 否
第三次 是 是
输出,,满足,故选C.
10.(2015高考数学新课标2理科)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入分别为14,18,则输出的 (  )
(  )
A.0 B.2 C.4 D.14
【答案】B
解析:程序在执行过程中,,的值依次为,;;;;;,此时程序结束,输出的值为2,故选B.
考点:程序框图.
11.(2015高考数学新课标1理科)执行右面的程序框图,如果输入的t=0.01,则输出的n= (  )
A.5 B.6 C.7 D.8
【答案】C
解析:执行第1次,t=0.01,S=1,n=0,m==0.5,S=S-m=0.5,=0.25,n=1,S=0.5>t=0.01,是,循环,
执行第2次,S=S-m=0.25,=0.125,n=2,S=0.25>t=0.01,是,循环,
执行第3次,S=S-m=0.125,=0.0625,n=3,S=0.125>t=0.01,是,循环,
执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625>t=0.01,是,循环,
执行第5次,S=S-m=0.03125,=0.015625,n=5,S=0.03125>t=0.01,是,循环,
执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625>t=0.01,是,循环,
执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.
考点:本题注意考查程序框图
12.(2014高考数学课标2理科)执行右图程序框图,如果输入的x,t均为2,则输出的S= (  )
A.4 B.5 C.6 D.7
【答案】D
解析:由题意知:当k=1时,M=2,S=5;当k=2时,M=2,S=7;当k=3时,输出S=7,选D。
考点:(1)程序框图;(2)。
难度:B
备注:常考题
13.(2014高考数学课标1理科)执行下图的程序框图,若输入的分别为1,2,3,则输出的= (  )
(  )
A. B. C. D.
【答案】D.
解析:输入;时:;
时:;时:;
时:输出. 选D.
考点:(1)程序框图的应用 (2)化归于转化的思想
难度:B
备注:高频考点
14.(2013高考数学新课标2理科)执行右面的程序框图,如果输入的,那么输出的= (  )
A. B.
C. D.
【答案】B
解析:

由于,即时,结束循环,共执行10次.
所以输出.
考点:(1)11.1.3程序框图的识别及应用;
难度: B
备注:高频考点
15.(2013高考数学新课标1理科)运行如下程序框图,如果输入的,则输出s属于 (  )
A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]
【答案】A
解析: 由题意知,当时,,当时,,
∴输出s属于[-3,4],故选.
考点:(1)2.1.4分段函数及其应用;(2)11.1.2算法的基本逻辑结构.
难度:A
备注:高频考点
16.(2012高考数学新课标理科)如果执行如图所示的程序框图,输入正整数和实数,输出,则 (  )
A.为的和
B.为的算术平均数
C.和分别是中最大的数和最小的数
D.和分别是中最小的数和最大的数
【答案】C
解析:观察流程图,不难发现,x>A,则A=x,x考点:(1)11.1.2算法的基本逻辑结构;(2)11.1.3程序框图的识别及应用
难度:A
备注:高频考点
输入
输出
停止
开始
a>b
a = a - b
b = b - a
输出a
结束
开始
输入a,b
a ≠ b
S=S+T

开始
k=1, S = 0,T =1
T= eq \F(T,k)
k >N
输出S
结束
输入N
k=k +1
PAGE
- 1 -圆锥曲线小题
一、选择题
1.(2021年高考全国甲卷理科)已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为 (  )
A. B. C. D.
【答案】A
解析:因为,由双曲线的定义可得,
所以,;
因为,由余弦定理可得,
整理可得,所以,即.
故选:A
2.(2021年高考全国乙卷理科)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是 (  )
A. B. C. D.
【答案】C
3.(2020年高考数学课标Ⅰ卷理科)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= (  )
A.2 B.3 C.6 D.9
【答案】C
【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.
故选:C.
4.(2020年高考数学课标Ⅱ卷理科)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为 (  )
A.4 B.8 C.16 D.32
【答案】B
解析:
双曲线的渐近线方程是
直线与双曲线的两条渐近线分别交于,两点
不妨设为在第一象限,在第四象限
联立,解得

联立,解得

面积为:
双曲线
其焦距为
当且仅当取等号
的焦距的最小值:
故选:B.
5.(2020年高考数学课标Ⅲ卷理科)设双曲线C:(a>0,b>0)左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a= (  )
A.1 B.2 C.4 D.8
【答案】A
解析:,,根据双曲线的定义可得,
,即,
,,
,即,解得,
故选:A.
6.(2020年高考数学课标Ⅲ卷理科)设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为 (  )
A. B. C. D.
【答案】B
解析:因为直线与抛物线交于两点,且,
根据抛物线的对称性可以确定,所以,
代入抛物线方程,求得,所以其焦点坐标为,
故选:B.
7.(2019年高考数学课标Ⅲ卷理科)双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为 (  )
A. B. C. D.
【答案】A
【解析】由,
又P在C的一条渐近线上,不妨设为在上,则.
,故选A.
8.(2019年高考数学课标全国Ⅱ卷理科)设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为 (  )
A. B. C. D.
【答案】A
【解析】设与轴交于点,由对称性可知轴,又∵,∴,
为以为直径的圆的半径,∴为圆心.∴,又点在圆上,
∴,即,∴,∴,故选A.
9.(2019年高考数学课标全国Ⅱ卷理科)若抛物线的焦点是椭圆的一个焦点,则 (  )
A. B. C. D.
【答案】D
【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.
10.(2019年高考数学课标全国Ⅰ卷理科)已知椭圆的焦点为,,过的直线与交于,两点.若,
,则的方程为 (  )
A. B. C. D.
【答案】B
解析:如图,设,则,由,可得,,所以点为椭圆的上顶点或下顶点.
在中,由余弦定理可得,
所以,即,即,又,所以椭圆方程为.
11.(2018年高考数学课标Ⅲ卷(理))设是双曲线的左、右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,若,则的离心率为 (  )
A. B. C. D.
【答案】C
解析:法一:根据双曲线的对称性,不妨设过点作渐近线的垂线,该垂线的方程为,联立方程,解得

整理可得即
即即,所以,所以,故选C.
法二:由双曲线的性质易知,,所以
在中,
在中,由余弦定理可得
所以,整理可得,即
所以,所以,故选C.
12.(2018年高考数学课标Ⅱ卷(理))已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为 (  )
A. B. C. D.
【答案】D
解析:因为为等腰三角形,,所以,由余弦定理得,
所以,而,由已知,得,即,故选D.
13.(2018年高考数学课标Ⅱ卷(理))双曲线的离心率为,则其渐近线方程为 (  )
A. B. C. D.
14.(2018年高考数学课标卷Ⅰ(理))已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为.若为直角三角形,则 (  )
A. B. C. D.
【答案】B
解析:双曲线的渐近线方程为:,渐近线的夹角为:,不妨设过的直线为:,则解得;解得:,则,故选B.
15.(2018年高考数学课标卷Ⅰ(理))设抛物线的焦点为.过点且斜率为的直线与交于两点,则 (  )
A. B. C. D.
【答案】D
解析:抛物线的焦点为,过点且斜率为的直线为:,联立直线与抛物线,消去可得:,解得,不妨,,,,则,故选D.
16.(2017年高考数学新课标Ⅰ卷理科)已知为抛物线的焦点,过作两条互相垂直的直线,,直线与交于两点,直线与交于两点,则的是小值为 (  )
A. B. C. D.
【答案】A
【解析】设,,直线方程为
取方程,得

同理直线与抛物线的交点满足
由抛物线定义可知
当且仅当(或)时,取得等号.
17.(2017年高考数学课标Ⅲ卷理科)已知椭圆,的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为 (  )
A. B. C. D.
【答案】A
【解析】以线段为直径的圆的圆心为原点,半径为,该圆与直线相切
所以圆心到直线的距离,整理可得
所以,故选A.
18.(2017年高考数学课标Ⅲ卷理科)已知双曲线的一条渐近线方程为,且与椭圆有公共焦点,则的方程为 (  )
A. B. C. D.
【答案】B
【解析】由渐近线的方程,可设双曲线的方程为
又椭圆的焦点坐标为
所以,且,故所求双曲线的方程为:,故选B.
19.(2017年高考数学课标Ⅱ卷理科)若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为 (  )
A.2 B. C. D.
【解析】解法一:常规解法
根据双曲线的标准方程可求得渐近线方程为,根据直线与圆的位置关系可求得圆心到
渐进线的距离为,∴ 圆心到渐近线的距离为,即,解得.
解法二:待定系数法
设渐进线的方程为,根据直线与圆的位置关系可求得圆心到渐进线的距离为,
∴ 圆心到渐近线的距离为,即,解得;由于渐近线的斜率与离心率
关系为,解得.
解法三:几何法
从题意可知:,为等边三角形,所以一条渐近线的倾斜较为
由于,可得,
渐近线的斜率与离心率关系为,解得.
解法四:坐标系转化法
根据圆的直角坐标系方程:,可得极坐标方程,由可得极
角,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以,
渐近线的斜率与离心率关系为,解得.
解法五:参数法之直线参数方程
如上图,根据双曲线的标准方程可求得渐近线方程为,可以表示点的坐标为,∵ , ∴ 点的坐标为,代入圆方程中,
解得.
20.(2016高考数学课标Ⅲ卷理科)已知为坐标原点,是椭圆C:的左焦点,分别为的左、右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过OE的中点,则的离心率为 (  )
A. B. C. D.
【答案】A
【解析】由题意,设直线的方程为,分别令与,得点
,,由△OBE∽△CBM,得,即,整理得,所以椭圆的离心率,故选A.
21.(2016高考数学课标Ⅱ卷理科)已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为 (  )
A. B. C. D.2
【答案】A
【解析1】由题可令,则 所以,,所以,所以
故选A.
22.(2016高考数学课标Ⅰ卷理科)以抛物线的顶点为圆心的圆交于两点,交的准线于两点.已知,,则的焦点到准线的距离为 (  )
(A)2(B)4(C)6(D)8
【解析】以开口向右的抛物线为例来解答,其他开口同理
设抛物线为,设圆的方程为,题目条件翻译如图:
设,,
点在抛物线上,∴……①
点在圆上,∴……②
点在圆上,∴……③
联立①②③解得:,焦点到准线的距离为. 故选B.
23.(2016高考数学课标Ⅰ卷理科)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则的取值范围是 (  )
(A)(B)(C)(D)
【答案】A
【解析】表示双曲线,则,∴
由双曲线性质知:,其中是半焦距
∴焦距,解得∴故选A.
24.(2015高考数学新课标2理科)已知为双曲线的左,右顶点,点在上,为等腰三角形,且顶角为,则的离心率为 (  )
A. B. C. D.
【答案】D
解析:设双曲线方程为,如图所示,,,过点作轴,垂足为,在中,,,故点的坐标为,代入双曲线方程得,即,所以,故选D.
考点:双曲线的标准方程和简单几何性质.
25.(2015高考数学新课标1理科)已知是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是 (  )
A.(-,) B.(-,)
C.(,) D.(,)
【答案】A
解析:由题知,,所以= =,解得,故选A.
26.(2014高考数学课标2理科)设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A.B两点,O为坐标原点,则△OAB的面积为 (  )
A. B. C. D.
【答案】D
解析:由题意可知:直线AB的方程为:,带入抛物线的方程可得:,设,则所求三角形的面积为,故选D。
27.(2014高考数学课标1理科)已知抛物线:的焦点为,准线为,是上一点,是直线与的一个交点,若,则= (  )
A. B. C.3 D.2
【答案】C
【解析】:过Q作QM⊥直线L于M,∵
∴,又,∴,由抛物线定义知
选C
28.(2014高考数学课标1理科)已知是双曲线:的一个焦点,则点到的一条渐近线的距离为 (  )
A. B.3 C. D.
【答案】A
解析:由:,得,
设,一条渐近线,即,则点到的一条渐近线的距离=,选A..
29.(2013高考数学新课标2理科)设抛物线的焦点为,点在上,,若以为直径的圆过点,则的方程为 (  )
A.或 B.或
C.或 D.或
解析:由题意知:,抛物线的准线方程为,则由抛物线的定义知,,设以为直径的圆的圆心为,所以圆的方程为,又因为圆过点,所以,又因为点在上,所以,解得或,所以抛物线的方程为或,故选C.
30.(2013高考数学新课标1理科)已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A.B两点。若AB的中点坐标为(1,-1),则E的方程为 (  )
A.B.C.D
【答案】D
解析:设,则=2,=-2,
① ②
①-②得,
∴===,又==,∴=,又9==,解得=9,=18,∴椭圆方程为,故选D.
31.(2013高考数学新课标1理科)已知双曲线:()的离心率为,则的渐近线方程为 (  )
A. B. C.. D.
【答案】C
解析: 由题知,,即==,∴=,∴=,∴的渐近线方程为,故选.
32.(2012高考数学新课标理科)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,,则的实轴长为 (  )
A. B. C.4 D.8
【答案】C
解析:设等轴双曲线 ,则
由抛物线得准线
∵与抛物线的准线交于两点,

