资源简介 2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》解答题专题提升训练(附答案)1.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点F,连接OE(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,请直接写出△OBE的面积为 .2.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.3.如图,菱形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,且BE=AC,连接EC.(1)求证:四边形BECO是矩形;(2)连接ED交AC于点F,连接BF,若AC=12,AB=10,BF= .4.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,EF与AD相交于点H.(1)求证:AD⊥EF;(2)△ABC满足什么条件时,四边形AEDF是正方形?说明理由.5.如图,在平行四边形ABCD中,两条对角线相交于O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=,且∠D=45°,求菱形AECF的周长.6.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE 是菱形(填“可能”或“不可能”).请说明理由.7.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,求HR长度.8.如图,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F、G在CD边上,EF⊥CD,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若FG=5,EF=4,求CG的长.9.已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=3,求菱形ABCD的周长.10.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1①证明:∠DAH=∠DCH②猜想△GFC的形状并说明理由.(2)取DF中点M,连接MG.若MG=2.5,正方形边长为4,求BE的长.11.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.12.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.14.如图,在四边形ABCD中,AB∥CD,AB=AD,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)若菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长,与AB的延长线相交于点G,求EG的长.15.如图,点O是菱形ABCD的对角线的交点,DE∥AC,CE∥BD,连接OE.(1)求证:四边形OCED是矩形;(2)如果AB=AC=4,连接AE,求线段AE的长.16.如图,矩形ABCD中,对角线AC与BD相交于点,过点A作AN∥BD,过点B作BN∥AC,两线相交于点N.(1)求证:AN=BN;(2)连接DN,交AC于点F,若DN⊥NB于点N,求∠DOC的度数.17.如图,在正方形ABCD中,边长为3.点M,N是边AB,BC上两点,且BM=CN=1,连接CM,DN;(1)则DN与CM的数量关系是 ,位置关系是 .(2)若点E,F分别是DN与CM的中点,计算EF的长;(3)延长CM至P,连接BP,若∠BPC=45°,试求PM的长.18.如图1,在平行四边形ABCD中,点M、P分别在边AB、DC上,且MP⊥DC,N是BC的中点,连接MN、PN.(1)求证:MN=PN;(2)如图2,当平行四边形ABCD为菱形,且M是AB的中点时,若△NPC为等腰三角形,求∠B的度数.19.如图,在 ABCD中,对角线AC与BD相交于点O,点E、F分别为OB、OD的中点,延长AE至点G,使EG=AE,联结GC、CF.(1)求证:AE∥CF;(2)当AC=2AB时,求证:四边形EGCF是矩形.20.如图,在正方形ABCD中,F为BC为边上的定点,E、G分别是AB、CD边上的动点,AF和EG交于点H.有2个选项:①AF⊥EG②AF=EG.(1)请从2个选项中选择一个作为条件,余下一个作为结论,得到一个真命题,并证明.你选择的条件是 ,结论是 (只要填写序号);(2)若AB=6,BF=2.①若BE=3,求AG的长;②连结AG、EF,直接写出AG+EF的最小值.参考答案1.(1)证明:∵AB∥CD,∴∠CAB=∠DCA,∵AC为∠BAD的平分线,∴∠CAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB=AD,∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=BD=1,∴∠AOB=90°,∴OA===3,∴AC=2OA=6,∵CE⊥AB,∴∠AEC=90°=∠AOB,又∵∠OAB=∠EAC,∴EA=,∴BE=EA﹣AB=﹣=,过O作OP⊥AE于P,则OP===,∴△OBE的面积=××=,故答案为:.2.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,∴∠DOC=∠OCD=60°,∴∠OCB=90°﹣∠DCO=30°,∵CO=CE,∴∠COE=(180°﹣30°)÷2=75°,∴∠DOE=∠DOC+∠COE=60°+75°=135°;(3)解:作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵∠OCB=30°,AB=2,∴BC=2,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△BOE的面积= EB OF=×(2﹣2)×1=﹣1.3.