将A点坐标代入双曲线方程得.
33.(2012高考数学新课标理科)设F1,F2是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为 (  )
A. B. C. D.
【答案】C
解析:如上图,是底角为的等腰三角形可得=2c
在中,

又∵,所以
将等式两边同时除以a,
得.
二、填空题
34.(2021年高考全国甲卷理科)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
【答案】
解析:因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
故答案:.
35.(2021年高考全国乙卷理科)已知双曲线的一条渐近线为,则C的焦距为_________.
【答案】4
解析:由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距
故答案为:4
36.(2020年高考数学课标Ⅰ卷理科)已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
【答案】2
【解析】联立,解得,所以.
依题可得,,,即,变形得,,
因此,双曲线的离心率为.
故答案为:.
37.(2019年高考数学课标Ⅲ卷理科)设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.
【答案】
【解析】由已知可得,.

设点的坐标为,则,
又,解得,
,解得(舍去),
的坐标为.
法二、在得出..
,∴.
∴,
的坐标为.
法三、由题知,又由焦半径公式,得,从而得到,的坐标为.
38.(2019年高考数学课标全国Ⅰ卷理科)已知双曲线的左、右焦点分别为,过的直线与的两条渐近线分别交于两点.若,,则的离心率为.
【答案】2
解析:注意到,得到垂直平分,则,由渐近线的对称性,得,可得,所以,可得离心率.
39.(2018年高考数学课标Ⅲ卷(理))已知点和抛物线,过的焦点且斜率为的直线与交于两点,若,则.
解析:法一:抛物线的焦点坐标为,可设直线,
联立方程,消去并整理可得
所以,由点在抛物线上,可得,
所以,
由,可得,所以
所以

所以即,解得
故所求直线的斜率.
法二:抛物线的焦点,准线方程为
由依题意可知以为直径的圆与准线相切于点,故线段中点的纵坐标为
设直线,
联立方程,消去并整理可得
则有,解得
故所求直线的斜率.
40.(2017年高考数学新课标Ⅰ卷理科)已知双曲线的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于两点.若,则的离心率为__________.
【解析】如图所示,作
因为圆与双曲线的一条渐近线交于两点,则为双曲线的渐近线上的点,且,,因为,所以,到直线的距离,在中,,代入计算得,即,由得,所以.
41.(2017年高考数学课标Ⅱ卷理科)已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 .
【答案】
【解析】则,焦点为,准线,如图,为、中点,故易知线段为梯形中位线,∵,,∴,又由定义,且,∴.
42.(2015高考数学新课标1理科)一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为。
【答案】
解析:设圆心为(,0),则半径为,则,解得,故圆的方程为.
一、选择题
1.(2020年高考数学课标Ⅰ卷理科)已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为 (  )
A. B. C. D.
【答案】D
【解析】圆的方程可化为,点到直线的距离为,所以直线与圆相离.
依圆的知识可知,四点四点共圆,且,所以,而,
当直线时,,,此时最小.
∴即,由解得,.
所以以为直径的圆的方程为,即,
两圆的方程相减可得:,即为直线的方程.
故选:D.
2.(2020年高考数学课标Ⅱ卷理科)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为 (  )
A. B. C. D.
【答案】B
解析:由于圆上的点在第一象限,若圆心不在第一象限,
则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,
设圆心的坐标为,则圆的半径为,
圆的标准方程为.
由题意可得,
可得,解得或,
所以圆心的坐标为或,
圆心到直线的距离均为;
圆心到直线的距离均为
圆心到直线的距离均为;
所以,圆心到直线的距离为.
故选:B.
3.(2018年高考数学课标Ⅲ卷(理))直线分别与轴,轴交于两点,点在圆上,则面积的取值范围是 (  )
A. B. C. D.
【答案】A
解法一:由直线易知,,故
圆的圆心到直线的距离为,
所以点到直线的距离的取值范围为即
所以,故选A.
解法二:设,则点到直线的距离,
令,则代入圆的方程整理得:
利用方程有解条件,则有
注:此处也可利用线性规划寻求的范围
解法三:利用三角换元
设,则
解法四:利用面积公式的坐标形式
设则
下同解法二
注:①当然也可把点设为三角形式,并且更加简单!
②利用面积的向量表达形式,在实际运算中还是要转化为坐标形式才利于操作。
4.(2016高考数学课标Ⅱ卷理科)圆的圆心到直线的距离为1,则 (  )
A. B. C. D.
【答案】A
5.(2015高考数学新课标2理科)过三点,,的圆交轴于两点,则 (  )
A. B.8 C. D.10
【答案】C
解析:由已知得,,所以,所以,即为直角三角形,其外接圆圆心为,半径为,所以外接圆方程为,令,得,所以,故选C.
考点:圆的方程.
6.(2013高考数学新课标2理科)已知点,直线将分割为面积相等的两部分,则的取值范围是 (  )
A. B. C. D.
【答案】B
二、填空题
7.(2016高考数学课标Ⅲ卷理科)已知直线:与圆交于两点,过分别作的垂线与轴交于两点,若,则________________.
【答案】4
【解析】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知,在梯形中,.
8.(2014高考数学课标2理科)设点M(,1),若在圆O: 上存在点N,使得∠OMN=45°,则的取值范围是________.
【答案】
解析:在坐标系中画出圆O和直线y=1,其中在直线上,由圆的切线相等及三角形外角知识,可得
PAGE
- 1 -概率
一、选择题
1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻的概率为 (  )
A. B. C. D.
【答案】C
解析:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
所以2个0不相邻的概率为.
故选:C.
2.(2021年高考全国乙卷理科)在区间与中各随机取1个数,则两数之和大于的概率为 (  )
A. B. C. D.
【答案】B
解析:如图所示:
设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.
设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.
故选:B.
【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件对应的区域面积,即可顺利解出.
3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是 (  )
A. B.
C. D.
【答案】B
解析:对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组标准差最大.
故选:B.
【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.
4.(2019年高考数学课标全国Ⅰ卷理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个
爻组成,爻分为阳爻“”和阴爻“——”,右图就是一重卦.在所有重卦中随机
取一重卦,则该重卦恰有3个阳爻的概率是 (  )
A. B. C. D.
【答案】答案:A
解析:所有的重卦共有个,而恰有3个阳爻的重卦有个,所以所求概率为.
5.(2018年高考数学课标Ⅲ卷(理))某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的位成员中使用移动支付的人数,,,则 (  )
A. B. C. D.
【答案】B
解析:依题意可知,则,解得或
又,所以即,即
所以,故选B.
6.(2018年高考数学课标Ⅱ卷(理))我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 (  )
A. B. C. D.
【答案】C
解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种选法,故概率,故选C.
7.(2018年高考数学课标卷Ⅰ(理))下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为I,黑色部分记为II.其余部分记为III.在整个图形中随机取一点,此点取自1,II,III的概率分别记为则 (  )
A. B. C. D.
【答案】A
解析:如图:设,∴,∴,
∴,∴,故选A.
8.(2017年高考数学新课标Ⅰ卷理科)如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 (  )
(  )
A. B. C. D.
【答案】B
【解析】设正方形边长为,则圆的半径为,则正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B.
秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率,故选B.
9.(2016高考数学课标Ⅱ卷理科)从区间随机抽取个数,,…,,,,…,,构成个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为 (  )
A. B. C. D.
【答案】C
【解析】几何概型问题:样本空间 其面积为:
事件“两数的平方和小于1的数对”对应的集合为:
其对应区域面积为:,所以
所以,故选C.
10.(2016高考数学课标Ⅰ卷理科)某公司的班车在,,发车,小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (  )
(A)(B)(C)(D)
【答案】B
【解析】如图所示,画出时间轴:
小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过10分钟
根据几何概型,所求概率.故选B.
11.(2015高考数学新课标1理科)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (  )
A.0.648 B.432 C.0.36 D.0.312
【答案】A
解析:根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A.
考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式
12.(2014高考数学课标2理科)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 (  )
A.0.8 B.0.75 C.0.6 D.0.45
【答案】A
解析:设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则,故选A.
13.(2014高考数学课标1理科)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 (  )
A. B. C. D.
【答案】D
解析:4位同学各自在周六、周日两天中任选一天参加公益活动共有种,
周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有种;②每天2人有种,则周六、周日都有同学参加公益活动的概率为;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为;选D.
二、填空题
14.(2019年高考数学课标全国Ⅰ卷理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.
【答案】答案:
解析:因为甲队以4:1获胜,故一共进行5场比赛,且第5场为甲胜,前面4场比赛甲输一场,
若第1场或第2场输1场,则,
若第3场或第4场输1场,则,
所以甲以4:1获胜的概率是.
15.(2017年高考数学课标Ⅱ卷理科)一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 .
【解析】随机变量,
二是随机变量是否为在这次独立重复试验中某事件发生的次数,且表示在独立重复试验中,事件恰好发生次的概率.
16.(2013高考数学新课标2理科)从个正整数中任意取出两个不同的数,若取出的两数之和等于5的概率为,则=________.
【答案】8
解析:由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n个数中任意取出两个不同的数的总情况应该是,.
17.(2012高考数学新课标理科)某个部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为
【答案】
解析: 三个电子元件的使用寿命均服从正态分布
得:三个电子元件的使用寿命超过1000小时的概率为
设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常},C={该部件的使用寿命超过1000小时}则
超过1000小时时元件1或元件2正常工作的概率,
而.
那么该部件的使用寿命超过1000小时的概率为P(C)=P(AB)=P(A)P(B)=
三、解答题
18.(2020年高考数学课标Ⅰ卷理科)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
【答案】(1);(2);(3).
【解析】(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为

所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,
记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、
、、、、,
所以,甲赢概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
【点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.
19.(2019年高考数学课标全国Ⅱ卷理科)分制乒乓球比赛,每赢一球得分,当某局打成平后,每球交换发球权,先多得分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果相互独立.在某局双方平后,甲先发球,两人又打了个球该局比赛结束.
求;
求事件“且甲获胜”的概率.
【答案】;.
就是平后,两人又打了个球该局比赛结束,则这个球均由甲得分,或者均由乙得分.因此.
且甲获胜,就是平后,两人又打了个球该局比赛结束,且这个球的得分情况为:前两球是甲、乙各得分,后两球均为甲得分.
因此所求概率为

【解析】由题意可知,所包含的事件为“甲连赢两球或乙连赢两球”,
所以.
由题意可知,包含的事件为“前两球甲乙各得分,后两球均为甲得分”
所以.
20.(2019年高考数学课标全国Ⅰ卷理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定,对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X.
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则(),
其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
【答案】(1)解:X的所有可能取值为,

所以的分布列为
X 0 1
P
(2)(i)由(1)得.
因此,故,即.
又因为,所以为公比为4,首项为的等比数列.
(ii)由(i)可得
.
由于,故,所以

表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.
21.(2018年高考数学课标Ⅱ卷(理))(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
【答案】解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为
(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为
(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额,的变化趋势.2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中一种或其他合理理由均可得分.
22.(2018年高考数学课标卷Ⅰ(理))(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
【答案】解析:(1)20件产品中恰有2件不合格品的概率为.
因此.
令,得.当时,;当时,.
所以的最大值点为.
(2)由(1)知,.
(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.
所以.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于,故应该对余下的产品作检验.
23.(2017年高考数学新课标Ⅰ卷理科)(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得,,其中为抽取的第个零件的尺寸,.
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).
附:若随机变量服从正态分布,则,,.
【答案】(1),;(2)详见解析.
【分析】(1)根据题设条件知一个零件尺寸在之内的概率为,则零件的尺寸在之外的概率为,而,进而可以求出的数学期望.(2)(i)判断监控生产过程的方法的合理性,重点是考虑一天内抽取的个零件中,出现尺寸在之外的零件的概率大还是小,若小即合理;(ii)根据题设条件题出的估计值和的估计值,剔除之外的数据,算出剩下数据的平均数,即为的估计值,剔除之外的数据,剩下数据的样本方法,即为的估计值.
【解析】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026
故.因此.
的数学期望为.
(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.
剔除之外的数据9.22,剩下数据的平均数为
因此的估计值为
剔除之外的数据,剩下数据的样本方差为,因此的估计值为.
24.(2017年高考数学课标Ⅲ卷理科)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值
【解析】(1)依题意可知的所有可能取值为
其中,,
所以的分布列为
(2)①当时:,此时,当时取到.
②当时:
若,则,
若时,则
若时,则
的分布列为

此时,当时取到.
③当时,若,则
若时,则
若时,则
的分布列为
∴(元)
④当时,易知一定小于③的情况.
综上,当为瓶时,的数学期望达到最大值.
25.(2016高考数学课标Ⅱ卷理科)(本题满分12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 0 1 2 3 4
保费
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 0 1 2 3 4
概率 0.30 0.15 0.20 0.20 0.10 0. 05
(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
【答案】(1);(2);(3)
【解析】(I)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于,故.
(II)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于,故,

因此所求概率为.
(III)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为:.
26.(2016高考数学课标Ⅰ卷理科)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(1)求的分布列;
(2)若要求,确定的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
【答案】 (I)
16 17 18 19 20 21 22
(II) 19 (III)
【官方解答】(I)由柱状图并以频率代替概率可得,一台机器三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而
,,


所以的分布列为
16 17 18 19 20 21 22
(II) 由(I)得,,故的最小值为19
(III)记Y表示2台机器在购买易损零件上所需的费用(单位:元)
当时,
当时,

要令,,
则的最小值为19
可知当时所需要的费用的期望小于当时所需要的费用的期望∴故应选.
⑶购买零件所需费用含两部分:
一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用
当时,费用的期望为
当时,费用的期望为
所以应选用.
27.(2015高考数学新课标2理科)(本题满分12分)某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
地区:62738192958574645376
78869566977888827689
地区:73836251914653736482
93486581745654766579
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 低于70分 70分到89分 不低于90分
满意度等级 不满意 满意 非常满意
记事件:“地区用户的满意度等级高于地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.
解析:(Ⅰ)两地区用户满意度评分的茎叶图如下
通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.
(Ⅱ)记表示事件:“A地区用户满意度等级为满意或非常满意”;
表示事件:“A地区用户满意度等级为非常满意”;
表示事件:“B地区用户满意度等级为不满意”;
表示事件:“B地区用户满意度等级为满意”.
则与独立,与独立,与互斥,.

由所给数据得,,,发生的概率分别为,,,.故,
,,,故.
考点:1、茎叶图和特征数;2、互斥事件和独立事件.
28.(2014高考数学课标1理科)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.
附:.
若~,则.
【答案】解析:(1)抽取产品质量指标值的样本平均数和样本方差分别为
(2)(ⅰ)由(1)知~,从而

(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间的概率为
依题意知,所以.
29.(2013高考数学新课标2理科)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位: t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的T的数学期望.
【答案】(1); (2)0.7 ;(3)59400
解析:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000.
当X∈[130,150]时,T=500×130=65000.
所以
(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.
由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.
(3)依题意可得T的分布列为
T 45000 53000 61000 65000
P 0.1 0.2 0.3 0.4
所以E(T)=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.
考点:(1)10.2.1频率分布直方图的绘制与应用;(2)10.9.4离散型随机变量的均值、方差;
难度: B
PAGE
- 1 -统计
一、选择题
1.(2021年高考全国甲卷理科)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是 (  )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【答案】C
解析:因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.
综上,给出结论中不正确的是C.
故选:C.
【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.
2.(2019年高考数学课标Ⅲ卷理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 (  )
A. B. C. D.
【答案】C
【解析】由题意得,阅读过《西游记》的学生人数为,则其与该校学生人数之比为.故选C.
另解:记看过《西游记》的学生为集合A,看过《红楼梦》的学生为集合B.则由题意可得韦恩图:
则看过《西游记》的人数为70人,则其与该校学生人数之比为.故选C.
【点评】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.根据容斥原理或韦恩图,利用转化与化归思想解题.但平时对于这类题目接触少,学生初读题目时可能感到无从下手。
3.(2019年高考数学课标全国Ⅱ卷理科)若,则 (  )
A. B. C. D.
【答案】C
【解析】取,满足,,知A错,排除A;因为,知B错,排除B;取,,满足,,知D错,排除D,因为幂函数是增函数,,所以,故选C.
4.(2019年高考数学课标全国Ⅱ卷理科)演讲比赛共有位评委分别给出某选手的原始评分,评定该选手的成绩时,从个原始评分中去掉个最高分、个最低分,得到个有效评分.个有效评分与个原始评分相比,不变的数字特征是 (  )
A.中位数 B.平均数 C.方差 D.极差
【答案】A
【解析】设位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,∴A正确.
②原始平均数,后来平均数
平均数受极端值影响较大,∴与不一定相同,B不正确;
③,,
由②易知,C不正确;
④原极差,后来极差显然极差变小,D不正确.
5.(2018年高考数学课标卷Ⅰ(理))某地区经过一一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是 (  )
A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【答案】A
解析:设建设前经济收入为,建设后经济收入为.
A项,种植收入37×﹣60%=14%>0,故建设后,种植收入增加,故A项错误.
B项,建设后,其他收入为5%×2=10%,建设前,其他收入为4%,故10%÷4%=2.5>2,故B项正确.
C项,建设后,养殖收入为30%×2=60%,建设前,养殖收入为30%,故60%÷30%=2,故C项正确.
D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2=58%×2a,经济收入为2,故(58%×2a)÷2a=58%>50%,故D项正确,因为是选择不正确的一项.
故选:A.
6.(2015高考数学新课标2理科)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是 (  )
(  )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
【答案】D
解析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D.
7.(2013高考数学新课标1理科)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 (  )
A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样
【答案】C
解析: 因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.
二、填空题
8.(2019年高考数学课标全国Ⅱ卷理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有个车次的正点率为,有个车次的正点率为,有个车次的正点率为,则经停该站高铁列车所有车次的平均正点率的估计值为   .
【答案】.
【解析】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为,所以该站所有高铁平均正点率约为.
三、解答题
9.(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 100 102 9.9 9.8 10.0 10.1 10.2 9.7
新设备 101 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
解析:(1),



(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
10.(2021年高考全国甲卷理科)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
解析:(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
11.(2020年高考数学课标Ⅱ卷理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
【答案】(1);(2);(3)详见解析
解析:(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本(i=1,2,…,20)的相关系数为
(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,
由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,
采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,
从而可以获得该地区这种野生动物数量更准确的估计.
12.(2020年高考数学课标Ⅲ卷理科)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3841 6.635 10.828
解析:(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.
13.(2019年高考数学课标Ⅲ卷理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.
(1)求乙离子残留百分比直方图中的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
【答案】(1),;(2),.00.
【官方解析】
(1)由已知得,故,.
(2)甲离子残留百分比的平均值的估计值为