(1)证明:∵四边形ABCD是菱形,∴∠BOC=90°,OC=OA=AC,∵BE=AC,∴BE=OC,∵BE∥AC,∴四边形BECO是平行四边形,∵∠BOC=90°,∴平行四边形BECO是矩形;(2)解:∵四边形ABCD是菱形,∴BC=AB=10,OC=AC=6,OB=OD,AC⊥BD,在Rt△OBC中,由勾股定理得:OB===8,∴BD=2OB=16,由(1)得:四边形BECO是矩形,∴BE=OC=6,∠OBE=∠ECO=90°,OB=CE,OB∥CE,∴DE===2,∠ODF=∠CEF,OD=CE,在△ODF和△CEF中,,∴△ODF≌△CEF(ASA),∴DF=EF,∵∠DBE=90°,∴BF=DE=,故答案为:.4.(1)证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△AED与△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∴AD⊥EF;(2)解:△ABC满足∠BAC=90°时,四边形AEDF是正方形,理由:∵∠AED=∠AFD=∠BAC=90°,∴四边形AEDF是矩形,∵EF⊥AD,∴矩形AEDF是正方形.5.(1)证明:∵EF是对角线AC的垂直平分线,∴AF=CF,AE=CE,OA=OC,∴∠EAC=∠ECA,∠FAC=∠FCA,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠FAO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∵AF=CF,AE=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠D=45°,∴△CDH是等腰直角三角形,∴CH=DH=CD=1,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2﹣x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2﹣x)2+12,解得:x=,∴AF=CF=,∴菱形AECF的周长=×4=5.6.解:(1)OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵CF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形;(3)不可能.理由如下:如图,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.故答案为不可能.7.(1)证明:作AG⊥EF于G,如图1,则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=GE,同理:Rt△ADF≌Rt△AGF(HL),∴DF=GF,∴BE+DF=GE+GF=EF,设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,整理得:xy+6(x+y)=36,∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=6,∴GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,解得:a=3,即HR=3.当△PQR是钝角三角形时,过P作PT⊥PR交RQ延长线于T,如图3所示:则∠TPQ=90°﹣45°=45°,由①得:TH=3,∴PT===3,设HR=x,PR=y,则TR=x+3,∵△PTR的面积=(x+3)×6=×3y,∴y=6+2x,∴5y2=(6+2x)2①,在Rt△PRH中,由勾股定理得:y2=62+x2②,由①②得:(x﹣12)2=0,∴x=12,即HR=12;综上所述,HR为3或12,8.(1)证明:∵四边形ABCD是菱形,∴OA=OC,∵E是AD的中点,∴OE是△ACD的中位线,∴OE∥CD,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥CD,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)解:由(1)得:四边形OEFG是矩形,∴OE=FG=5,∵四边形ABCD是菱形,∴AD=CD,AC⊥BD,∴∠AOD=90°,∵E是AD的中点,∴OE=AD=DE=5,CD=AD=2OE=10,在Rt△DEF中,DF===3,∴CG=CD﹣FG﹣DF=10﹣5﹣3=2.9.(1)证明:连接BD,如图所示:∵四边形ABCD是菱形,∴BD⊥AC,AB∥CD,∵EF⊥AC,∴EF∥BD,∴四边形EFDB是平行四边形,∴DF=EB,∵E是AB中点,∴AE=EB,∴AE=DF,∵AB∥CD,∴∠EAM=∠ADF,在△AEM和△DMF中,,∴△AME≌△DMF(AAS),∴AM=DM;(2)解:由(1)知△AME≌△DMF,∴AE=DF=3,.∵E为AB的中点,∴AB=2AE=6,∴菱形ABCD的周长为6×4=24.10.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH,∴∠DAH=∠DCH;②解:结论:△GFC是等腰三角形,理由:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DFA+∠DAF=90°,∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形.(2)①如图当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=5,在Rt△DCE中,CE===3,∴BE=BC+CE=4+3=7.