乙离子残留百分比的平均值的估计值为

14.(2018年高考数学课标Ⅲ卷(理))(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种生产方式,为比较两咱生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:
第一种生产方式 第二种生产方式
8 6 5 5 6 8 9
9 7 6 2 7 0 1 2 2 3 4 5 6 6 8
9 8 7 7 6 5 4 3 3 2 8 1 4 4 5
2 1 1 0 0 9 0
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 不超过
第一种生产方式
第二种生产方式
(3)根据(2)的列联表,能否有的把握认为两种生产方式的效率有差异?
附:
理由如下:
(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高..
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知.
列联表如下:
超过 不超过
第一种生产方式 15 5
第二种生产方式 5 15
(3)由于
所以有99%的把握认为两种生产方式的效率有差异.
(1)法一:第二种生产方式效率更高,因为第二种多数数据集中在之间,第一种多数数据集中在之间,易知第一种完成任务的平均时间大于第二种,故第二种生产方式的效率更高。
法二:第一种生产方式完成任务的平均时间为
第二种生产完成任务的平均时间为
第一种生产方式完成任务的平均时间第二种生产方式完成任务的平均时间
所以第二种生产方式效率更高
(2)中位数为
超过 不超过
第一种生产方式 15 5
第二种生产方式 5 15
(3)由(2)可计算得
所以有的把握认为两种生产方式的效率有差异.
点评:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.
15.(2017年高考数学课标Ⅱ卷理科)(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
【答案】(1);
(2)有的把握认为箱产量与养殖方法有关;
(3)。
(Ⅰ)旧养殖法的箱产量低于50kg的频率为0.012×5+0.014×5+0.024×5+0.034×5+0.040×5=0.62,由于两种养殖方法的箱产量相互独立,
于是P(A)=0.62×0.66=0.4092
(Ⅱ)旧养殖法的箱产量低于50kg的有100×0.62=62箱,不低于50kg的有38箱,新养殖法的箱产量不低于50kg的有100×0.66=66箱,低于50kg的有34箱,得到2×2列联表如下:
箱产量<50kg 箱产量≥50kg 合计
旧养殖法 62 38 100
新养殖法 34 66 100
合计 96 104 200
所以
,所以有99%的把握认为箱产量与养殖方法有关。
(III)根据箱产量的频率分布直方图,新养殖法的箱产量不低于50kg的频率为0.038×5+0.046×5+0.010×5+0.008×5=0.66>0.50,不低于55kg的频率为0.046×5+0.010×5+0.008×5=0.32<0.50,于是新养殖法箱产量的中位数介于50kg到55kg之间,设新养殖法箱产量的中位数为x,则有
(55-x)×0.068+0.046×5+0.010×5+0.008×5=0.50
解得x=52. 3529
因此,新养殖法箱产量的中位数的估计值52. 35。
16.(2016高考数学课标Ⅲ卷理科)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距最小二乘估计公式分别为:,.
【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.
【解析】(Ⅰ)由折线图中数据和附注中参考数据得,,,
,.
因为与的相关系数近似为0.99,说明与的线性相关程度相当高
从而可以用线性回归模型拟合与的关系.
(Ⅱ)由及(Ⅰ)得,
.
所以,关于的回归方程为:.
将2016年对应的代入回归方程得:.
所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.
17.(2015高考数学新课标1理科)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
46.6 56.3 6.8 289.8 1.6 1469 108.8
表中,。
(Ⅰ)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;
(Ⅲ)已知这种产品的年利率与、的关系为.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费时,年销售量及年利润的预报值是多少?
(ii)年宣传费为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

解析:
(1)由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.
(2)令,先建立关于的线性回归方程,由于=,
∴=563-68×6.8=100.6.
∴关于的线性回归方程为,
∴关于的回归方程为.
(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量的预报值
=576.6,

(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值

∴当=,即时,取得最大值.
故宣传费用为46.24千元时,年利润的预报值最大.……12分
考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识
18.(2014高考数学课标2理科)(本小题满分12分)
某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 2007 2008 2009 2010 2011 2012 2013
年份代号t 1 2 3 4 5 6 7
人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9
(1)求y关于t的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
【答案】解析:(1)
设回归方程为代入公式,经计算得:
所以,关于的回归方程为.
(2),2007年至2013年该区域人均纯收入稳步增长,预计到2015年,高地区人均纯收入(千元),所以,预计到2015年,该地区人均纯收入约6800元左右.
PAGE
- 1 -计数原理
一、选择题
1.(2021年高考全国乙卷理科)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有
A.60种 B.120种 C.240种 D.480种
解析:根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
故选:C.
2.(2020年高考数学课标Ⅰ卷理科)的展开式中x3y3的系数为 (  )
A.5 B.10 C.15 D.20
【解析】展开式的通项公式为(且)
所以的各项与展开式的通项的乘积可表示为:

在中,令,可得:,该项中的系数为,
在中,令,可得:,该项中的系数为
所以的系数为
故选:C
3.(2019年高考数学课标Ⅲ卷理科)的展开式中的系数为 (  )
A.12 B.16 C.20 D.24
【答案】A
【解析】因为,所以的系数为,故选A.
4.(2018年高考数学课标Ⅲ卷(理))的展开式中的系数为 (  )
A. B. C. D.
解析:展开式的通项公式为,令,解得,故含的系数为,故选C.
5.(2017年高考数学新课标Ⅰ卷理科)展开式中的系数为 (  )
A. B. C. D.
【解析】因为,则展开式中含的项为
,展开式中含的项为,故前系数为,选C.
6.(2017年高考数学课标Ⅲ卷理科)的展开式中的系数为 (  )
A. B. C.40 D.80
【答案】C
【解析】,
由 展开式的通项公式: 可得:
当 时, 展开式中 的系数为 ,
当 时, 展开式中 的系数为 ,
则 的系数为.
故选C.
7.(2017年高考数学课标Ⅱ卷理科)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 (  )
A.12种 B.18种 C.24种 D.36种
【答案】D
首先 分组
将三人分成两组,一组为三个人,有种可能,另外一组从三人在选调一人,有种可
能;
其次 排序
两组前后在排序,在对位找工作即可,有种可能;共计有36种可能.
8.(2016高考数学课标Ⅱ卷理科)如图,小明从街道的处出发,先到处与小红会合,再一起到位于处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (  )
(  )
A.24 B.18 C.12 D.9
【解析】有种走法,有种走法,由乘法原理知,共种走法
故选B.
9.(2015高考数学新课标1理科)的展开式中,的系数为 (  )
A.10 B.20 C.30 D.60
解析:在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 C.
10.(2013高考数学新课标2理科)已知的展开式中的系数为5,则等于 (  )
A.-4 B.-3 C.-2 D.-1
解析:中含的项为:,即
11.(2013高考数学新课标1理科)设m为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若13=7,则= (  )
A.5 B.6 C.7 D.8
解析:由题知=,=,∴13=7,即=,
解得=6,故选B.
12.(2012高考数学新课标理科)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组
由1名教师和2名学生组成,不同的安排方案共有 (  )
A.12种 B.10种 C.9种 D.8种
解析:第一步,为甲地选一名老师和两个学生,,有=12种选法;
第二步,为乙地选1名教师和2名学生,有1种选法
故不同的安排方案共有2×6×1=12种
二、填空题
13.(2020年高考数学课标Ⅲ卷理科)的展开式中常数项是__________(用数字作答).
【答案】
解析:
其二项式展开通项:
当,解得
的展开式中常数项是:.
故答案为:.
14.(2018年高考数学课标卷Ⅰ(理))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
解析:方法一:直接法,1女2男,有,2女1男,有
根据分类计数原理可得,共有12+4=16种,
方法二,间接法:种.
15.(2016高考数学课标Ⅰ卷理科)的展开式中,的系数是 .(用数字填写答案)
【解析】设展开式的第项为,∴.
当时,,即.故答案为10.
16.(2015高考数学新课标2理科)的展开式中的奇数次幂项的系数之和为32,则__________.
分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.
17.(2014高考数学课标2理科)的展开式中,的系数为15,则=________.(用数字填写答案)
【答案】
解析:故
18.(2014高考数学课标1理科)的展开式中的系数为________.(用数字填写答案)
【答案】20
解析:展开式的通项为,
∴,
∴的展开式中的项为,故系数为20.
PAGE
- 1 -不等式
一、选择题
1.(2019年高考数学课标全国Ⅰ卷理科)已知,,,则 (  )
A. B. C. D.
【答案】B
解析:,,,故.
2.(2018年高考数学课标Ⅲ卷(理))设,,则 (  )
A. B.
C. D.
【答案】B
解析:一方面,,所以
,,所以
所以即,而,所以,所以
综上可知,故选B.
3.(2017年高考数学课标Ⅱ卷理科)设,满足约束条件,则的最小值是 (  )
A. B. C. D.
根据约束条件画出可行域(图中阴影部分), 作直线,平移直线,
将直线平移到点处最小,点的坐标为,将点的坐标代到目标函数,
可得,即.
4.(2014高考数学课标2理科)设x,y满足约束条件,则的最大值为 (  )
A.10 B.8 C.3 D.2
解析:画出不等式表示的平面区域,可以平移直线,可得最大值为8.
考点:(1)二元一次不等式(组)表示平面区域;(2)求线性目标函数的最值问题。
难度:B
5.(2014高考数学课标1理科)不等式组的解集记为.有下面四个命题:

;.
其中真命题是 (  )
A. B. C. D.
【答案】C
解析:作出可行域如图:设,即
当直线过时,,∴,∴命题、真命题,选C.
6.(2013高考数学新课标2理科)已知满足约束条件若的最小值为1,则等于 (  )
A. B. C.1 D.2
【答案】B
解析:由得到,代入得
二、填空题
7.(2020年高考数学课标Ⅰ卷理科)若x,y满足约束条件则z=x+7y最大值为______________.
【解析】绘制不等式组表示的平面区域如图所示,
目标函数即:,
其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程:,可得点A的坐标为:,
据此可知目标函数的最大值为:.
故答案为:1.
8.(2020年高考数学课标Ⅲ卷理科)若x,y满足约束条件,则z=3x+2y的最大值为_________.
解析:不等式组所表示的可行域如图
因为,所以,易知截距越大,则越大,
平移直线,当经过A点时截距最大,此时z最大,
由,得,,
所以.
故答案为:7.
9.(2018年高考数学课标Ⅱ卷(理))若满足约束条件则的最大值为_________.
【答案】9
解析:作出可行域,则直线过点时取得最大值9.
10.(2018年高考数学课标卷Ⅰ(理))若满足约束条件, 则最大值为.
解析:作出不等式组对应的平面区域如图
由得,平移直线,由图象知当直线经过点时,直线的截距最大,此时最大,最大值为,故答案为6.
11.(2017年高考数学新课标Ⅰ卷理科)设满足约束条件,则的最小值为__________.
【答案】
【解析】不等式组表示的可行域为如图所示
易求得
直线得在轴上的截距越大,就越小
所以,当直线过点时,取得最小值
所以取得最小值为.
12.(2017年高考数学课标Ⅲ卷理科)若,满足约束条件,则的最小值为__________.
【答案】
【解析】绘制不等式组表示的可行域,
目标函数即:,其中表示斜率为的直线系与可行域有交点时直线的截距值的倍,截距最大的时候目标函数取得最小值,数形结合可得目标函数在点 处取得最小值.
13.(2016高考数学课标Ⅲ卷理科)若满足约束条件 ,则的最大值为_____________.
【答案】
【解析】作出不等式组满足的平面区域,可知当目标函数经过点时取得最大值,即.
14.(2016高考数学课标Ⅰ卷理科)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料,用5个工时;生产一件产品B需要甲材料,乙材料,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料,乙材料,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
【解析】设生产A产品件,B产品件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为
目标函数
作出可行域为图中的四边形,包括边界,顶点为
在处取得最大值,
15.(2015高考数学新课标2理科)若满足约束条件,则的最大值为____________.
【答案】
解析:画出可行域,如图所示,将目标函数变形为,当取到最大时,直线的纵截距最大,故将直线尽可能地向上平移到,则的最大值为.
考点:线性规划.
16.(2015高考数学新课标1理科)若满足约束条件则的最大值为 .
【答案】3
解析:作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.
考点:线性规划解法
17.(2012高考数学新课标理科)设满足约束条件:,则的取值范围为
解析:由z=x-2y可得,,则表示直线x-2y-z=0在y轴上的截距,截距越大,z越小,结合函数的图形可知,当直线x-2y-z=0平移到B时,截距最大,z最小;当直线x-2y-z=0平移到A时,截距最小,z最大
由可得B(1,2),由可得A(3,0)
∴,,则z=x-2y∈[-3,3]
y = -3
2x+3y-3=0
2x-3y+3=0
PAGE
- 1 -数 列
一、选择题
1.(2020年高考数学课标Ⅱ卷理科)0-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是 (  )
A. B. C. D.
解析:由知,序列的周期为m,由已知,,
对于选项A,
,不满足;
对于选项B,
,不满足;
对于选项D,
,不满足;
故选:C
2.(2020年高考数学课标Ⅱ卷理科)数列中,,,若,则 (  )
A.2 B.3 C.4 D.5
解析:在等式中,令,可得,,
所以,数列是以为首项,以为公比的等比数列,则,

,则,解得.
故选:C.
3.(2020年高考数学课标Ⅱ卷理科)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石) (  )
(  )
A.3699块 B.3474块 C.3402块 D.3339块
【答案】C
解析:设第n环天石心块数为,第一层共有n环,
则是以9为首项,9为公差的等差数列,,
设为的前n项和,则第一层、第二层、第三层的块数分
别为,因为下层比中层多729块,
所以,

即,解得,
所以.
故选:C
4.(2019年高考数学课标Ⅲ卷理科)已知各项均为正数的等比数列的前4项和为15,且,则 (  )
A.16 B.8 C.4 D.2
【答案】C
【解析】设正数的等比数列的公比为,则,解得,,故选C.
另解:数感好的话由,立即会想到数列:,检验是否满足,可以迅速得出.
5.(2019年高考数学课标全国Ⅰ卷理科)记为等差数列的前项和.已知,,则 (  )
A. B. C. D.
【答案】A
解析:,
所以,故选A.
6.(2018年高考数学课标卷Ⅰ(理))记为等差数列的前项和,,.则 (  )
A. B. C. D.
【答案】B
解析:∵为等差数列的前项和,,,∴
,把,代入得∴,故选B.
7.(2017年高考数学新课标Ⅰ卷理科)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推.求满足如下条件的最小整数:且该数列的前项和为的整数幂.那么该款软件的激活码是 (  )
A. B. C. D.
【答案】A
【解析】解法一:本题考查了等比数列的求和,不等式以及逻辑推理能力.
不妨设(其中)
则有,因为,所以
由等比数列的前项和公式可得
因为,所以
所以即,因为
所以,故
所以,从而有,因为,所以,当时,,不合题意
当时,,故满足题意的的最小值为.
8.(2017年高考数学新课标Ⅰ卷理科)记为等差数列的前项和.若,,则的公差为 (  )
A. B. C. D.
【答案】C
【解析】设公差为
,,,联立解得,故选C.
9.(2017年高考数学课标Ⅲ卷理科)等差数列的首项为,公差不为.若成等比数列,则前项的和为 (  )
A. B. C. D.
解析:数列的首项,设公差为,则由成等比数列可得,所以,即,整理可得,因为,所以,所以,故选A.
10.(2017年高考数学课标Ⅱ卷理科)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 (  )
A.1盏 B.3盏 C.5盏 D.9盏
解法一:常规解法
一座7层塔共挂了381盏灯,即;相邻两层中的下一层灯数是上一层灯数的2倍,即
,塔的顶层为;由等比前项和可知:,解得

11.(2016高考数学课标Ⅲ卷理科)定义“规范01数列”如下:共有项,其中项为项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (  )
A.18个 B.16个 C.14个 D.12个
【答案】C
【解析】由题意,得必有,,则具体的排法列表如图所示,共14个,故选C.
0 0 0 0 1 1 1 1
1 0 1 1
1 0 1
1 0
1 0 0 1 1
1 0 1
1 0
1 0 0 1
1 0
1 0 0 0 1 1
1 0 1
1 0
1 0 0 1
1 0
12.(2016高考数学课标Ⅰ卷理科)已知等差数列前9项的和为27,,则 (  )
(A)100(B)99(C)98(D)97
【答案】C
【解析】由等差数列性质可知:,故,而,因此公差∴.故选C.
13.(2015高考数学新课标2理科)已知等比数列满足,,则 (  )
A.21 B.42 C.63 D.84
【答案】B
解析:设等比数列公比为,则,又因为,所以,解得,所以,故选B.
14.(2013高考数学新课标2理科)等比数列的前项和为,已知,则等于 (  )
A. B.- C. D.-
【答案】C
解析:设等比数列的公比为,由得,即
,又,所以.
15.(2013高考数学新课标1理科)设的三边长分别为,的面积为,n=1,2,3,…若,,,,,则 (  )
A.为递减数列 B.为递增数列
C.为递增数列,为递减数列
D.为递减数列,为递增数列
解析: 因为,,,所以,
,注意到,所以.
于是中,边长为定值,另两边的长度之和为为定值.
因为,
所以,当时,有,即,于是的边的高随增大而增大,于是其面积为递增数列.
16.(2013高考数学新课标1理科)设等差数列{an}的前n项和为Sn,=-2,=0,=3,则= (  )
A.3 B.4 C.5 D.6
解析:由题意知==0,∴=-=-(-)=-2,
= -=3,∴公差=-=1,∴3==-,∴=5,故选C.
17.(2012高考数学新课标理科)已知为等比数列,,,则 (  )
A. B. C. D.
解析:∵①,由等比数列的性质可得,②
①、②联立方程组解得:=4,=-2或=-2,=4
当=4,=-2时,q3=,
∴=-8,=1,
∴+=-7
当=-2,=4时,q3=-2,则=-8,=1
∴+=-7
二、填空题
18.(2019年高考数学课标Ⅲ卷理科)记为等差数列{an}的前n项和,,则___________.
【答案】4.
【解析】因,所以,即,所以.
19.(2019年高考数学课标全国Ⅰ卷理科)记为等比数列的前项和.若,,则.
【答案】
解析:由,得,所以,又因为,所以,.
20.(2018年高考数学课标卷Ⅰ(理))记为数列的前项和.若,则.
解析:为数列的前项和.若,①
当时,,解得,
当时,,②,
由①﹣②可得,
∴,
∴是以为首项,以2为公比的等比数列,
∴.
21.(2017年高考数学课标Ⅲ卷理科)设等比数列满足,,则 .
【解析】设等比数列的公比为,则依题意有,解得
所以.
22.(2017年高考数学课标Ⅱ卷理科)等差数列的前项和为,,,则 .
【答案】
【解析】设等差数列的首项为,公差为,
由题意有: ,解得 ,
数列的前n项和,
裂项有:,据此:

23.(2016高考数学课标Ⅰ卷理科)设等比数列满足,,则的最大值为 .
【答案】64
【解析】由于是等比数列,设,其中是首项,是公比.
∴,解得:.
故,∴
当或时,取到最小值,此时取到最大值.
所以的最大值为64.
24.(2015高考数学新课标2理科)设是数列的前项和,且,,则________.
【答案】
解析:由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以.
25.(2013高考数学新课标2理科)等差数列的前n项和为,已知,则的最小值为________.
解析:由已知解得

由函数的单调性知,∴的最小值为-49.
26.(2013高考数学新课标1理科)若数列{}的前n项和为,则数列{}的通项公式是=______.
解析:当=1时,==,解得=1,
当≥2时,==-()=,即=,
∴{}是首项为1,公比为-2的等比数列,∴=.
27.(2012高考数学新课标理科)数列满足,则的前60项和为
【答案】1830
解析:由得,
……①
……②,
再由②—①得 ……③
由①得
由③得,
∴.
1.(2021年高考全国乙卷理科)记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
【答案】(1)证明见解析;(2).
解析:(1)由已知得,且,,
取,由得,
由于为数列的前n项积,
所以,
所以,
所以,
由于
所以,即,其中
所以数列是以为首项,以为公差等差数列;
(2)由(1)可得,数列是以为首项,以为公差的等差数列,
,
,
当n=1时,,
当n≥2时,,显然对于n=1不成立,
∴.
2.(2021年高考全国甲卷理科)已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【答案】答案见解析
解析:选①②作条件证明③:
设,则,
当时,;
当时,;
因为也是等差数列,所以,解得;
所以,所以.
选①③作条件证明②:
因为,是等差数列,
所以公差,
所以,即,
因为,
所以是等差数列.
选②③作条件证明①:
设,则,
当时,;
当时,;
因为,所以,解得或;
当时,,当时,满足等差数列的定义,此时为等差数列;
当时,,不合题意,舍去.
3.(2020年高考数学课标Ⅰ卷理科)设是公比不为1的等比数列,为,的等差中项.
(1)求的公比;
(2)若,求数列的前项和.
【答案】(1);(2).
【解析】(1)设的公比为,为的等差中项,


(2)设前项和为,,
,①
,②
①②得,


4.(2020年高考数学课标Ⅲ卷理科)设数列{an}满足a1=3,.
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
【答案】(1),,,证明见解析;(2).
解析:(1)由题意可得,,
由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,
证明如下:
当时,成立;
假设时,成立.
那么时,也成立.
则对任意的,都有成立;
(2)由(1)可知,
,①
,②
由①②得:

即.
【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.
5.(2019年高考数学课标全国Ⅱ卷理科)已知数列和满足,,,.
证明:是等比数列,是等差数列;
求和的通项公式.
【答案】见解析;,.
由题设得,即.
又因为,所以是首项为,公比为的等比数列.
由题设得,即.
又因为,所以是首项为,公差为的等差数列.
由知,,.
所以,