②当点F在线段DC的延长线上时,连接DE.同法可证GM是△DEF的中位线,∴DE=2GM=5,在Rt△DCE中,CE===3,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为7或1.11.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.12.(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.13.解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.14.解:(1)∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.(2)连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,∴CD=13,AO=CO=12,∵点E、F分别是边CD、BC的中点,∴EF∥BD(中位线),∵AC、BD是菱形的对角线,∴AC⊥BD,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG.在△COD中.∵OC⊥OD,CD=13,CO=12.∴.∴EG=BD=10.15.(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形OCED是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AD=AB=4,OA=OC=AC=2,OB=OD,AC⊥BD,在Rt△AOD中,由勾股定理得:OD===2,由(1)可知,四边形OCED是矩形,∴∠OCE=90°,CE=OD=2,在Rt△ACE中,由勾股定理得:AE===2.16.解:(1)证明:∵矩形ABCD中,对角线AC与BD相交于点O,∴OA=OB,∵AN∥BD,BN∥AC,∴四边形OANB是平行四边形,∵OA=OB,∴ OANB是菱形,∴AN=BN,(2)由(1)可知:BN=OB=OD,∴BD=2BN,∵DN⊥NB,∴∠DNB=90°,∴∠BDN=30°,∵BN∥AC,∴∠DFO=∠DNB=90°,∴∠DOF=90°﹣30°=60°,∴∠DOC=180°﹣60°=120°.答:∠DOC的度数为120°.17.解:(1)如图1,设CM与DN相交于点O,∵四边形ABCD是正方形,∴BC=CD,∠B=∠NCD=90°,∵BM=CN,∴△BCM≌△CDN(SAS),∴CM=DN,∠BCM=∠CDN,∵∠BCM+∠MCD=90°,∴∠CDN+∠MCD=90°,∴∠COD=90°,∴DN⊥CM,故答案为:CM=DN,DN⊥CM;(2)如图2,连CE并延长交AD于G,∵BC∥AD,∴∠ENC=∠EDG,∴NE=DE,∠NEC=∠GED,∴△CNE≌△GDE(ASA),∴CE=EG,NC=GD=1,又∵MF=CF,∴EF=MG,∵正方形的边长为3,BM=CN=1,∴AM=AG=2,∴GM==2,∴EF=;(3)如图3,过点B作BH⊥CM于点H,∵CM2=BC2+BM2,∴CM=,∵CM BH=BC BM,∴BH=,∴CH==,∴∠BPC=45°,∴PH=BH=,∴PC=,∴PM=PC﹣CM=.18.证明:(1)如图1,延长MN,DC交于点H,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠BCH,∵点N是BC的中点,∴BN=NC,在△BMN和△CHN中,,∴△BMN≌△CHN(ASA),∴MN=NH,∵MP⊥DC,∴NP=MN=NH;(2)∵四边形ABCD是菱形,∴AB=BC=AD=CP,∠B+∠C=180°,∵N是BC的中点,M是AB的中点∴BM=AB=BC=BN=NC,若NC=CP时,则BM=BN=NC=CP,在△BMN和△CPN中,,∴△BMN≌△CPN(SSS),∴∠B=∠C,又∵∠B+∠C=180°,∴∠B=∠C=90°;若NC=PN时,则BM=BN=NC=NP=MN,∴△BMN是等边三角形,∴∠B=60°;若PN=PC时,设∠PMN=x,∵MN=NP=NH,∴∠NMP=∠MPN=x,∠H=∠NPH=90°﹣x,∴∠PNH=2x,∵NP=CP,∴∠PCN=∠PNC=90°+x,∴∠CNH=2x,∴点C与点P重合,不合题意舍去,综上所述:∠B的度数为90°或60°.19.证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵点E、F分别为OB、OD的中点,∴EO=OB,FO=OD,∴EO=FO,在△AEO和△CFO中,,∴△AEO≌△CFO(SAS),∴∠AEO=∠CFO,∴AE∥CF;(2)∵EA=EG,OA=OC,∴EO是△AGC的中位线,∴EO∥GC,∵AE∥CF,∴四边形EGCF是平行四边形,∵AC=2AB,AC=2AO,∴AB=AO,∵E是OB的中点,∴AE⊥OB,∴∠OEG=90°,∴四边形EGCF是矩形.20.解:(1)(答案不唯一)选择的条件是①,结论是②.理由如下:如图1,过点G作GP⊥AB交于P,∵AH⊥EG,∴∠AEH+∠DAH=90°,∵∠PEG+∠PGC=90°,∴∠EAH=∠PGE.在△ABF与△GPE中,,∴△ABF≌△GPE(ASA),∴AF=EG.故答案为:①,②(答案不唯一);(2)①∵BF=2,∴PE=2,∵AB=6,BE=3,∴AE=3,∴AP=1,在Rt△APG中,AP=1,PG=6,∴AG==;②过点F作FQ∥EG,过点G作GQ∥EF,∴四边形EFQG为平行四边形,∴GQ=EF,∴AG+EF=AG+GQ≥AQ,∴当A、G、Q三点共线时,AG+EF的值最小,∵EG=AF,EG=FQ,∴AF=FQ,∵AF⊥EG,∴AF⊥FQ,∴△AFQ是等腰直角三角形,∵AF==2,∴AQ=4,∴AG+EF的最小值为4. 展开更多...... 收起↑ 资源预览