【解析】由题意可知,,,,
所以,即,
所以数列是首项为、公比为的等比数列,,
因为,
所以,数列是首项、公差为等差数列,.
由可知,,,
所以,.
6.(2018年高考数学课标Ⅲ卷(理))(12分)等比数列中,,
(1)求的通项公式;
(2)记为的前项和,若,求.
(1)或;(2)
【答案】【官方解析】(1)设的公比为,由题设得
由已知得,解得(舍去),或
故或
(2)若,则,由,得,此方和没有正整数解
若,则,由,得,解得
综上,.
7.(2018年高考数学课标Ⅱ卷(理))(12分)记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求,并求的最小值.
【答案】解析:(1)设的公差为,由题意得.
由得,所以的通项公式为.
(2)由(1)得.
所以当时,取得最小值,最小值为.
8.(2016高考数学课标Ⅲ卷理科)已知数列的前项和,其中.
(1)证明是等比数列,并求其通项公式;
(2)若,求.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ)由题意得,故,,.
由,得,即.
由,得,所以.
因此是首项为,公比为的等比数列,于是.
(Ⅱ)由(Ⅰ)得,由得,即,解得.
9.(2016高考数学课标Ⅱ卷理科)(本题满分12分)为等差数列的前项和,且记,其中表示不超过的最大整数,如.
(I)求;(II)求数列的前1000项和.
【答案】(1),,;(2).
【解析】(1)设的公差为,据已知有,解得.
所以数列的通项公式为.
,,.
(2)因为
所以数列的前项和为.
10.(2015高考数学新课标1理科)(本小题满分12分)为数列的前项和.已知
(1)求的通项公式:
(2)设,求数列的前项和
解析:(Ⅰ)当时,,因为,所以=3,
当时,==,即,因为,所以=2,
所以数列{}是首项为3,公差为2的等差数列,
所以=;
(Ⅱ)由(Ⅰ)知,=,
所以数列{}前n项和为= =.
考点:数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法
11.(2014高考数学课标2理科)(本小题满分12分)
已知数列满足=1,.
(Ⅰ)证明是等比数列,并求的通项公式;
(Ⅱ)证明:
【答案】解析:(Ⅰ)由,得,且
所以是首相为,公比为的等比数列。
因此,所以的通项公式为.
(Ⅱ)由(1)知
当时,,所以
于是
所以
12.(2014高考数学课标1理科)已知数列的前项和为,,,,其中为常数.
(1)证明:;
(2)是否存在,使得为等差数列 并说明理由.
【答案】解析:(1)由题设,,两式相减
,由于,所以.
(2)由题设,,可得,由(1)知
假设为等差数列,则成等差数列,∴,解得;
证明时,为等差数列:由知
数列奇数项构成的数列是首项为1,公差为4的等差数列
令则,∴
数列偶数项构成的数列是首项为3,公差为4的等差数列
令则,∴
∴(),
因此,存在存在,使得为等差数列.
PAGE
- 1 -立体几何与向量方法
一、解答题
1.(2021年高考全国甲卷理科)已知直三棱柱中,侧面为正方形,,E,F分别为和中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小
解析:因为三棱柱是直三棱柱,所以底面,所以
因为,,所以,
又,所以平面.
所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
所以,

由题设().
(1)因为,
所以,所以.
(2)设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,
此时.
2.(2021年高考全国乙卷理科)如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
解析:(1)平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
设,则、、、、,
则,,
,则,解得,故;
(2)设平面的法向量为,则,,
由,取,可得,
设平面的法向量为,,,
由,取,可得,

所以,,
因此,二面角的正弦值为.
3.(2020年高考数学课标Ⅰ卷理科)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.
(1)证明:平面;
(2)求二面角的余弦值.
【解析】(1)由题设,知为等边三角形,设,
则,,所以,
又为等边三角形,则,所以,
,则,所以,
同理,又,所以平面;
(2)过O作∥BC交AB于点N,因为平面,以O为坐标原点,OA为x轴,ON为y轴建立如图所示的空间直角坐标系,
则,
,,,
设平面的一个法向量为,
由,得,令,得,
所以,
设平面的一个法向量为
由,得,令,得,
所以
故,
设二面角的大小为,则.
4.(2020年高考数学课标Ⅱ卷理科)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
解析:(1)分别为,的中点,

在中,为中点,则
又侧面为矩形,
由,平面
平面
又,且平面,平面,
平面
又平面,且平面平面
又平面
平面
平面
平面平面
(2)连接
平面,平面平面
根据三棱柱上下底面平行,
其面平面,面平面
故:四边形是平行四边形
设边长是()
可得:,
为的中心,且边长为
故:
解得:
在截取,故

四边形是平行四边形,
由(1)平面
故为与平面所成角
在,根据勾股定理可得:
直线与平面所成角的正弦值:.
5.(2020年高考数学课标Ⅲ卷理科)如图,在长方体中,点分别在棱上,且,.
(1)证明:点平面内;
(2)若,,,求二面角的正弦值.
解析:(1)在棱上取点,使得,连接、、、,
在长方体中,且,且,
,,且,
所以,四边形为平行四边形,则且,
同理可证四边形为平行四边形,且,
且,则四边形为平行四边形,
因此,点在平面内;
(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
则、、、,
,,,,
设平面的法向量为,
由,得取,得,则,
设平面的法向量为,
由,得,取,得,,则,

设二面角的平面角为,则,.
因此,二面角的正弦值为.
6.(2019年高考数学课标Ⅲ卷理科)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B CG A的大小.
解析:(1)由已知得,,所以,故确定一个平面.从而四点共面.
由已知得,故平面.
又因为平面,所以平面平面.
(2)作,垂足为.因为平面,平面平面,所以平面.
由已知,菱形的边长为,,可求得.
以为坐标原点,的方向为轴的的正方向,建立如图所示的空间直角坐标系,则

设平面的法向量为,则
即 所以可取.
又平面的法向量可取为,所以.
因此二面角的大小为.
7.(2019年高考数学课标全国Ⅱ卷理科)如图,长方体的底面是正方形,点在棱上,.
证明:平面;
若,求二面角的正弦值.
证明:由已知得,平面,平面,
故.又,所以平面.
由知.由题设知,所以,
故,.
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系,
则,,,,,,.
设平面的法向量为,则
,即所以可取.
设平面的法向量为,则
即所以可取.
于是.所以,二面角的正弦值为.
8.(2019年高考数学课标全国Ⅰ卷理科)如图,直四棱柱的底面是菱形,分别是,,的中点.
(1)证明:平面;
(2)求二面角的正弦值.
解:(1)连结.因为分别为的中点,所以,且.
又因为为的中点,所以.由题设知,可得,故,
因此四边形为平行四边形,.又平面,所以平面.
(2)由已知可得.以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,则,,,,.
设为平面的法向量,则,所以可取.
设为平面的法向量,则所以可取.
于是,所以二面角的正弦值为.
9.(2018年高考数学课标Ⅲ卷(理))(12分)如图,边长为的正方形所在平面与半圆弧所在的平面垂直,是弧上异于的点.
(1)证明:平面平面;
(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.
解答(1)由题设知,平面平面,交线为
因为,平面,所以平面,故
因为为上异于的点,且为直径,所以
又,所以平面
而平面,故平面平面.
(2)以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系
当三棱锥体积最大时,为的中点,由题设得
,,,,
,,
设是平面的法向量,则
,即
可取
易知是平面的法向量,因此
所以
所以面与面所成二面角的正弦值是.
10.(2018年高考数学课标Ⅱ卷(理))(12分)
如图,在三棱锥中,,,为的中点.
(1)证明:平面;
(2)若点在棱上,且二面角为,求与平面所成角的正弦值.
解析:(1)因为,为的中点,所以,且.
连接.因为,所以为等腰直角三角形,
且,.
由知.
由,知平面.
(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.
由已知得,,,,,.
取平面的法向量为.
设,则.设平面的法向量为,
由,得,可取,
所以,由已知可得.
所以,解得(舍去),.
所以.又,所以.
所以与平面所成角的正弦值为.
11.(2018年高考数学课标卷Ⅰ(理))(12分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
解析:(1)由已知可得,⊥,⊥,所以⊥平面.
又平面,所以平面⊥平面.
(2)作,垂足为.由(1)得,平面.
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.
由(1)可得,.又,,所以.又,,故.
可得.
则为平面的法向量.
设与平面所成角为,则.
所以与平面所成角的正弦值为.
12.(2017年高考数学新课标Ⅰ卷理科)如图,在四棱锥中,,且.
(1)证明:平面平面;
(2)若,,求二面角的余弦值.
【解析】(1)由已知,得,
由于,故,从而平面
又平面,所以平面平面
(2)在平面内做,垂足为,
由(1)可知,平面,故,可得平面.
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.
由(1)及已知可得,,,.
所以,,,.
设是平面的法向量,则
,即,可取.
设是平面的法向量,则,即,可取.
则,所以二面角的余弦值为.
14.(2017年高考数学课标Ⅱ卷理科)如图,四棱锥 中,侧面 为等比三角形且垂直于底面 , 是 的中点.
(1)证明:直线 平面 ;
(2)点 在棱上,且直线 与底面 所成锐角为 ,求二面角 的余弦值.
(1)证明:取中点为,连接、
因为,所以
因为是的中点,所以,所以
所以四边形为平行四边形,所以
因为平面,平面
所以直线平面
(2)取中点为,连接
因为△为等边三角形,所以
因为平面平面,平面平面,平面
所以平面
因为,所以四边形为平行四边形,所以
所以
以分别为轴建立空间直角坐标系,如图
设,则,所以
设,则,
因为点在棱上,所以,即
所以,所以
平面的法向量为
因为直线与底面所成角为,
所以
解得,所以
设平面的法向量为,则
令,则
所以
所以求二面角的余弦值
15.(2016高考数学课标Ⅲ卷理科)如图,四棱锥中,地面,AD∥BC,,,为线段上一点,,为的中点.
(Ⅰ)证明∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
【解析】(Ⅰ)由已知得,取的中点,连接
由为中点知∥,.
又∥,故平行且等于,四边形为平行四边形,于是∥.
因为平面,平面,所以∥平面.
(Ⅱ)取的中点,连接
由得,从而,且.
以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系
由题意知,,,,,
,,,
设为平面的法向量,则,
即,可取,于是.
所以直线与平面所成角的正弦值为.
16.(2016高考数学课标Ⅱ卷理科)(本小题满分)如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到的位置,.
(I)证明:平面;
(II)求二面角的正弦值.
【解析】(I)由已知得,
又由得,故.
因此,从而.
由,得.
由得.
所以,.
于是,故.
又,而,所以.
(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系
则,,,,
,,.
设是平面的法向量,则,即
所以可以取.
设是平面的法向量,则,即
所以可以取.于是

因此二面角的正弦值是.
17.(2016高考数学课标Ⅰ卷理科)(本题满分为12分)如图,在以为顶点的五面体中,面为正方形,,,且二面角与二面角都是.
(I)证明平面;
(II)求二面角的余弦值.
解析:⑴ 由已知可得,,所以面
又面,故平面平面
(II)过点作,垂足为,由(I)知面
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系
由(I)知为二面角的平面角,故,则
可得
由已知,,所以面.
由,可得平面,所以为二面角的平面角,.
从而可得.所以,,,.
设是平面的法向量,则即所以可取.
设是平面的法向量,则
同理可取,则
二面角的余弦值为.
18.(2015高考数学新课标2理科)(本题满分12分)如图,长方体中,,,,点,分别在,上,.过点,的平面与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说出画法和理由);
(2)求直线与平面所成角的正弦值.
解析:(Ⅰ)交线围成的正方形如图:
(Ⅱ)作,垂足为,则,,因为为正方形,所以.于是,所以.以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,,,,,.设是平面的法向量,则即所以可取.又,故.所以直线与平面所成角的正弦值为.
19.(2015高考数学新课标1理科)如图,四边形为菱形,,是平面同一侧的两点,⊥平面,⊥平面,,.
(1)证明:平面⊥平面;
(2)求直线与直线所成角的余弦值.
(Ⅰ)见解析(Ⅱ)
分析:(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EG⊥AC,通过计算可证EG⊥FG,根据线面垂直判定定理可知EG⊥平面AFC,由面面垂直判定定理知平面AFC⊥平面AEC;(Ⅱ)以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.
解析:(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=.
由BE⊥平面ABCD,AB=BC可知,AE=EC,
又∵AE⊥EC,∴EG=,EG⊥AC,
在Rt△EBG中,可得BE=,故DF=.
在Rt△FDG中,可得FG=.
在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,
∴,∴EG⊥FG,
∵AC∩FG=G,∴EG⊥平面AFC,
∵EG面AEC,∴平面AFC⊥平面AEC.
(Ⅱ)如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-,0),E(1,0, ),F(-1,0,),C(0,,0),∴=(1,,),=(-1,-,).…10分
故.
所以直线AE与CF所成的角的余弦值为.
考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力
20.(2014高考数学课标2理科)(本小题满分12分)
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
【答案】解析:
(Ⅰ)设AC的中点为G, 连接EG。在三角形PBD中,中位线EG//PB,且EG在平面AEC上,所以PB//平面AEC.
(Ⅱ)设CD=m, 分别以AD,AB,AP为X,Y,Z轴建立坐标系,则
设平面ADE的法向量则解得向量,
同理设平面ACE的法向量
解得向量,
解得
设F为AD的中点,
EF即为三棱锥E-ACD的高,
所以,三棱锥E-ACD的体积为.
21.(2014高考数学课标1理科)如图三棱柱中,侧面为菱形,.
(1)证明:;
(2)若,,, 求二面角的余弦值.
【答案】解析 (1)连结,交于,连结.因为侧面为菱形,所以 ,且为与的中点.又,所以平面,故 又 ,故
(2)因为且为的中点,所以又因为,所以
故,从而两两互相垂直.
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示空间直角坐标系.
因为,所以为等边三角形.又 ,则
,,,
,
设是平面的法向量,则
,即 所以可取
设是平面的法向量,则,同理可取
则,所以二面角的余弦值为.
22.(2013高考数学新课标2理科)如图,直三棱柱中,分别是的中点,
(1)证明:平面;
(2)求二面角的正弦值.
【答案】(1)见解析;(2)
解析:(1)证明 连结交于点,则为的中点.
又是的中点,连结,则∥.
因为平面,平面,
所以∥平面.
(2)解 由得,.
以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间直角坐标系.
设,则,

设平面的法向量,
则,可取.
同理,设m是平面的法向量,同理可得.
从而,故,
即二面角D-A1C-E的正弦值为.
23.(2013高考数学新课标1理科)如图,三棱柱中,.
(1)证明;
(2)若平面平面,,求直线与平面所成角的正弦值。
解析:(1)取AB中点E,连结CE,,,
∵,=,∴是正三角形,
∴, ∵, ∴, ∵,∴面,
∴AB⊥; ……6分
(2)由(Ⅰ)知,,
又∵面面,面面,
∴面,∴,
∴EA,EC,两两相互垂直,以E为坐标原点,的方向为轴正方向,||为单位长度,建立如图所示空间直角坐标系,
由题设知A(1,0,0),(0,,0),C(0,0,),B(-1,0,0),则=(1,0,),==(-1,0,),=(0,-,), ……9分
设=是平面的法向量,
则,即,可取=(,1,-1),
∴=,
∴直线A1C 与平面BB1C1C所成角的正弦值为. ……12分
24.(2012高考数学新课标理科)如图,直三棱柱中,, 是棱的中点,
(1)证明:
(2)求二面角的大小.
解析:(1)证明:设,
直三棱柱,
,,
,.
又,,
平面.
平面,.
(2)以C为空间直角坐标系的原点,CA,CB,所在直线分别为x轴,y轴,z轴,
设则(0,0,2a),D(a,0,a),B(0,a,0),A(a,0,0)
所以,,
设分别是平面,平面的法向量,则
解得,令,则
解得令则
∴,


∴=30°
即二面角的大小为.
PAGE
- 1 -立体几何初步
一、选择题
1.(2021年高考全国乙卷理科)在正方体中,P为中点,则直线与所成的角为 (  )
A. B. C. D.
【答案】D
解析:
如图,连接,因为∥,
所以或其补角为直线与所成的角,
因为平面,所以,又,,
所以平面,所以,
设正方体棱长为2,则,
,所以.
故选:D
2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是 (  )
(  )
A. B. C. D.
【答案】D
解析:由题意及正视图可得几何体的直观图,如图所示,
所以其侧视图为
故选:D
3.(2021年高考全国甲卷理科)已如A. B.C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为 (  )
A. B. C. D.
【答案】A
解析:,为等腰直角三角形,,
则外接圆的半径为,又球的半径为1,
设到平面的距离为,
则,
所以.
故选:A.
【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.
4.(2020年高考数学课标Ⅰ卷理科)已知为球球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为 (  )
A. B. C. D.
【答案】A
【解析】设圆半径为,球的半径为,依题意,
得,为等边三角形,
由正弦定理可得,
,根据球的截面性质平面,

球的表面积.
故选:A
【点睛】
本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.
5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 (  )
(  )
A. B. C. D.
【答案】C
【解析】如图,设,则,
由题意,即,化简得,
解得(负值舍去).
故选:C.
【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.
6.(2020年高考数学课标Ⅱ卷理科)已知△ABC是面积为等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为 (  )
A. B. C.1 D.
【答案】C
解析:
设球的半径为,则,解得:.
设外接圆半径为,边长为,
是面积为的等边三角形,
,解得:,,
球心到平面的距离.
故选:C.
【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.
7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为 (  )
(  )
A. B. C. D.
【答案】A
解析:根据三视图,画出多面体立体图形,
上的点在正视图中都对应点M,直线上的点在俯视图中对应的点为N,
∴在正视图中对应,在俯视图中对应的点是,线段,上的所有点在侧试图中都对应,∴点在侧视图中对应的点为.
故选:A
【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.
8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是 (  )
(  )
A.6+4 B.4+4 C.6+2 D.4+2
【答案】C
解析:根据三视图特征,在正方体中截取出符合题意的立体图形
根据立体图形可得:
根据勾股定理可得:
是边长为的等边三角形
根据三角形面积公式可得:
该几何体的表面积是:.
故选:C.
【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.
9.(2019年高考数学课标Ⅲ卷理科)如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则
(  )
A.,且直线是相交直线
B.,且直线是相交直线
C.,且直线是异面直线
D.,且直线是异面直线
【答案】B
【解析】
取中点,如图连接辅助线,在中,为中点,为中点,所以,所以,共面相交,选项C,D错误.平面平面,,平面,又,∴平面,从而,.所以与均为直角三角形.不妨设正方形边长,易知,所以,,,故选B.
【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.
10.(2019年高考数学课标全国Ⅱ卷理科)设、为两个平面,则的充要条件是 (  )
A.内有无数条直线与平行 B.内有两条相交直线与平行
C.,平行于同一条直线 D.,垂直于同一平面
【答案】B
【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.
【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.
11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,分别是,的中点,,则球的体积为 (  )
A. B. C. D.
【答案】D
解析:三棱锥为正三棱锥,取中点,连接,则,
,可得平面,从而,又,可得,
又,所以平面,从而,从而正三棱锥的三条侧棱两两垂直,且,可将该三棱锥还原成一个以为棱的正方体,正方体的体对角线即为球的直径,即,所以球的体积为.
12.(2018年高考数学课标Ⅲ卷(理))设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 (  )
A. B. C. D.
【答案】B
解析:设的边长为,则,此时外接圆的半径为,故球心到面的距离为,故点到面的最大距离为,此时,故选B.
点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由为三角形的重心,计算得到,再由勾股定理得到,进而得到结果,属于较难题型.
13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是 (  )
(  )
【答案】A
解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A图.
14.(2018年高考数学课标Ⅱ卷(理))在长方体中,,,则异面直线与所成角的余弦值为 (  )
A. B. C. D.
【答案】C
解析:以为坐标原点,为轴建立空间直角坐标系,则,所以
因为
所以异面直线与所成角的余弦值为,故选C.
15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面而积的最大值为 (  )
A. B. C. D.
【答案】A
【解析一】根据题意,平面与正方体对角线垂直,记正方体为不妨设平面与垂直,且交于点.平面与平面与分别交于.正方体中心为,则容易证明当从运动到时,截面为三角形且周长逐渐增大:当从运动到时,截面为六边形且周长不变;当从运动到时,截面为三角形且周长还渐减小。我们熟知周长一定的多边形中,正多边形的面积最大,因此当运动到点时,截面为边长为的正大边形,此时截面面积最大,为
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当时,
16.(2018年高考数学课标卷Ⅰ(理))某圆柱的高为,底面周长为,其三视图如右圈,圆柱表面上的点在正视图上的对应点为.圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 (  )
A. B. C. D.
【答案】B
解析:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:
圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度:,故选B.
17.(2017年高考数学新课标Ⅰ卷理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 (  )
A. B. C. D.
【答案】B
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,则表面中含梯形的面积之和为,故选B.
【考点】简单几何体的三视图
【点评】三视图往往与几何体的体积、表面积及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.
18.(2017年高考数学课标Ⅲ卷理科)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为 (  )
A. B. C. D.
【答案】B
【解析】法一:如图,画出圆柱的轴截面
,所以,那么圆柱的体积是,故选B.
法二:设圆柱的底面圆的半径为,圆柱的高,而该圆柱的外接球的半径为
根据球与圆柱的对称性,可得即,故该圆柱的体积为,故选B.
【考点】圆柱的体积公式
【点评】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.
19.(2017年高考数学课标Ⅱ卷理科)已知直三棱柱中,,,,则异面直线与所成角的余弦值为 (  )
A. B. C. D.
【答案】C
【命题意图】本题考查立体几何中的异面直线角度的求解,意在考查考生的空间想象能力
【解析】解法一:常规解法
在边﹑﹑﹑上分别取中点﹑﹑﹑,并相互连接.由三角形中位线定理和平行线平移功能,异面直线和所成的夹角为或其补角,通过几何关系求得,,,利用余弦定理可求得异面直线和所成的夹角余弦值为.
解法二:补形
通过补形之后可知:或其补角为异面直线和所成的角,通过几何关系可知:,,,由勾股定理或余弦定理可得异面直线和所成的夹角余弦值为.
解法三:建系
建立如左图的空间直角坐标系,,,,∴ ,∴
解法四:投影平移-三垂线定理
设异面直线和所成的夹角为利用三垂线定理可知:异面直线和所成的夹角余弦值为.
【知识拓展】立体几何位置关系中角度问题一直是理科的热点问题,也是高频考点,证明的方
法大体有两个方向:1.几何法;2.建系;几何法步骤简洁,但不易想到;建系容易想到,但计算
量偏大,平时复习应注意各方法优势和不足,做到胸有成竹,方能事半功倍.
20.(2017年高考数学课标Ⅱ卷理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为 (  )
A. B. C. D.
【答案】B
【命题意图】本题主要考查简单几何体三视图及体积,以考查考生的空间想象能力为主目的.
【解析】解法一:常规解法
从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,具体图像如下:
切割前圆柱 切割中 切割后几何体
从上图可以清晰的可出剩余几何体形状,该几何体的体积分成两部分,部分图如下:
从左图可知:剩下的体积分上下两部分阴影的体积,下面阴影的体积为,,,∴ ;上面阴影的体积是上面部分体积的一半,即,与的比为高的比(同底),即,,故总体积.第二种体积求法:,其余同上,故总体积.
【知识拓展】三视图属于高考必考点,几乎年年考三视图,题型一般有五方面,1.求体积;2.求面
积(表面积,侧面积等);3.求棱长;4.视图本质考查(推断视图,展开图,空间直角坐标系视
图);5.视图与球体综合联立,其中前三个方面考的较多.
21.(2016高考数学课标Ⅲ卷理科)在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是 (  )
A. B. C. D.
【答案】B
【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.
22.(2016高考数学课标Ⅲ卷理科)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为 (  )
A. B. C.90 D.81
【答案】B
【解析】由三视图知该几何体是以侧视图为底面的斜四棱柱,如图
所以该几何体的表面积为,故选B.
23.(2016高考数学课标Ⅱ卷理科)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (  )
A. B. C. D.
【答案】C
【解析】还原几何体后是一个高为4底面半径为2的圆柱与底面半径为2高为 的圆锥的组合体
而圆锥的侧面积为:,而圆柱的侧面积为:,圆柱的底面积为:
所以几何体的表面积为:,故选C
24.(2016高考数学课标Ⅰ卷理科)平面过正方体的顶点,平面CB1D1,平面,平面,则所成角的正弦值为 (  )
(A)(B)(C)(D)
【答案】A【解析】如图所示:
∵,∴若设平面平面,则
又∵平面∥平面,结合平面平面
∴,故 同理可得:
故、的所成角的大小与、所成角的大小相等,即的大小.
而(均为面对交线),因此,即.
故选A.
25.(2016高考数学课标Ⅰ卷理科)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (  )
(  )
(A)(B)(C)(D)
【答案】A【解析】由三视图知:该几何体是个球,设球的半径为,则,解得,所以它的表面积是,故选A.
26.(2015高考数学新课标2理科)已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为 (  )
A. B. C. D.
【答案】C
解析:如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.
考点:外接球表面积和椎体的体积.
27.(2015高考数学新课标2理科)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 (  )
(  )
A. B. C. D.
【答案】D
解析:由三视图得,在正方体中,截去四面体,如图所示,,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:三视图.
28.(2015高考数学新课标1理科)圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则=
A.1 B.2 C.4 D.8
【答案】B
解析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为==16 + 20,解得r=2,故选B.
考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式
29.(2015高考数学新课标1理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何 ”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少 ”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有
(  )
A.14斛 B.22斛 C.36斛 D.66斛
【答案】B
解析:设圆锥底面半径为r,则=,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.
考点:圆锥的性质与圆锥的体积公式
30.(2014高考数学课标2理科)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,
则BM与AN所成的角的余弦值为 (  )
A. B. C. D.
【答案】C
解析:分别以轴,建立空间直角坐标系,令,则,
,故选C。
考点:(1)异面直线所成的角;(2)利用空间向量求线线角。
难度:C
备注:一题多解
31.(2014高考数学课标2理科)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 (  )
A. B. C. D.
【答案】C
解析:由三视图知该零件由两个半径分别为3,2的圆柱构成,用原来圆柱的体积减去现在零件的体积得到削掉部分的体积:利用体积公式可得答案为C。
考点:(1)三视图;(2)圆柱的体积计算。
难度:B
备注:应用题
32.(2014高考数学课标1理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 (  )
(  )
A. B. C.6 D.4
【答案】C
【解析】:如图所示,原几何体为三棱锥,
其中,,故最长的棱的长度为,
选C.
33.(2013高考数学新课标2理科)一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为 (  )
(  )
【答案】A
解析:在空间直角坐标系中,先画出四面体的直观图,以平面为投影面,则得到正视图,所以选A.
考点:(1)9.1.2几何体的三视图;(2)9.6.1空间直角坐标系的运算
难度: B
备注:高频考点
34.(2013高考数学新课标2理科)已知为异面直线,平面,平面.直线满足,,则 (  )
A.且 B.且
C.与相交,且交线垂直于 D.与相交,且交线平行于
【答案】D
解析:利用空间直线平面的平行与垂直的判定与性质定理可得答案为D
考点:(1)9.5.1直线与平面垂直的判定与性质;(2)9.5.2平面与平面垂直的判定与性质
(3)9.4.1直线与平面平行的判定与性质;(4)9.3.2空间直线的位置关系
35.(2013高考数学新课标1理科)某几何体的三视图如图所示,则该几何体的体积为 (  )
A. B. C. D.
【答案】A
解析:将三视图还原成直观图为:
由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为 =,故选A.
考点:(1)9.2.3由三视图求几何体的表面积、体积.
难度:B
备注:高频考点
36.(2013高考数学新课标1理科)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 (  )
A.cm3 B.cm3 C.cm3 D.cm3
【答案】A
解析:设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则,解得R=5,∴球的体积为=,故选A.
考点: (1)9.2.2几何体的体积.
难度:A
备注:高频考点
37.(2012高考数学新课标理科)已知集合;,则中所含元素的个数为 (  )
A.3 B.6 C.8 D.10
【答案】D
解析:以x为标准进行分类:
当x=5时,满足的y的可能取值为1,2,3,4,共有4个,(确定y的个数)
当x=4时,满足的y的可能取值为1,2,3,共有3个,(确定y的个数)
当x=3时,满足的y的可能取值为1,2,共有2个,(确定y的个数)
当x=2时,满足的y的可能取值为1,共有1个,(确定y的个数)
得中所含元素(x,y)的个数为4+3+2+1=10个。(确定中元素的个数)
考点:1.1.1集合的基本概念.
难度:A
备注:高频考点.
二、填空题
38.(2021年高考全国乙卷理科)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
【答案】③④
解析:选择侧视图为③,俯视图为④,
如图所示,长方体中,,
分别为棱的中点,
则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.
故答案为:③④.
39.(2020年高考数学课标Ⅱ卷理科)设有下列四个命题:
p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.
p3:若空间两条直线不相交,则这两条直线平行.
p4:若直线l平面α,直线m⊥平面α,则m⊥l.
则下述命题中所有真命题的序号是__________.
①②③④
【答案】①③④
解析:对于命题,可设与相交,这两条直线确定的平面为;
若与相交,则交点在平面内,
同理,与的交点也在平面内,
所以,,即,命题为真命题;
对于命题,若三点共线,则过这三个点的平面有无数个,
命题为假命题;
对于命题,空间中两条直线相交、平行或异面,
命题为假命题;
对于命题,若直线平面,
则垂直于平面内所有直线,
直线平面,直线直线,
命题为真命题.
综上可知,,为真命题,,为假命题,
真命题,为假命题,
为真命题,为真命题.
故答案为:①③④.
40.(2020年高考数学课标Ⅲ卷理科)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
【答案】
解析:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中,且点M为BC边上的中点,
设内切圆的圆心为,
由于,故,
设内切圆半径为,则:

解得:,其体积:.
故答案为:.
41.(2019年高考数学课标Ⅲ卷理科)学生到工厂劳动实践,利用D打印技术制作模型.如图,该模型为长方体挖去四棱锥后所得的几何体,其中为长方体的中心,分别为所在棱的中点,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量为___________.
【答案】118.8
【解析】由题意得,四棱锥的底面积为,其高为点到底面的距离为,则此四棱锥的体积为.又长方体的体积为,所以该模型体积为,其质量为.
42.(2019年高考数学课标全国Ⅱ卷理科)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图是一个棱数为的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为.则该半正多面体共有  个面,其棱长为   (本题第一空分,第二空分).
【答案】共有个面;棱长为.
【解析】由图可知第一层与第三层各有个面,计个面,第二层共有个面,所以该半正多面体共有个面.如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,∵,
∴,∴,即该半正多面体棱长为.
43.(2018年高考数学课标Ⅱ卷(理))已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.
【答案】
解析:因为母线、所成角的余弦值为,所以母线、所成角的正弦值为.设母线长为,则的面积为,解得,又与圆锥底面所成角为45°,可得底面半径,所以该圆锥的侧面积是.
44.(2017年高考数学课标Ⅲ卷理科)为空间中两条互相垂直的直线,等腰直角三角形的直角边所在直线与都垂直,斜边以直线为旋转轴旋转,有下列结论:
①当直线与成角时,与成角;
②当直线与成角时,与成角;
③直线与所成角的最小值为;
④直线与所成角的最大值为.
其中正确的是 .(填写所有正确结论的编号)
【答案】②③
【解析】法一:由题意, 是以为轴,为底面半径的圆锥的母线,由 ,又圆锥底面,在底面内可以过点,作 ,交底面圆 于点,如图所示,连结,则, ,连结,等腰中, ,当直线与成角时, ,故 ,又在 中, ,过点作,交圆于点,连结,由圆的对称性可知, 为等边三角形, ,即与成角,②正确,①错误.
由最小角定理可知③正确;
很明显,可以满足平面直线,直线 与 所成的最大角为,④错误.
正确的说法为②③.
法二:斜边以直线为旋转轴旋转,可得一个圆锥,其中相当于母线,并将平移到,经过点,依题意易知在圆锥的底面上,如下图
直线不动,让绕点旋转,设直线与直线所成的角为,直线与直线所成角为,则由三余弦公式可得,所以,即直线与直线所成角的最小值为,最大值为,故③正确,④不正确;当时,有,此时直线即与直线所成的角也为,设直线与所成的角为,则有,所以即与成角,故②正确;综上可知选②③.
法三:由题意知,三条直线两两相互垂直,画出图形如图.
不妨设图中所示正方体边长为1,故,,
斜边以直线为旋转轴旋转,则点保持不变,点的运动轨迹是以为圆心,1为半径的圆.
以为坐标原点,以为轴的正方向,为轴的正方向,为轴的正方向建立空间直角坐标系
则,,直线的方向单位向量,.点起始坐标为,
直线的方向单位向量,.
设点在运动过程中的坐标,
其中为与的夹角,.
那么在运动过程中的向量,.
设与所成夹角为,
则.
故,所以③正确,④错误.
设与所成夹角为,

当与夹角为时,即,

∵,
∴.
∴.
∵.
∴,此时与夹角为.
∴②正确,①错误.
改进一下法三:由题意知,三条直线两两相互垂直,如下图,设为直线,为直线,不妨设
则,,,依题意可设
则有,,设直线与成角,直线与成角
则有,
当直线与成角时,有,由,可得,此时
所以与成角,故②正确;
由,而,故,所以
所以③正确,④错误
综上可知选②③.
【考点】异面直线所成的角
45.(2016高考数学课标Ⅱ卷理科)是两个平面,是两条直线,有下列四个命题:
(1)如果,,,那么.
(2)如果,,那么.
(3)如果,,那么.
(4)如果,,那么与所成的角和与所成的角相等.
其中正确的命题有 .(填写所有正确命题的编号)
【答案】②③④
PAGE
- 1 -

展开更多......

收起↑

资源列表